
Efficient determination of the

unique decodability of a string

Arnold Filtser∗, Jiaxi Jin†, Aryeh Kontorovich∗ and Ari Trachtenberg†

∗ Computer Science, Ben-Gurion University, Beer Sheva, Israel; supported by the Frankel Center
† Electrical & Computer Engineering, Boston University, Boston, MA 02215

Abstract—Determining whether an unordered collection of over-
lapping substrings (called shingles) can be uniquely decoded into
a consistent string is a problem common to a broad assortment
of disciplines ranging from networking and information theory
through cryptography and even genetic engineering and linguistics.
We present a new insight that yields an efficient streaming
algorithm for determining whether a string of n characters over
the alphabet Σ can be uniquely decoded from its two-character
shingles; our online algorithm achieves an overall time complexity
Θ(n+ |Σ|) and space complexity O(|Σ|). As a motivating applica-
tion, we demonstrate how this algorithm can be adapted to larger,
varying-size shingles for (empirically) efficient string reconciliation.

I. INTRODUCTION

The problem of efficiently reconstructing a string from a

given encoding is fundamental many settings. In information

theory, this is related to the α-edits or string reconciliation

problem [1], wherein two hosts seek to reconcile remote strings

that differ in a fixed number of unknown edits, using a minimum

amount of communication. A similar problem is faced in

cryptography through fuzzy extractors [2], which can be used to

match noisy biometric data to encrypted baseline measurements

in a secure fashion. Within a biological context, this problem has

common roots with the sequencing of DNA from short reads [3]

and reconstruction of protein sequences from K-peptides [4].

In a simple formal statement of the unique string decoding

problem, one is given a string s ∈ Σ∗ over the alphabet Σ. The

string is considered uniquely decodable if there is no other string

s′ ∈ Σ∗ with the same multiset of length 2 substrings (known as

bigrams). In the general case, we will be interested in substrings

of length q ≥ 2, which we will call q-grams or shingles. In our

analysis, we shall assume throughout that alphabet characters

can be compared in constant time; otherwise, multiplicative

log(|Σ|) terms need to be added where appropriate.

A. Approach

Two principal approaches have been put forth for deciding

unique string decodability.

The first is due to Pevzner [5] and Ukkonen [6], who

characterized the type of strings that have the same collection

of shingles. This approach can be used to generate a simple

unique decodability tester whose naive worst-case running time

on strings of length n is Θ(n4).
The second approach is based on an observation that the

set of uniquely decodable strings form a regular language [7].

With this observation, it is possible to produce a deterministic

finite state machine on exp(Ω(|Σ| log |Σ|)) states [8]. and

a non-deterministic one on O(|Σ|3) states [9]. The DFA is

prohibitively expensive to construct explicitly, while the NFA

may be simulated in time O(n|Σ|3) and space Θ(|Σ|3).
In this work, we present a streaming, online, linear time algo-

rithm for testing unique decodability of a string from its length

2 substrings; to our knowledge, the best previous algorithm [9]

has time complexity O(n|Σ|3) and space complexity Θ(|Σ|3).
We further show how this algorithm can be extended to arbitrary

(and varying) length shingles, thus enabling an (empirically)

efficient protocol for the classic α-edits (or string reconciliation)

problem, in which one is tasked with reconciling two remote

strings that differ in at most α unknown edits (insertions or

deletions).

B. Outline

We begin with an overview of related work from the infor-

mation theory and theoretical computer science communities

in Section II. Our linear-time algorithm for deciding unique

decodability, together with a proof of correctness, is described

in Section III, as is a motivating application to the α-edits

problem. We close with concluding remarks and remaining open

theoretical questions in Section IV.

II. RELATED WORK

A. Edit distance

Orlitsky [1] shows that the amount of communication

Cα̂(x, y) necessary to reconcile two strings x and y (of lengths

|x| and |y| respectively) that are known to be at most α̂-

edits (i.e. insertions or deletions) apart is at most Cα̂(x, y) ≤

f(y) + 3 log f(y) + log α̂ + 13, for f(y) ≈ log
(

(

|y|+α̂
α̂

)

)

,

although he leaves an efficient one-way protocol as an open

question.

The literature includes other solutions, such as hash-based

approaches [10, 11], an interactive protocol [12], and a protocol

based on delta-compression [13].

