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Abstract
In this paper we study terminal embeddings, in which one is given a finite metric (X, dX) (or a
graph G = (V,E)) and a subset K ⊆ X of its points are designated as terminals. The objective
is to embed the metric into a normed space, while approximately preserving all distances among
pairs that contain a terminal. We devise such embeddings in various settings, and conclude that
even though we have to preserve ≈ |K| · |X| pairs, the distortion depends only on |K|, rather
than on |X|.

We also strengthen this notion, and consider embeddings that approximately preserve the
distances between all pairs, but provide improved distortion for pairs containing a terminal.
Surprisingly, we show that such embeddings exist in many settings, and have optimal distortion
bounds both with respect to X ×X and with respect to K ×X.

Moreover, our embeddings have implications to the areas of Approximation and Online Al-
gorithms. In particular, [7] devised an Õ(

√
log r)-approximation algorithm for sparsest-cut in-

stances with r demands. Building on their framework, we provide an Õ(
√

log |K|)-approximation
for sparsest-cut instances in which each demand is incident on one of the vertices of K (aka, ter-
minals). Since |K| ≤ r, our bound generalizes that of [7].

1998 ACM Subject Classification G.2.2 Graph algorithms

Keywords and phrases embedding, distortion, terminals

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Embedding of finite metric spaces is a very successful area of research, due to both its
algorithmic applications and its natural geometric appeal. Given two metric space (X, dX),
(Y, dY ), we say that X embeds into Y with distortion α if there is a map f : X → Y and a
constant c > 0, such that for all u, v ∈ X,

dX(u, v) ≤ c · dY (f(u), f(v)) ≤ α · dX(u, v) .

Some of the basic results in the field of metric embedding are: a theorem of [15], asserting
that any metric space on n points embeds with distortion O(logn) into Euclidean space
(which was shown to be tight by [35]), and probabilistic embedding into a distribution
of ultrametrics (or trees) with expected distortion O(logn) [23], or expected congestion
O(logn) [40] (which are also tight [12]).

In this paper we study a natural variant of embedding, in which the input consists of
a finite metric space or a graph, and in addition, a subset of the points are designated
as terminals. The objective is to embed the metric into a simpler metric (e.g., Euclidean
metric), or into a simpler graph (e.g., a tree), while approximately preserving the distances
between the terminals to all other points. We show that such embeddings, which we call
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2 Terminal Embeddings

terminal embeddings, can have improved parameters compared to embeddings that must
preserve all pairwise distances. In particular, the distortion (and the dimension in embedding
to normed spaces) depends only on the number of terminals, regardless of the cardinality of
the metric space.

We also consider a strengthening of this notion, which we call strong terminal embedding.
Here we want a distortion bound on all pairs, and in addition an improved distortion bound
on pairs that contain a terminal. Such strong terminal embeddings enhance the classical
embedding results, essentially saying that one can obtain the same distortion for all pairs,
with the option to select some of the points, and obtain improved approximation of the
distances between any selected point to any other point.

As a possible motivation for studying such embeddings, consider a scenario in which a
certain network of clients and servers is given as a weighted graph (where edges correspond
to links, weights to communication/travel time). It is conceivable that one only cares about
distances between clients and servers, and that there are few servers. We would like to have
a simple structure, such as a tree spanning the network, so that the client-server distances
in the tree are approximately preserved.

We show that there exists a general phenomenon; essentially any known metric embed-
ding into an `p space or a graph family can be transformed via a general transformation
into a terminal embedding, while paying only a constant blow-up in the distortion. In
particular, we obtain a terminal embedding of any finite metric into any `p space with
terminal distortion O(log k), using only O(log k) dimensions. We also show that many of
the embeddings into normed spaces, probabilistic embedding into ultrametrics (including
capacity preserving ones), and into spanning trees, have their strong terminal embedding
counterparts. Our results are tight in most settings.1

It is well known that embedding a graph into a single tree may cause (worst-case) distor-
tion Ω(n) [38]. However, if one only cares about client-server distances, we show that it is
possible to obtain distortion 2k− 1, where k is the number of servers, and that this is tight.
Furthermore, we study possible tradeoffs between the distortion and the total weight of the
obtained tree. This generalizes the notion of shallow light trees [32, 11, 21], which provides
a tradeoff between the distortion with respect to a single designated server and the weight
of the tree.

We then address probabilistic approximation of metric spaces and graphs by ultrametrics
and spanning trees. This line of work started with the results of [4, 12], and culminated
in the O(logn) expected distortion for ultrametrics by [23], and Õ(logn) for spanning trees
by [3]. These embeddings found numerous algorithmic applications, in various settings, see
[23, 19, 3] and the references therein for details. In their work on Ramsey partitions, [36]
implicitly showed that there exists a probabilistic embedding into ultrametrics with expected
terminal distortion O(log k) (see Section 2 for the formal definitions). Here we generalize this
result by obtaining a strong terminal embedding with the same expected O(log k) distortion
guarantee for all pairs containing a terminal, and O(logn) for all other pairs. We also show a
similar result that extends the embedding of [3] into spanning trees, with Õ(log k) expected
distortion for pairs containing a terminal, and Õ(logn) for all pairs. A slightly different
notion, introduced by [39], is that of trees which approximate the congestion (rather than
the distortion), and [40] showed a distribution over trees with expected congestion O(logn).
We provide a strong terminal version of this result, and show expected congestion of O(log k)

1 All our terminal embeddings are tight, except for the probabilistic spanning trees, where they match
the state-of-the-art [3], and except for our terminal spanners.
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for all edges incident on a terminal, and O(logn) for the rest. In [1], it was shown that the
average distortion (taken over all pairs) in an embedding into a single tree can be bounded
by O(1) (in contrast to the Ω(logn) lower bound for the average stretch over edges). Here
we extend and simplify their result, and obtain O(1) average terminal distortion, that is,
the average is over pairs containing a terminal. We do this both in the ultrametric and in
the spanning tree settings.

We also consider spanners, with a stretch requirement only for pairs containing a ter-
minal. Our general transformation produces for any t ≥ 1 a (4t−1)-terminal stretch spanner
with O(k1+1/t + n) edges. The drawback is that this is a metric spanner, not a subgraph
of the input graph. We alleviate this issue by constructing a graph spanner with the same
stretch and O(

√
n · k1+1/t + n) edges.2 A result of [41] implicitly provides a terminal graph

spanner with (2t−1) stretch and O(t ·n ·k1/t) edges. Our graph terminal spanner is sparser
than that of [41] as long as k ≤ t · n1/2(1+1/t).