B. Reconciliation

a) Set reconciliation: The problem of set reconciliation

seeks to reconcile two remote sets SA and SB of b-bit integers

using minimum communication. The approach in [14] involves

translating the set elements into an equivalent characteristic

polynomial, thus reducing set reconciliation into an equiva-

lent problem of rational function interpolation. The resulting

algorithm requires one message of roughly bm bits and bm3

computation to reconcile two sets that differ in m entries,

though this can be made expected bm communication and

computation through interaction [15].

b) String reconciliation: A string σ can be transformed

into a multiset S through shingling, or collecting all contiguous

substrings of a given length, including repetitions. For example,

shingling the string katana into length 2 shingles produces the

multiset:

{at, an, ka, na, ta} . (1)

In order to reconcile two strings σA and σB , the protocol

STRING-RECON [16] first shingles each string, then reconciles

the resulting sets, and then puts the shingles back together into

strings in order to complete the reconciliation.

The process of recombining shingles of length l into a string

involves the construction of a modified de Bruijn graph. In

this graph, each shingle corresponds to an edge, with weight

equal to the number times the shingle occurs in the string. The

vertices of the graph are all length l − 1 substrings over the

shingling alphabet; in this manner, an edge e(u, v) corresponds

to a shingle s if u (resp. v) is a prefix (resp. suffix) of s. A

special delimiter $ is used to mark the beginning and end of

the string.

An Eulerian cycle in the modified de Bruijn graph, starting

at the first shingle, necessarily corresponds to a string that is

consistent with the set of shingles. Unfortunately, there may be

a large number of strings consistent with a given shingling.

C. Unique decoding

Ukkonen [6] conjectured that two strings with the same

shingles are related through two types of string transformations,

and Pevzner [5] proved this true. Motahari et al [17] provided

asymptotic bounds on how many shingles are needed to recon-

struct a string.

It was later shown in [7] that the collection of strings

having a unique reconstruction from the shingles representation

is a regular language, and Li and Xie [8] gave an explicit

construction of a deterministic finite-state automaton (DFA)

recognizing this language.

III. STRING RECONCILIATION

Our string reconciliation protocol in [18], which is a re-

finement of the shingling approach in [16] based upon a

transformation to an instance of set reconciliation [14], serves

as a clear motivation for our main results, Algorithms 1 and 2.

A. Definitions

Formally, a shingle s = s1s2 . . . sk is simply an element of

Σ∗
$
, where $ is a special delimiter found only at the beginning

and end of a string. For two shingles s = s1s2 . . . sk and t =

t1t2 . . . tk′ , we write s
l
 t if we can rewrite s = s′u and

t = ut′ for strings s′, t′ and |u| ≥ l − 1. We define the non-

overlapping concatenation s ⊙l t (or just s ⊙ t in context) as

the concatenation s′ut′, where s = s′u, t = ut′ and |u| = l−1.

For example, kata
3
 tana and kata⊙3 tana = katana.

For a fixed l, the sequence of shingles s1
l
 s2

l
 . . .

l
 st is

said to represent the word w ∈ Σ∗ if w = $||s1⊙s2⊙. . .⊙st||$,

where || denotes string concatenation and si
l
 si+1 for all i. If

S =
{

s1, . . . , st
}

is a multiset of shingles, we use Γ(S) ⊆ Σ∗

to denote the collection of all words represented by S. We refer

to the members of Γ(S) as the decodings of S, and say that S

is uniquely decodable if |Γ(S)| = 1. A shingling I of a word

w = w1 . . . wt ∈ Σ∗ is a set of shingles of w that represents

w. We say that I is an uniquely decodable shingling of w if

|Γ(I(w))| = 1.

1. Split σ into a set Sσ of length l shingles, with the

ith shingle of the string denoted si. Similarly split τ into

Sτ .

2. Reconcile sets Sσ and Sτ .

3. The first host sets S0
σ ←− {s0}.

4. For i from 1 to |σ| − l + 1 do

Si
σ ←− Si−1

σ ∪ {si}
While Si

σ is not uniquely decodable

Merge the last two shingles added to Si
σ.

5. Exchange indices of merged shingles.

6. Uniquely decode Si
σ and Si

τ on the remote hosts.

Protocol 1: Reconciliation of remote strings σ and τ .