1.1 Algorithmic Applications
We overview a few of the applications of our results to approximation and online algorithms.
Some of the most striking applications of metric embeddings are to various cut problems,
such as the sparsest-cut, min-bisection, and also to several online problems. Our method
provides improved guarantees when the input graph has a small set of "important" vertices.
Specifically, these vertices can be considered as terminals, and we obtain approximation
factors that depend on the cardinality of the terminal set, rather than on the input size.
The exact meaning of importance is problem specific; e.g. in the cut problems, we require
that the set of important vertices touches every demand pair, or every edge (that is, forms
a vertex cover).

For instance, consider the (general) sparsest-cut problem [34, 10, 35]. We are given a
graph G = (V,E) with capacities on the edges c : E → R+, and a collection of pairs
(s1, t1), . . . , (sr, tr) along with their demands D1, . . . , Dr. The goal is to find a cut S ⊆ V

that minimizes the ratio between capacity and demand across the cut:

φ(S) =
∑
{u,v}∈E c(u, v)|1S(u)− 1S(v)|∑r

i=1Di|1S(si)− 1S(ti)|
,

where 1S(·) is the indicator for membership in S. Following the breakthrough result of
[9], which showed O(

√
logn) approximation for the uniform demand case, [7] devised an

Õ(
√

log r) approximation for the general case. If there is a set of k important vertices, such
that every demand pair contains an important vertex, we obtain an Õ(

√
log k) approximation

using the terminal embedding of negative-type metrics to `1. Observe that k ≤ r, and so
our result subsumes the result of [7]. Our bound is particularly useful for instances with
many demand pairs but few distinct sources si (or few targets ti).

We also consider other cut problems, and show a similar phenomenon: the O(logn)
approximation for the min-bisection problem can be improved to an approximation of only
O(log k), where k is the size of the minimum vertex cover of the input graph. For this result
we employ our terminal variant of Räcke’s result [40] on capacity-preserving probabilistic
embedding into trees.

We then focus on one application of probabilistic embedding into ultrametrics [12, 23],
and illustrate the usefulness of our terminal embedding result by the (online) constrained

2 Note that the number of edges is linear whenever k ≤ n1/(2(1+1/t)).
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file migration problem [13]. Given a graph G = (V,E) representing a network, each node
v ∈ V has a memory capacity mv, and there is a set of files that reside at the nodes, at
most mv files may be stored at node v at any given time. The cost of accessing a file is
the distance in the graph to the node storing it (no copies are allowed). Files can also be
migrated from one node to another. This costs D times the distance, for a given parameter
D ≥ 1. When a sequence of file requests from nodes arrives online, the goal is to minimize
the cost of serving all requests. [12] showed a algorithm with O(logm · logn) competitive
ratio for graphs on n nodes, where m =

∑
v∈V mv is the total memory available.3 A setting

which seems particularly natural is one where there is a small set of nodes who can store files
(servers), and the rest of the nodes can only access files but not store them (clients). We
employ our probabilistic terminal embedding into ultrametrics to provide a O(logm · log k)
competitive ratio, for the case where there are k servers. (Note that this ratio is independent
of n.)

1.2 Overview of Techniques
The weak variant of our terminal embedding into `2 maps every terminal x into its image
f(x) under an original black-box (e.g., Bourgain’s) embedding of K into `2. This embedding
is then appended with one additional coordinate. Terminals are assigned 0 value in this
coordinate, while each non-terminal point y is mapped to (f(x), d(x, y)), where x is the
closest terminal to y. It is not hard to see that this embedding guarantees terminal distortion
O(γ(k)), where γ(k) is the distortion of the original black-box embedding, i.e., O(log k) in
the case of Bourgain’s embedding. On the other hand, the new embedding employs only
β(k) + 1 dimensions, where β(k) is the dimension of the original blackbox embedding (i.e.,
O(log2 k) in the case of Bourgain’s embedding).4 This idea easily generalizes to a number
of quite general scenarios, and under mild assumptions (see Theorem 3) it can be modified
to produce strong terminal embeddings.

This framework, however, does not apply in many important settings, such as embed-
ding into subgraphs, and does not provide strong terminal guarantees in others. Therefore
we devise embeddings tailored to each particular setting in a non-black-box manner. For
instance, our probabilistic embedding into trees with strong terminal congestion requires an
adaptation of a theorem of [6], about the equivalence of distance-preserving and capacity-
preserving random tree embeddings, to the terminal setting. Perhaps the most technically
involved is our probabilistic embedding into spanning trees with strong terminal distortion.
This result requires a set of modifications to the recent algorithm of [3], which is based on a
certain hierarchical decomposition of graphs. We adapt this algorithm by giving preference
to the terminals in the decomposition (they are the first to be chosen as cluster centers), and
the crux is assuring that the distortion of any pair containing a terminal is essentially not
affected by choices made for non-terminals. Furthermore, one has to guarantee that each
such pair can be separated in at most O(log k) levels of the hierarchy.

The basic technical idea that we use for constructing (4t−1)-terminal subgraph spanners
with O(

√
nk1+1/t + n) edges is the following one. As was mentioned above, our general

transformation constructs metric (i.e., non-subgraph) (4t−1)-terminal spanners with O(n+
k1+1/t) edges. The latter spanners employ some edges which do not belong to the original

3 The original paper shows O(logm · log2 n), the improved factor is obtained by using the embedding of
[23].

4 We can also get dimension O(log k) for terminal embeddings into `2 by replacing Bourgain’s embedding
with that of [2].
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graph. We provide these edges as an input to a pairwise preserver. A pairwise preserver [18]
is a sparse subgraph that preserves exactly all distances between a designated set of vertex
pairs. We use these preservers to fill in the gaps in the non-subgraph terminal spanner
constructed via our general transformation. As a result we obtain a subgraph terminal
spanner which outperforms previously existing terminal spanners of [41] in a wide range of
parameters.

1.3 Related Work
Already in the pioneering work of [35], an embedding that has to provide a distortion
guarantee for a subset of the pairs is presented. Specifically, in the context of the sparsest-
cut problem, [35] devised a non-expansive embedding of an arbitrary metric into `1, with
distortion at most O(log r) for a set of r specified demand pairs.

Terminal distance oracles were studied by [41], who called them source restricted distance
oracles. In their paper, [41] show (2t−1)-terminal stretch using O(t ·n ·k1/t) space. Implicit
in our companion paper [20] is a distance oracle with (4t−1)-terminal stretch, O(t ·k1/t+n)
space and O(1) query time. Terminal spanners with additive stretch for unweighted graphs
were recently constructed in [31]. Specifically, they showed a spanner with Õ(n5/4 · k1/4)
edges and additive stretch 2 for pairs containing a terminal. Another line of work introduced
distance preservers [18]; these are spanners which preserve exactly distances for a given
collection of pairs.

In the context of preserving distances just between the terminals, [26, 16, 22, 30] studied
embeddings of a graph into a minor over the terminals, while approximately preserving
distances. In their work on the requirement cut problem, among other results, [27] obtain
for any metric with k specified terminals, a distribution over trees with expected expansion
O(log k) for all pairs, and which is non-contractive for terminal pairs. (Note that this is
different from our setting, as the extra guarantee holds for terminals only, not for pairs
containing a terminal.)

Another line of research [37, 17, 22] studied cut and vertex sparsifiers. A cut sparisifier of
a graph G = (V,E) with respect to a subset K of terminals is a graph H = (K,EH) on just
the set of terminals, so that for any subset A ⊂ K, the minimum value of a cut in G that
separates A from K \A is approximately equal to the value of the cut (A,K \A) in H. Note
that this notion is substantially different from the notion of terminal congestion-preserving
embedding, which we study in the current paper.

In a companion paper [20], we study prioritized metric structures and embeddings. In
that setting, along with the input metric (X, d), a priority ranking of the points of X is
given, and the goal is to obtain a data structure (distance oracle, routing scheme) or an
embedding with stretch/distortion that depends on the ranking of the points. This has
some implications to the terminal setting, since the k terminals can be given as the first k
points in the priority ranking. More concretely, implicit in [20] is an embedding into a single
(non-subgraph) tree with strong terminal distortion O(k), a probabilistic embedding into
ultrametrics with expected strong terminal distortion O(log k), and embedding into `p space
with strong terminal distortion Õ(log k). In the current paper we provide stronger and more
general results: our single tree embedding has tight 2k − 1 stretch, the tree is a subgraph,
and it can have low weight as well (at the expense of slightly increased stretch); we obtain
probabilistic embedding into spanning trees. and in congestion-preserving trees; and our
terminal embedding to `p space has a tight strong terminal distortion (O(log k), O(logn))
and low dimension. Furthermore, the results of this paper apply to numerous other set-
tings (e.g., embeddings tailored for graphs excluding a fixed minor, negative-type metrics,
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spanners, etc.).

1.4 Organization
The general transformations are presented in Section 3, and the results on graph spanners
appear in Section 4. The tradeoff between terminal distortion and lightness in a single tree
embedding is shown in Section 5 (corresponding lower bounds in several settings are deferred
to the full version). The probabilistic congestion preserving embedding into trees appears
in Section 6 (see [20] for the distortion version). Finally, in Section 7 we describe some
algorithmic applications of terminal embeddings.

In the full version of the paper we present our probabilistic embedding into spanning
trees with strong terminal distortion, and an embedding into a single tree (ultrametric or a
spanning tree) with constant average terminal distortion.

2 Preliminaries

Here we provide formal definitions for the notions of terminal distortion. Let (X, dX) be
a finite metric space, with K ⊆ X a set of terminals. Throughout the paper we assume
|K| ≤ |X|/2.

I Definition 1. Let (X, dX) be a metric space, and let K ⊆ X be a subset of terminals. For
a target metric (Y, dY ), an embedding f : X → Y has terminal distortion α if there exists
c > 0, such that for all v ∈ K and u ∈ X,5

dX(v, u) ≤ c · dY (f(v), f(u)) ≤ α · dX(v, u) .

We say that the embedding has strong terminal distortion (α, β) if it has terminal dis-
tortion α, and in addition there exists c′ > 0, such that for all u,w ∈ X,

dX(u,w) ≤ c′ · dY (f(u), f(w)) ≤ β · dX(u,w) .

For a graph G = (V,E) with a terminal set K ⊆ V , an α-terminal (metric) spanner is a
graph H on V such that for all v ∈ K and u ∈ V ,

dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v) . (1)

H is a graph spanner if it is a subgraph of G.
Denote by diam(X) = maxy,z∈X{dX(y, z)}. For any x ∈ X and r ≥ 0 let BX(x, r) =

{y ∈ X | dX(x, y) ≤ r} (we often omit the subscript when the metric is clear from context).
For a point x ∈ X and a subset A ⊆ X, dX(x,A) = mina∈A{dX(x, a)}. For K ⊆ X we
denote by (K, dK) the metric space where dK is the induced metric.

3 A General Transformation

In this section we present general transformation theorems that create terminal embeddings
into normed spaces and graph families from standard ones. We say that a family of graphs
G is leaf-closed, if it is closed under adding leaves. That is, for any G ∈ G and v ∈ V (G),

5 In most of our results the embedding has a one-sided guarantee (that is, non-contractive or non-
expansive) for all pairs.
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the graph G′ obtained by adding a new vertex u and connecting u to v by an edge, belongs
to G. Note that many natural families of graphs are leaf-closed, e.g. trees, planar graphs,
minor-free graphs, bounded tree-width graphs, bipartite graphs, general graphs, and many
others.

I Theorem 2. Let X be a family of metric spaces. Fix some (X, dX) ∈ X , and let K ⊆ X

be a set of terminals of size |K| = k, such that (K, dK) ∈ X . Then the following assertions
hold:

If there are functions α, γ : N → R, such that every (Z, dZ) ∈ X of size |Z| = m

embeds into `γ(m)
p with distortion α(m), then there is an embedding of X into `γ(k)+1

p

with terminal distortion 2(p−1)/p · ((2α(k))p + 1)1/p.6

If G is a leaf-closed family of graphs, and any (Z, dZ) ∈ X of size |Z| = m embeds into
G with distortion α(m) such that the target graph has at most γ(m) edges, then there is
an embedding of X into G with terminal distortion 2α(k) + 1 and the target graph has at
most γ(k) + n− k edges.

Remark: The second assertion holds under probabilistic embeddings as well.

Proof. We start by proving the first assertion. By the assumption there exists an embedding
f : K → Rγ(k) with distortion α(k) under the `p norm. We assume w.l.o.g that f is
non-contractive. For each x ∈ X, let kx ∈ K be the nearest point to x in K (that is,
d(x,K) = d(x, kx)). Extend f to an embedding f̂ : X → Rγ(k)+1 by defining for x ∈ X,
f̂(x) = (f(kx), d(x, kx)). Observe that this is indeed an extension. Fix any t ∈ K and
x ∈ X. Note that by definition of kx, d(x, kx) ≤ d(x, t), and by the triangle inequality,
d(t, kx) ≤ d(t, x) + d(x, kx) ≤ 2d(t, x), so that,

‖f̂(t)− f̂(x)‖pp = ‖f(t)− f(kx)‖pp + d(x, kx)p

≤ (α(k) · d(t, kx))p + d(x, kx)p

≤ (2α(k) · d(t, x))p + d(t, x)p

= d(t, x)p · ((2α(k))p + 1) .

On the other hand, since f does not contract distances,

‖f̂(t)− f̂(x)‖pp = ‖f(t)− f(kx)‖pp + d(x, kx)p

≥ d(t, kx)p + d(x, kx)p

≥ (d(t, kx) + d(x, kx))p/2p−1

≥ d(x, t)p/2p−1 ,

where the second inequality is by the power mean inequality. We conclude that the terminal
distortion is at most 2(p−1)/p · ((2α(k))p + 1)1/p.