Protocol 1 [18] transforms a string that is not uniquely

decodable into one that is uniquely decodable by merging

shingles. The main new technical challenge in this protocol

is embodied in Step 4, in which the protocol must efficiently

determine whether its shingles are uniquely decodable and,

if not, merge shingles (and any metadata) until a uniquely

decodable collection of shingles is produced.

B. Unique decodability

The string reconciliation protocol described in this section

requires the use of an algorithm that tests whether a given set

of possibly different-length shingles admits a unique decoding,

and this is accomplished by Algorithm 1.

1) Checking Unique Decodability: The correctness of Al-

gorithm 1 rests upon Lemma 1, originally proved in [7] for

bigrams but readily extended to larger shingles, and Theorem 2.

Lemma 1. A shingle set S is uniquely decodable iff there is

exactly one Eulerian cycle in its de Bruijn graph G(S) that

starts and ends with $.

Theorem 2. Algorithm 1 returns true iff its input set S is

uniquely decodable.

Proof: From Lemma 1 we know that unique decodability of

S is equivalent to having a unique Eulerian cycle in G starting

and ending with $.

Completeness: Given an input set S that makes Algorithm 1

return true, what needs to be proved is that G(S) has a unique

Eulerian cycle. Assume that after S is processed by Algorithm 1

all the labels in G(S) are fixed; we now restart from $ along the

Eulerian cycle to see if there were any opportunities to diverge

from the cycle we found to produce different Eulerian cycle in

G(S). During the traversal, there are four cases at any vertex

v:

• case 1: v is labeled as NOT IN CYCLE;

Algorithm 1: Checking the unique decodability of a shingle

set

Input: Ordered shingle set S = {s1, s2, s3, ..., sn}
constructed from shingling string w with minimum

shingle length l;

Output: true if S is uniquely decodable and false

otherwise;

1 initialize the graph G(S) with vertex set V , each vi ∈ V

represents the length l − 1 prefix of si, vi = vj if si and

sj have the same prefix;

2 initialize each v ∈ V as UNVISITED;

3 initialize each v ∈ V as NOT IN CYCLE;

4 initialize each Ψ(v) as empty;

5 for i← 1 to |S| do

6 case 1: vi is UNVISITED

7 mark vi as VISITED;

8 endsw

9 case 2: vi is NOT IN CYCLE

10 j ← i;

11 repeat

12 if vj is NOT IN CYCLE then

13 label vj as IN CYCLE;

14 Ψ(vj)← sj−1;

15 end

16 j ← j − 1;

17 until vj = vi;

18 endsw

19 case 3: vi is IN CYCLE

20 if si−1 = Ψ(vi) then

21 do nothing;

22 else

23 return false

24 end

25 endsw

26 end

27 return true

• case 2: v is labeled as IN CYCLE and has exactly one

out-going edge;

• case 3: v is labeled as IN CYCLE and has two out-going

edges;

• case 4: v is labeled as IN CYCLE and has more than two

out-going edges;

In case 1, Algorithm 1 only visited v once, meaning that any

traversal on G(S) must leave v along the only available edge. In

case 2, since v has only one out-going edge, any traverse must

leave v along the same edge. In case 3, there are two out-going

edges of v. Suppose the traversal leaves v from one of the two

edges first, denoted e1, and returns to v at some later point in

order to traverse the second out-going edge, denoted e2. Note

that by returning to v for the first time the traversal already

forms a cycle, denoted Ce1, in which e1 is included while e2 is

not. Were the traversal to leave on e2 and return to v again, it

would cause an intrusion on Ce1 and Algorithm 1 would return

false. Bounded by this, any traversal to v must leave along e1

all but the last time, there is no opportunity to diverge from the

existed cycle at v. In light of case 3, case 4 is therefore not

possible.

Soundness: Algorithm 1 only returns false when detecting

an intrusion on an existing cycle at vertex vx, at which time

we know that: (i) vx has been marked as VISITED, so that

the path between the last visit and the current visit forms a

cycle. (ii) vx is already in another cycle including its parent

edge, which is necessarily different from the cycle just found

in (i), since an intrusion is only detected when stepping onto

vx along an edge other than its recorded parent edge. Since vx
is in two different cycles that both return to vx, at least two

different Eulerian cycles on G(S) exist so, by Lemma 1, S is

not uniquely decodable.

2) Patching Unique Decodability: In cases where a unique

decoding of a shingle set does not exist, Algorithm 2 provides

method of merging some of the shingles in order to produce

uniquely decodable shingle set that decodes to the same string.