For the second assertion, there is a non-contractive embedding f of K into G ∈ G with
distortion at most α(k). As above, for each x ∈ X \K define kx as the nearest point in K to
x. And for each x ∈ X, add to G a new vertex f(x) that is connected by an edge of length
dG(x, kx) to f(kx). The resulting graph G′ ∈ G, because it is a leaf-closed family. Fix any

6 Note that for any p, α ≥ 1 we have that 2(p−1)/p · ((2α)p + 1)1/p ≤ 4α.
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x ∈ X and t ∈ K, then as above d(t, kx) ≤ 2d(t, x), and so

dG′(f(t), f(x)) = dG(f(t), f(kx)) + dG′(f(x), f(kx))
≤ α(k) · d(t, kx) + d(x, kx)
≤ d(t, x) · (2α(k) + 1) .

Also note that

dG′(f(t), f(x)) = dG(f(t), f(kx)) + d(x, kx) ≥ d(t, kx) + d(x, kx) ≥ d(t, x) ,

so the terminal distortion is indeed 2α(k) + 1. Since f embeds into a graph with γ(k) edges,
and we added n − k new edges, the total number of edges is bounded accordingly, which
concludes the proof. J

Next, we study strong terminal embeddings into normed spaces. Fix any metric (X, d),
a set of terminals K ⊆ X and 1 ≤ p ≤ ∞. Let f : K → `p be a non-expansive embedding.
We say that f is Lipschitz extendable, if there exists a non-expansive f̂ : X → `p which is an
extension of f (that is, the restriction of f̂ to K is exactly f). It is not hard to verify that
any Fréchet embedding7 is Lipschitz extendable. For example, the embeddings of [15, 33, 8]
are Fréchet.

I Theorem 3. Let X be a family of metric spaces. Fix some (X, dX) ∈ X , and let K ⊆ X

be a set of terminals of size |K| = k, such that (K, dK) ∈ X . If any (Z, dZ) ∈ X of
size |Z| = m embeds into `γ(m)

p with distortion α(m) by a Lipschitz extendable map, then
there is a (non-expansive) embedding of X into `γ(n)+γ(k)+1

p with strong terminal distortion
O(α(k), α(n)).

Proof. By the assumptions there is a non-expansive embedding g : X → `
γ(n)
p with dis-

tortion at most α(n), and there exists a Lipschitz extendable embedding f : K → `
γ(k)
p ,

which is non-expansive and has distortion α(k). Let f̂ be the extension of f to X, note
that by definition of Lipschitz extendability, f̂ is also non-expansive. Finally, let h : X → R
be defined by h(x) = d(x,K). The embedding F : X → `

γ(n)+γ(k)+1
p is defined by the

concatenation of these maps F = g ⊕ f̂ ⊕ h.
Since all the three maps g, f̂ , h are non-expansive, it follows that for any x, y ∈ X,

‖F (x)− F (y)‖pp ≤ ‖g(x)− g(y)‖pp + ‖f̂(x)− f̂(y)‖pp + |h(x)− h(y)|p ≤ 3d(x, y)p ,

so F has expansion at most 31/p for all pairs (which can easily be made 1 without affecting
the distortion by more than a constant factor). Also note that

‖F (x)− F (y)‖p ≥ ‖g(x)− g(y)‖p ≥
d(x, y)
α(n) ,

which implies the distortion bound for all pairs is satisfied. It remains to bound the contrac-
tion for all pairs containing a terminal. Let t ∈ K and x ∈ X, and let kx ∈ K be such that
d(x,K) = d(x, kx) (it could be that kx = x). If it is the case that d(x, t) ≤ 3α(k) · d(x, kx)
then by the single coordinate of h we get sufficient contribution for this pair:

‖F (t)− F (x)‖p ≥ |h(t)− h(x)| = h(x) = d(x, kx) ≥ d(x, t)
3α(k) .

7 In our context, it will be convenient to call an embedding f : K → `t
p Fréchet, if there are sets

A1, . . . , At ⊆ X such that for all i ∈ [t], fi(x) = d(x,Ai)
t1/p .
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The other case is that d(x, t) > 3α(k) · d(x, kx), here we will get the contribution from f̂ .
First observe that by the triangle inequality,

d(t, kx) ≥ d(t, x)− d(x, kx) ≥ d(t, x)(1− 1/(3α(k))) ≥ 2d(t, x)/3 . (2)

By another application of the triangle inequality, using that f̂ is non-expansive, and that f
has distortion α(k) on the terminals, we get the required bound on the contraction:

‖F (t)− F (x)‖p ≥ ‖f̂(t)− f̂(x)‖p
≥ ‖f̂(t)− f̂(kx)‖p − ‖f̂(kx)− f̂(x)‖p
≥ ‖f(t)− f(kx)‖p − d(x, kx)

≥ d(t, kx)
α(k) −

d(t, x)
3α(k)

(2)
≥ 2d(t, x)

3α(k) −
d(t, x)
3α(k)

= d(t, x)
3α(k) .

J

Remark: The results of Theorems 2 and 3 hold also if X is a family of graphs, rather than
of metrics, provided that the embedding for this family has the promised guarantees even for
graphs with Steiner nodes. (E.g., if Ẑ ∈ X is a graph and Z is a set of vertices of sizem, then
there exists a (Lipschitz extendable) embedding of (Z, dZ) to `γ(m)

p with distortion α(m),
where dZ is the shortest path metric on Ẑ induced on Z.) We note that many embeddings
of graph families satisfy this condition, e.g. the embedding of [33] to planar and minor-free
graphs.8

Here are some of the implications of Theorems 2 and 3.

I Corollary 4. Let (X, d) be a metric space on n points, and K ⊆ X a set of terminals of
size |K| = k. Then for any 1 ≤ p ≤ ∞,

1. (X, d) can be embedded to `O(log k)
p with terminal distortion O(log k).

2. If (X, d) is an `2 metric, it can be embedded to `O(log k)
2 with terminal distortion O(1).

3. For any t ≥ 1 there exists a (4t − 1)-terminal (metric) spanner of X with at most
O(k1+1/t) + n edges.

4. If (X, d) is an `2 metric, for any t ≥ 1 there exists a O(t)-terminal spanner of X with
at most O(k1+1/t2) + n edges.

5. (X, d) can be embedded to `O(logn+log2 k)
p with strong terminal distortion (O(log k), O(logn)).

6. If (X, d) is a shortest-paths metric of a graph that excludes a fixed minor (e.g., a planar
metric), it can be embedded to `p with strong terminal distortion
(O((log k)min{1/2,1/p}), O((logn)min{1/2,1/p})).

7. If (X, d) is a negative type metric, it can be embedded to `2 with strong terminal distortion
(Õ(
√

log k), Õ(
√

logn)).

8 We remark that this requirement is needed for those graph families for which the following question is
open: given a graph Z in the family with terminals K, is there another graph in the family over the
vertex set K, that preserves the shortest-path distances with respect to Z (up to some constant). This
question is open, e.g., for planar metrics.
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The first two items use the first assertion of Theorem 2, the next two use its second
assertion, and the last three apply Theorem 3. The corollary follows from known embedding
results: (1) and (5) are from [15], with improved dimension due to [2], (2) is from [29], (3)
is from [5] and (4) from [28], (6) from [33], and (7) from [8, 7].

4 Graph Terminal Spanners

While Theorem 2 provides a general approach to obtain terminal spanners, it cannot provide
spanners which are subgraphs of the input graph. We devise a construction of such terminal
spanners in this section, while somewhat increasing the number of edges. Specifically, we
show the following.

I Theorem 5. For any parameter t ≥ 1, a graph G = (V,E) on n vertices, and a set of
terminals K ⊆ V of size k, there exists a (4t − 1)-terminal graph spanner with at most
O(n+

√
n · k1+1/t) edges.

Remark: Note that the number of edges is linear in n whenever k ≤ n1/(2(1+1/t)). We shall
use the following result:

I Theorem 6 ([18]). Given a weighted graph G = (V,E) on n vertices and a set P ⊆
(
V
2
)
of

size p, then there exists a subgraph G′ with O(n+
√
n ·p) edges, such that for all {u, v} ∈ P ,

dG(u, v) = dG′(u, v).

Proof of Theorem 5. The construction of the subgraph spanner with terminal stretch will
be as follows. Consider the metric induced on the terminals K by the shortest path metric
on G. Create a (2t − 1) (metric) spanner H ′ of this metric, using [5], and let P ⊆

(
K
2
)

be the set of edges of H ′. Note that p = |P | ≤ O(k1+1/t). Now, apply Theorem 6 on the
graph G with the set of pairs P , and obtain a graph G′ that for every {u, v} ∈ P , has
dG′(u, v) = dG(u, v). This implies that G′ is a (2t − 1)-spanner for each pair of vertices
u,w ∈ K. Moreover, G′ has at most O(n +

√
n · p) edges. Finally, create H out of G′ by

adding a shortest path tree in G with the set K as its root. This will guarantee that the
spanner H will have for each non-terminal, a shortest path to its closest terminal in G. This
concludes the construction of H, and now we turn to bounding the stretch. Since H is a
subgraph clearly it is non-contracting. Fix any v ∈ K and u ∈ V , let ku be the closest
terminal to u, then dG(ku, v) ≤ dG(ku, u) + dG(u, v) ≤ 2dG(u, v), and thus

dH(u, v) ≤ dH(u, ku) + dG′(ku, v) ≤ dG(u, v) + (2t− 1)dG(ku, v) ≤ (4t− 1)dG(u, v) .

Finally observe that the total number of edges in H is at most O(n+
√
n · p) = O(n+

√
n ·

k1+1/t). J

5 Light Terminal Trees for General Graphs

In this section we find a single spanning tree of a given graph, that has both light weight, and
approximately preserves distances from a set of specified terminals. Theorem 2 can provide
a tree with terminal distortion 2k−1 (using that any graph has a tree with distortion n−1),
but that tree may not be a subgraph and may have large weight.

For a weighted graph G = (V,E,w) where w : E → R+, given a subgraph H of G,
let w(H) =

∑
e∈E(H) w (e), and define the lightness of H to be Ψ (H) = w(H)

w(MST (G)) , where
w(MST ) is the weight of a minimum spanning tree of G. The result of this section is
summarized as follows.
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I Theorem 7. For any parameter α ≥ 1, given a weighted graph G = (V,E,w), and a subset
of terminals K ⊆ V of size k, there exists a spanning tree T of G with terminal distortion
k · α+ (k − 1)α2 and lightness 2α+ 1 + 2

α−1 .

When substituting α = 1 in Theorem 7 we obtain a single tree with terminal distortion
exactly 2k−1, which is optimal. More specifically, for small ε > 0, we get terminal distortion
2k − 1 + ε and lightness 3 + 6k

ε . Also, note that the bound 2α + 1 + 2
α−1 is minimized by

setting α = 2, so there is no point in using the theorem with α > 2.
Next we describe the algorithm for constructing a spanning tree that satisfies the asser-

tion of Theorem 7.
A spanning tree T is an (α, β)-SLT with respect to a root v ∈ V , if for all u ∈ V ,

dT (v, u) ≤ α · dG(v, u), and T has lightness β. A small modification of an SLT-constructing
algorithm produces for any subset K ⊂ V , a forest F , such that every component of F
contains exactly one vertex of K.9 The forest F has distortion α with respect to K, and
lightness 1 + 2

α−1 . (Such a forest F is said to have distortion α with respect to K, if for
every vertex u ∈ V , dF (K,u) ≤ α · dG (K,u).)

The algorithm starts by building the aforementioned SLT-forest F from the terminal
set K. No two terminals belong to the same connected component of F . Denote K =
{v1, . . . , vk}, let Vi be the unique connected component of F containing vi, and let Ti ⊆ F

be the edges of the forest F induced by Vi. It follows that for every u ∈ Vi, dF (K,u) =
dTi

(vi, u) ≤ α · dG (K,u). Let G′ = (K,E′, w′) be the super-graph in which two ter-
minals share an edge between them if and only if there is an edge between the compon-
ents Vi to Vj in G. Formally, E′ = {{vi, vj} : ∃ui ∈ Vi, uj ∈ Vj such that {ui, uj} ∈ E}.
The weight w′ (vi, vj) is defined to be the length of the shortest path between vi and
vj which uses exactly one edge that does not belong to F . (In other words, among all
the paths between vi and vj in G which use exactly one edge that does not belong to
F , let P be the shortest one. Then w′ (vi, vj) = w (P ).) Note also that w′ (vi, vj) is
given by w′ (vi, vj) = min e∈E

{
dF∪{e} (vi, vj)

}
. We call the edge ei,j = {ui, uj} that im-

plements this minimum (w′ (vi, vj) = dF∪{ei,j} (vi, vj)) the representative edge of {vi, vj}.
(W.l.o.g the shortest paths, and thus the representative edges, are unique.) Observe that
{vi, vj} ∈ E′ implies that w′ (vi, vj) < ∞. Let T ′ be the MST of G′. Define R ={
ei,j |ei,j is the representative edge of e′i,j = (vi, vj) ∈ T ′

}
. Finally, set T = F∪R =

⋃k
i=1 Ti∪

R. Obviously, T is a spanning tree of G.

5.1 Proof of Theorem 7
As an embedding of a graph into its spanning tree is non-contractive, the tree T will have
terminal distortion α if for all v ∈ K, u ∈ V , dT (v, u) ≤ α·dG (v, u). We shall assume w.l.o.g
that all edge weights are different, and every two different paths have different lengths. If it
is not the case, then one can break ties in an arbitrary (but consistent) way.