We call the checking and (potential) merging process patching

the unique decodability of a shingle set.

Algorithm 2 executes in almost the same way as Algorithm 1

to check the unique decodability of the input shingle set. We

only change the boolean label INCYCLE in Algorithm 1 to

a counter Φ(v), which keeps track of how many cycles (not

necessarily distinct) that include vertex v have been detected

at the time. If the input shingle set fails a unique-decodability

check, Algorithm 2 makes use of Procedure deCycle and Sub-

Procedure mergePrevious to recover the unique decodability

property for the working shingle set.

Procedure deCycle is called at line 27 of Algorithm 2, and

its function is to delete one cycle at vi by merging all the edges

backwards from current to just before the last occurrence of

vi. As a sub-procedure of deCycle, mergePrevious is called

when one edge (sk−1) needs to be merged with its previous

edge (sk−2), with different decisions being made at each merge,

depending on the state of vertex vk.

Theorem 3. The shingle set S′ returned by Algorithm 2 is

uniquely decodable.

Lines 1 to 25 work in the same way as in Algorithm 1, and

therefore when Algorithm 2 reaches Line 26, UD=false iff the

shingle set seen so far is NOT uniquely decodable; the rest of

the proof is based on the following lemma.

Lemma 4. When UD=false at Line 26 of Algorithm 2 for some

index i, then

1) when it next sees Line 29, Φ(vi) will be reduced by one

and vi is involved in one fewer cycles;

2) the next iteration of while loop (from Line 5) will restart

at vi;

3) by the next time UD=true at Line 26 of Algorithm 2, the

intruded cycle will be broken.

C. Analysis

Theorem 5. Algorithm 1 requires Θ(|Σ|) preprocess time and

Θ(n) on-line time for constant shingle length. Algorithm 2 has

linear time complexity Θ(n+|Σ|) running on string w of length

n.

Algorithm 2: Patching the unique decodability of a shingle

set.

Input: Ordered shingle set S = {s1, s2, s3, ..., sn}
constructed from shingling string w with minimum

shingle length l;

Output: Shingle set S′ decoding uniquely to w;

1 initialize the graph G(S) with vertex set V , each vi ∈ V

represents the length l − 1 prefix of si, vi = vj if si and

sj have the same prefix;

2 initialize each v ∈ V as UNVISITED, each Φ(v) = 0,

each Ψ(v) as null;

3 initialize UD, the boolean flag indicating unique

decodability, to be true;

4 i← 1;

5 while i ≤ |S| do

6 case 1: vi is UNVISITED

7 mark vi as VISITED;

8 endsw

9 case 2: vi is VISITED and Φ(vi) = 0
10 j ← i;

11 repeat

12 if Φ(vj) = 0 then

13 Ψ(vj)← sj−1;

14 end

15 Φ(vj)← Φ(vj) + 1;

16 j ← j − 1;

17 until vj = vi;

18 endsw

19 case 3: vi is VISITED and Φ(vi) > 0
20 if si−1 = Ψ(vi) then

21 do nothing;

22 else

23 UD=false;

24 end

25 endsw

26 if UD=false then

27 (S, G, i) ← deCycle(S, G, i);

28 UD←true;

29 end

30 end

31 i← i+ 1; return S

Proof: We list the detailed run time analysis as below.

• Lines 1-4. Initialization of De Bruijn graph G and its vertex

set V , can be accomplished in constant time with sparse

storage, with a two-dimensional array.Note that for G, only

vertices need to be stored in the array while edges are

essentially the input shingles, which are already kept in

another list.

• Lines 6-8. Since the array containing the state information

of vertices has constant time access, the time cost of this

step is constant.

• Lines 9-18. All the input vertices are kept in an ordered list,

and the iteration at lines 11-17 can then be accomplished

by scanning backwards through the list.

Procedure deCycle(S, G, i), deleting cycle by merging

edges backwards from vi until Ψ(vi) is merged once.

Input: S: shingle set; G: de Bruijn graph of S; i, index

number of current vertex

Output: modified input (S,G, i), with updated state Ψ
and Φ to reflect cycle deletion

1 k ← i;

2 repeat

3 k ← k − 1;

4 (S, G) ← mergePrevious(S, G, k);

5 until vk = vi;

6 delete sk to si−1 from S;

7 i← k − 1;

8 return (S,G,i)

Procedure mergePrevious(S, G, k), merging sk with sk−1

and maintaining relevant metadata.