The next lemma shows that for every pair of terminals vi, vj , there is a path between
them in G′ in which all edges have weight (with respect to w′) at most α · dG (vi, vj).

I Lemma 8. [The bottleneck lemma:] For every vi, vj ∈ K, there exists a path P : vi =
z0, z1, ..., zr = vj in G′ such that for every s = 0, 1, . . . , r − 1, it holds that {zs,zs+1} ∈ E′
and w′ (zs, zs+1) ≤ α · dG (vi, vj).

9 To obtain such a forest F , one should add a new vertex vK to the graph and connect it to each of the
vertices of K with edges of weight zero. Then we compute an (α, β)-SLT with respect to vK in the
modified graph. Finally, we remove vK from the SLT. The resulting forest is F .
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Proof. Let Pi,j : vi = u0, u1, ..., us = vj be the shortest path from vi to vj in G, i.e.,
w(Pi,j) = dG (vi, vj). For each 0 ≤ a ≤ s, denote by V (a) the connected component of F
that contains ua, and let v(a) be the unique terminal in that component. Consider the path
P = v(0), v(1), ..., v(s). (This path is not necessarily simple. In particular, it might contain
self-loops.) For every index a < s, (see Figure 1 for illustration)

w′
(
v(a), v(a+1)

)
≤
(1)

dF∪{{ua,ua+1}}

(
v(a), v(a+1)

)
= dF

(
v(a), ua

)
+ dG (ua, ua+1) + dF

(
ua+1, v

(a+1)
)

≤
(2)

α · dG (vi, ua) + dG (ua, ua+1) + α · dG (vj , ua+1)

< α · (dG (vi, ua) + dG (ua, ua+1) + dG (vj , ua+1))
=
(3)

α · dG (vi, vj) .

Note that if for some index a it holds that v(a) = v(a+1) then w′
(
v(a), v(a+1)) = 0, and

the inequality above holds trivially. Otherwise, if v(a) 6= v(a+1), then inequality (1) follows
from the assumptions that {ua, ua+1} ∈ E, ua ∈ V (a), ua+1 ∈ V (a+1). Inequality (2) follows
from the properties of the SLT tree T (as dF

(
v(a), ua

)
= dF (K,ua) ≤ α · dG (K,ua) ≤

α · dG (vi, ua)) . Equality (3) follows because the edge {ua, ua+1} is on the shortest path
from vi to vj in G.

In particular, one can remove cycles from P and obtain a simple path with the desired
properties. We get a simple path P ′such that for every edge v, v′ on this path, we have
w′ (v, v′) ≤ α · dG (vi, vj), as required. J

The following is a simple corollary,

I Corollary 9. For {vi, vj} ∈ T ′, we have w′ (vi, vj) = dT (vi, vj) ≤ α · dG (vi, vj).

Proof. By Lemma 8, w′ (vi, vj) ≤ α · dG (vi, vj). (Indeed, otherwise the edge {vi, vj} is
strictly the heaviest edge in a cycle in G′, contradiction to the assumption that it belongs to
the MST of G′.) Since {vi, vj} ∈ E′ and the representative edge of {vi, vj} was taken into
T , it follows that w′ (vi, vj) = dT (vi, vj). J

We conclude the following lemma, which bounds the stretch of terminal pairs.

I Lemma 10. For vi, vj ∈ K, we have dT (vi, vj) ≤ dT ′ (vi, vj) ≤ α · (k − 1) · dG (vi, vj).

Proof. Let P ′ : vi = v(0)v(1) . . . v(h) = vj be the (unique) path in T ′ between vi and vj .
Since T ′ is a spanning tree of the k-vertex graph G′, it follows that h ≤ k− 1. Observe also
that for every index a ∈ [h− 1], by Corollary 9 the edge w′

(
v(a), v(a+1)) = dT

(
v(a), v(a+1)).

Also, we next argue that w′
(
v(a), v(a+1)) ≤ α ·dG (vi, vj). Indeed, suppose for contradiction

that w′
(
v(a), v(a+1)) > α · dG (vi, vj). Let Pj,i be a path between vj and vi in G′ such that

all its edges have weight at most α · dG (vi, vj). The existence of this path is guaranteed by
Lemma 8. In particular, since w′

(
v(a), v(a+1)) > α·dG (vi, vj), it follows that

{
v(a), v(a+1)} /∈

Pj,i. Consider the cycle P ′ ◦ Pj,i in G′. It is not necessarily a simple cycle, but since{
v(a), v(a+1)} /∈ Pj,i, the edge {v(a), v(a+1)} belongs to a simple cycle C contained in P ′◦Pj,i.

The heaviest edge of C clearly does not belong to Pj,i, because the edge
{
v(a), v(a+1)} is

heavier than each of them. Hence the heaviest edge belongs to P ′, but P ′ ⊆ T ′. This is a
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vi = u0 u1 u2

ua

ua+1

v(a)

v(a+1)

us−2

us−1
vj = us

V (a+1)

V (a)

Figure 1 An illustration for the bottleneck lemma: vi and vj are terminals. The edge {ua, ua+1}
belongs to the shortest path from vi to vj in G. We conclude that for terminals v(a), v(a+1) such
that ua ∈ V (a) and ua+1 ∈ V (a+1) it holds that w′

(
v(a), v(a+1)) ≤ α · dG (vi, vj).

Pj,i

P ′

vi = v(0) vj = v(h)

v(1)
v(i)

Figure 2 The two paths P ′ and Pj,i considered in the proof of Lemma 10. The path P ′ is
contained in T ′, while all edges of Pj,i have weight at most α · dG (vi, vj).
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contradiction to the assumption that T ′ is an MST of G′. (See Figure 2 for an illustration).
Hence dT

(
v(a), v(a+1)) = w′

(
v(a), v(a+1)) ≤ α · dG (vi, vj). Finally,

dT (vi, vj) ≤
h−1∑
a=0

dT

(
v(a), v(a+1)

)
=
h−1∑
a=0

w′
(
v(a), v(a+1)

)
≤

h−1∑
a=0

α · dG (vi, vj) ≤ h · α · dG (vi, vj) ≤ α · (k − 1) · dG (vi, vj) .

J

Next, we analyze the terminal distortion of T .

I Lemma 11. The terminal distortion of T is at most k · α+ (k − 1)α2.

Proof. For each terminal vi ∈ K and any vertex u ∈ Vj , it holds that

dT (vi, u) ≤ dT (vi, vj) + dT (vj , u) ≤ α · (k − 1) · dG (vi, vj) + α · dG (vi, u)
≤ α · (k − 1) · (dG (vi, u) + dG (u, vj)) + α · dG (vi, u)
≤ α · (k − 1) · (dG (vi, u) + α · dG (vi, u)) + α · dG (vi, u)
=

(
k · α+ (k − 1)α2) · dG (vi, u) .

The last inequality is because dG (vj , u) ≤ dF (vj , u) = dF (K,u) ≤ α · dG (K,u) ≤ α ·
dG (vi, u). J

We now turn to analyze the lightness of T . A tree T = (K,E′, w′) is called a Steiner tree
for a graph G = (V,E,w) if (1) V ⊆ K, (2) for any edge e ∈ E ∩ E′, the edge has
the same weight in both G and T , i.e. w (e) = w′ (e), and (3) for any pair of vertices
u, v ∈ V it holds that dT (u, v) ≥ dG (u, v). The minimum Steiner tree T of G, denoted
SMT (G), is a Steiner tree of G with minimum weight. It is well-known that for any graph
G, w (SMT (G)) ≥ 1

2MST (G). (See, e.g., [25], Section 10.) The next lemma bounds the
lightness of the tree T .

I Lemma 12. The lightness of T is bounded by Ψ (T ) ≤ 2α+ 1 + 2
α−1 .

Proof. The main challenge is to bound w (R). (Recall thatR is the set of the representative edges
of T ′.) Consider an edge {vi, vj} ∈ T ′, and let {ui, uj} be its representative edge. Then
dG (ui, uj) ≤ w′ (vi, vj). Also, since {vi, vj} ∈ T ′ ⊆ E′, it follows that w′ (vi, vj) =
dG′ (vi, vj). Hence dG (ui, uj) ≤ dG′ (vi, vj). Therefore, w (R) ≤ w′ (T ′). Next we provide
an upper bound for w′ (T ′). Define the graph G̃ as the complete graph on the vertex set K,
with weights w̃ induced by dG (the shortest path distances in G). Let T̃ be the MST of G̃.
We build a new tree T̂ by the following process:

1. Let T̂ ← T̃ ;
2. For each {vi, vj} = ẽ ∈ T̃ :

a. Let Pẽ be a path from vi to vj which consists of edges in E′, such that for each edge
e in Pẽ, w′ (e) ≤ α · dG (vi, vj) = α · w̃ (ẽ); (By Lemma 8, such a path exists);

b. Let e′ ∈ Pẽ be an edge such that (T̂ \ {ẽ}) ∪ {e′} is connected;
c. Set T̂ ← (T̂ \ {ẽ}) ∪ {e′};
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In each step in the loop we replace an edge ẽ = {vi, vj} from T̃ by an edge e′ from
G′ of weight w′ (e) ≤ α · w̃ (ẽ). Hence, the resulting tree T̂ is a spanning tree of G′,
and w′

(
T̂
)
≤ α · w̃

(
T̃
)
. Since T ′ is the MST of G′, it follows that w′ (T ′) ≤ w′

(
T̂
)
.

The MST of G is a Steiner tree for G̃, so that w̃
(
SMT

(
G̃
))
≤ w (MST (G)). Also,

w̃
(
MST

(
G̃
))

= w̃
(
T̃
)
≤ 2 · w̃

(
SMT

(
G̃
))
≤ 2 · w (MST (G)). We obtain that

w (R) ≤ w′ (T ′) ≤ w′
(
T̂
)
≤ α · w̃

(
T̃
)
≤ 2 · α · w (MST (G)) .

Since w (F ) ≤
(

1 + 2
α−1

)
· w (MST (G)), we conclude that

w (T ) = w (R ∪ F ) = w (R) + w (F ) ≤
(

2α+ 1 + 2
α− 1

)
· w (MST (G)) .

J

6 Probabilistic Embedding into Trees with Terminal Congestion

In this section we focus on embeddings into trees that approximate capacities of cuts, rather
than distances between vertices. This framework was introduced by Räcke [39] (for a single
tree), and in [40] he showed how to obtain capacity preserving probabilistic embedding from
a distance preserving one, such as the ones given by [23]. Later, [6] showed a complete
equivalence between these notions in random tree embeddings. Here we show our terminal
variant of these results. Informally, we construct a distribution over capacity-dominating
trees (each cut in each tree is at least as large as the corresponding cut in the original graph),
and for each edge, its expected congestion is bounded accordingly, with an improved bound
for edges containing a terminal.

Recall that an ultrametric (U, d) is a metric space satisfying a strong form of the tri-
angle inequality, that is, for all x, y, z ∈ U , d(x, z) ≤ max {d(x, y), d(y, z)}. The following
definition is known to be an equivalent one (see [14]).

I Definition 13. An ultrametric U is a metric space (U, d) whose elements are the leaves of
a rooted labeled tree T . Each z ∈ T is associated with a label Φ (z) ≥ 0 such that if q ∈ T
is a descendant of z then Φ (q) ≤ Φ (z) and Φ (q) = 0 iff q is a leaf. The distance between
leaves z, q ∈ U is defined as dT (z, q) = Φ (lca (z, q)) where lca (z, q) is the least common
ancestor of z and q in T .

Next, we define probabilistic embeddings with terminal distortion. For a class of metrics
Y, a distribution D over embeddings fY : X → Y with Y ∈ Y has expected terminal
distortion α if each fY is non-contractive (that is, for all u,w ∈ X and Y ∈ supp(D), it
holds that dX(u,w) ≤ dY (fY (u), fY (w))), and for all v ∈ K and u ∈ X,

EY∼D[dY (fY (v), fY (u))] ≤ α · dX(v, u) .

The notion of strong terminal distortion translates to this setting in the obvious manner.
We will need the following theorem, implicit in our companion paper [20].

I Theorem 14. [20] Given a metric space (X, d) of size |X| = n and a subset of terminals
K ⊆ X of size |K| = k, there exists a distribution over embeddings of X into ultrametrics
with strong terminal distortion (O(log k), O(logn)).
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We next elaborate on the notions of capacity and congestion, and their relation to dis-
tance and distortion, following the notation of [6]. Given a graph G = (V,E), let P be a
collection of multisets of edges in G. A map M : E → P, where M(e) is a path between
the endpoints of e, is called a path mapping (the path is not necessarily simple). Denote by
Me′(e) the number of appearances of e′ in M(e).

The path mapping relevant to the rest of this section is constructed as follows: given a
tree T = (V,ET ) (not necessarily a subgraph), for each edge e′ ∈ ET let PG(e′) be a shortest
path between the endpoints of e′ in G (breaking ties arbitrarily), and similarly for e ∈ E, let
PT (e) be the unique path between the endpoints of e in T . Then for an edge e ∈ E, where
PT (e) = e′1e

′
2 . . . e

′
r, the pathM(e) is defined asM(e) = PG(e′1)◦PG(e′2)◦· · ·◦PG(e′r) (where

◦ denotes concatenation). In what follows fix a tree T , and let M be the path mapping of
T .