Input: S: shingle set; G: de Bruijn graph of S; k, index

number of current vertex

Output: modified input (S,G)
1 if Φ(vk) = 0 then

2 mark vk as UNVISITED;

3 else if Φ(vk) = 1 then

4 j ← k;

5 repeat

6 Φ(vj)← Φ(vj)− 1;

7 if Φ(vj) = 0 then

8 Ψ(vj)← null;

9 end

10 j ← j − 1;

11 until vj = vk;

12 else

13 Φ(vk)← Φ(vk)− 1
14 end

15 Append the l-th to the last character of sk to sk−1;

16 return (S,G)

• Lines 19-25. Comparing shingles of length l takes constant

time, again because l is constant.

D. Communication Complexity

Only Steps 2 and 5 in Protocol 1 transmit data. For two strings

of length n differing in α edits, Step 2 will require O(αl2) bits

of communication for the implementation parameter l [14]. Step

5 will require between 0 and 2n log(n− l+1) communication,

depending on the decodability of the string.

More precisely, the communication efficiency of the protocol

relies upon having as few merge operations as possible, since,

at worst, every shingle is merged in Step 5, requiring 2n logn
bits of communication for a shingle set of size n. In the best

case, no shingles are merged and the communication complexity

of the protocol is directly related to the edit distance between

reconciled strings. The shingle size l thus represents a tradeoff

between communication spent on set reconciliation and com-

munication spent on merge identification. Precise bounds on the

number of shingles that need to be merged when transforming

a set S into a uniquely decodable are difficult to obtain. The

results in [16] suggest that, at least in the model of iid input

sequences of length n, a “safe” shingle length is O(logn).
Inspired by the techniques in [19], our result below sharpens

the analysis in [16].

Theorem 6. If the input string w is drawn uniformly at random

from Σn and shingled into length ℓ shingles, then the expected

number of calls to procedure deCycle in Algorithm 2 is at most
(

n−ℓ+1
2

)

|Σ|−ℓ.

Note that this expectation is less than 1 if ℓ ≥ log|Σ| n
2 + 2.

Proof: Put s = |Σ| and let Ii,j be the 0-1 indicator variable

of the event w[i : i+ ℓ− 2] = w[j : j + ℓ− 2], that is, that the

length-ℓ substrings starting at i and j, respectively, are identical.

Note that the number of calls is upper bounded by
∑

i<j Ii,j ,

since each call is triggered by some pair of identical length ℓ−1
substrings, corresponding to a revisited vertex in the de Bruijn

graph.

We claim that for all 1 ≤ i < j ≤ n − ℓ, E[Ii,j] =
Pr[Ii,j = 1] = s−ℓ. To prove this, let us define the index

sets A,B,C ⊆ [n] as follows: A = {i, i+ 1, . . . , i+ ℓ− 2},
B = {j, j + 1, . . . , j + ℓ− 2}, and C = A ∩ B, with w[A],
w[B], w[C] being the substrings of characters at the corre-

sponding indices. We will consider the cases C = ∅ and

C 6= ∅ separately. In the first case, the result derives from

the independence of w[A] and w[B], each of length ℓ. To see

the second case, observe that the characters of w[A \ C] are

independent and completely determine the remaining characters

in w[C] and w[B]. As such, Pr[Ii,j = 1] = sℓ−c

s2ℓ−c = s−ℓ.

The expected number of calls is thus upper bounded by

E

[

∑

i<j Ii,j

]

=
(

n−ℓ+1
2

)

s−ℓ.

We can combine Theorem 6 with the communication com-

plexity analysis to get an upper bound on communication for

Algorithm 2.

Corollary 7. Consider two strings drawn uniformly at random

from Σn that differ by α edits. The expected communication

needed to reconcile these strings using Algorithm 2 is at most

Θ
(

α log2s(n)
)

,

using shingles of length ℓ = 3 logs (n) and s = |Σ|.

Proof: The analysis at the beginning of the section indi-

cates a communication complexity of αℓ2+m log(n−ℓ+1), for

m merges of length ℓ shingles. Replacing m by the expectation

in Theorem 6 times the string length n, and length ℓ as in the

statement produces a bound of αl2 +
(

n2

sl

)

log(n− l+ 1)

≤ 9αlog2s(n) +
log(n−l+1)

n
, which asymptotically converges to

the result.

IV. CONCLUSION

We have provided a linear-time algorithm for determining

whether a given string is uniquely decodable from its bigrams.

Our algorithm is online, in that it needs only constant-time pre-

processing, and streaming, in that results for one string can be

sub-linearly extended to a superstring. We have also shown how

this algorithm can be incorporated into an existing protocol for

string reconciliation, though the space of applications poten-

tially extends further to networking, cryptography, and genetic

engineering.

Several interesting open questions remain. For one, it is

natural to ask whether the proposed online algorithm can be

extended for testing the existence of 2, 3, ... or k decodings. It

is also interesting to provide sharper bounds for the numbers of

merged shingles in Protocol 1 under different random string

models, as this could help determine the correct choice for

initial shingling size ℓ, in addition to tightening bounds on the

communication complexity of the protocol.

REFERENCES

[1] A. Orlitsky, “Interactive communication: Balanced distributions, correlated
files, and average-case complexity.” in Proceedings of the 32nd Annual

Symposium on Foundations of Computer Science, 1991, pp. 228–238.
[2] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors: How

to generate strong keys from biometrics and other noisy data,” SIAM J.

Comp., vol. 38, no. 1, pp. 97–139, 2008.
[3] M. Chaisson, P. A. Pevzner, and H. Tang, “Fragment assembly with short

reads,” Bioinformatics, vol. 20, no. 13, pp. 2067–2074, 2004.
[4] X. Shi, H. Xie, S. Zhang, and B. Hao, “Decomposition and reconstruc-

tion of protein sequences: The problem of uniqueness and factorizable
language.” Journal of the Korean Physical Society, vol. 50, no. 1I, pp.
118–123, 2007.

[5] P. Pevzner, “DNA physical mapping and alternating Eulerian cycles in
colored graphs,” Algorithmica, vol. 13, pp. 77–105, 1995.

[6] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theoretical Computer Science, vol. 92, no. 1, pp. 191 – 211,
1992.

[7] L. Kontorovich, “Uniquely decodable n-gram embeddings,” Theor. Com-
put. Sci., vol. 329, no. 1-3, pp. 271–284, 2004.

[8] Q. Li and H. Xie, “Finite automata for testing composition-based recon-
structibility of sequences,” J. Comput. Syst. Sci., vol. 74, no. 5, pp. 870–
874, 2008.

[9] A. L. Kontorovich and A. Trachtenberg, “Unique decodabil-
ity for string reconciliation,” submitted. [Online]. Available:
http://arxiv.org/abs/1111.6431

[10] G. Cormode, M. Paterson, S. Sahinalp, and U. Vishkin, “Communication
complexity of document exchange,” in SODA, 2000, pp. 197–206.

[11] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Australian National University, 2000.

[12] A. Orlitsky and K. Viswanathan, “Practical protocols for interactive
communication,” in IEEE International Symposium on Info. Theory, June
2001.

[13] T. Suel, P. Noel, and D. Trendafilov, “Improved file synchronization tech-
niques for maintaining large replicated collections over slow networks,”
in ICDE, 2004, pp. 153–164.

[14] Y. Minsky, A. Trachtenberg, and R. Zippel, “Set reconciliation with
nearly optimal communication complexity,” IEEE Trans. on Info. Theory,
September 2003.

[15] Y. Minsky and A. Trachtenberg, “Scalable set reconciliation,” in Proc. 40-
th Allerton Conference on Comm., Control, and Computing, Monticello,
IL., October 2002.

[16] S. Agarwal, V. Chauhan, and A. Trachtenberg, “Bandwidth efficient string
reconciliation using puzzles,” IEEE Trans. Parallel Distrib. Syst., vol. 17,
no. 11, pp. 1217–1225, 2006.

[17] A. Motahari, G. Bresler, and D. Tse, “Information theory of dna
sequencing.” [Online]. Available: http://arxiv.org/abs/1203.6233v2

[18] A. L. Kontorovich and A. Trachtenberg, “String reconciliation with
unknown edit distance,” presented in part at ITA 2012. Also submitted
elsewhere.

[19] M. Dyer, A. Frieze, and S. Suen, “The probability of unique solutions of
sequencing by hybridization,” Journal of Computational Biology, vol. 1,
no. 2, pp. 105–110, Summer 1994.