Fix a weight function w : E → R+, and a capacity function c : E → R+. For
an edge e ∈ E, distT (e) =

∑
e′∈EMe′(e) · w (e′) is the weight of the path M(e), and

loadT (e) =
∑
e′∈EMe(e′) · c (e′) is the sum (with multiplicities) of the capacities of all the

edges whose path is using e. Define distortionT (e) = distT (e)
w(e) to be the distortion of e in

T , and congT (e) = loadT (e)
c(e) is the congestion of e. Note that if T is a subgraph of G, then

distT (e) is the length of the unique path between the endpoints of e, while loadT (e) is the
total capacity of all the edges of E that are in the cut obtained by deleting e from T (for
e /∈ T , loadT (e) = 0).

I Definition 15. Let K ⊆ V be a set of terminals of size k, and let EK ⊆ E be the set of
edges that contain a terminal. We say that a distribution D over trees has strong terminal
congestion (α, β) if for every e ∈ EK .

congD(e) := ET∼D[congT (e)] ≤ α ,

and for any e ∈ E, congD(e) ≤ β.

A tight connection between distance preserving and capacity preserving mappings was
shown in [6]. We generalize their theorem to the terminal setting in the following manner.

I Theorem 16. The following statements are equivalent for a graph G:
For every possible weight assignment G admits a probabilistic embedding into trees with
strong terminal distortion (α, β).
For every possible capacity assignment G admits a probabilistic embedding into trees with
strong terminal congestion (α, β).

An immediate corollary of Theorem 16, achieved by applying Theorem 14, is:10

I Corollary 17. For any graph G = (V,E) on n vertices, a set K ⊆ V of k terminals, and
any capacity function, there exists a distribution over trees with strong terminal congestion
(O(log k), O(logn)).

Proof of Theorem 16. Assuming the first item holds we prove the second. Let κ(e) ={
1/α e ∈ EK
1/β otherwise . Given any capacity function c : E → R+, we would like to show

that there exists a distribution D′ such that for any e ∈ E, ET∼D′ [κ(e) · congT (e)] ≤ 1.

10Even though the embedding of Theorem 14 is into ultrametrics, which contain Steiner vertices, these
can be removed while increasing the distortion of each pair by at most a factor of 8 [26].
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By applying the minimax principle (as in [4]), it suffices to show that for any coefficients
{λe}e∈E with λe ≥ 0 and

∑
e∈E λe = 1, there exists a single tree T such that∑

e∈E
λe · κ(e) · congT (e) ≤ 1 . (3)

To this end, define the weights w(e) = κ(e) · λe

c(e) , and by the first assertion there exists a
distribution D over trees such that for any e ∈ E,

ET∼D[κ(e) · distortionT (e)] ≤ 1 .

By applying the minimax again, there exists a single tree T such that∑
e∈E

λe · κ(e) · distortionT (e) ≤ 1 .

Now,

1 ≥
∑
e∈E

λe · κ(e) · distortionT (e)

=
∑
e∈E

λe · κ(e) ·
∑
e′∈EMe′(e) · w (e′)

w(e)

=
∑
e∈E

λe · κ(e) ·
∑
e′∈EMe′(e) · κ(e′) · λe′/c(e′)

κ(e) · λe/c(e)

=
∑
e′∈E

λe′ · κ(e′) ·
∑
e∈EMe′(e) · c(e)

c(e′)

=
∑
e′∈E

λe′ · κ(e′) · congT (e′) ,

which concludes the proof of (3). The second direction is symmetric. J

Capacity Domination Property. As [40, 6] showed, under the natural capacity as-
signment, any tree T supported by the distribution of Theorem 16 has the following property:
Any multi-commodity flow in G can be routed in T with no larger congestion. We would like
to show this explicitly, using the language of cuts, as this will be useful for the algorithmic
applications.

Fix some tree T = (V,ET ), and for any edge e′ ∈ ET let ST,e′ ⊆ V be the cut obtained
by deleting e′ from T . Define the capacities CT : ET → R+ by

CT (e′) =
∑

e∈E(ST,e′ ,S̄T,e′ )

c(e) ,

where E(S, S̄) denotes the set of edges in the graph crossing the cut S. (Observe that for
spanning trees, CT (e) = loadT (e).)

I Lemma 18. For any graph G = (V,E) and tree T = (V,ET ) with capacities as defined
above, for any set S ⊆ V it holds that∑

e∈E(S,S̄)
c(e) ≤

∑
e′∈ET (S,S̄)

CT (e′) ≤
∑

e∈E(S,S̄)
loadT (e) . (4)
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Proof. We begin with the left inequality. For any graph edge e ∈ E(S, S̄), there exists a
tree edge e′ ∈ ET (S, S̄) such that e′ ∈ PT (e), because the path PT (e) must cross the cut.
Since removing e′ from T separates the endpoints of e, CT (e′) will contain the term c(e).
We conclude that∑

e∈E(S,S̄)
c(e) ≤

∑
e′∈ET (S,S̄)

CT (e′) .

For the right hand side, consider an edge e ∈ E, and note that for any tree edge e′ ∈ ET
such that e ∈ PG(e′), every edge e′′ ∈ E(ST,e′ , S̄T,e′) will have e ∈M(e′′) and thus contribute
to loadT (e) (perhaps multiple times, due to different e′). This implies that

loadT (e) =
∑

e′∈ET : e∈PG(e′)

CT (e′) . (5)

Next, observe that any tree edge e′ ∈ ET (S, S̄) must have at least one graph edge e ∈ E(S, S̄)
such that e ∈ PG(e′). This suggests that∑

e∈E(S,S̄)

loadT (e) (5)=
∑

e∈E(S,S̄)

∑
e′∈ET :e∈PG(e′)

CT (e′)

=
∑
e′∈ET

|E(S, S̄) ∩ PG(e′)| · CT (e′)

≥
∑

e′∈ET (S,S̄)

CT (e′) .

J

7 Applications

In this section we illustrate several algorithmic applications of our techniques. Some of
our applications are suitable for graphs with a small vertex cover. Recall that for a graph
G = (V,E), a set A ⊆ V is a vertex cover of G, if for any edge e ∈ E, at least one of its
endpoints is in A. A polynomial time 2-approximation algorithm to this problem is folklore.

7.1 Sparsest-Cut
In the sparsest-cut problem we are given a graph G = (V,E) with capacities on the edges c :
E → R+, and a collection of pairs (s1, t1), . . . , (sr, tr) along with their demands D1, . . . , Dr.
The goal is to find a cut S ⊆ V that minimizes the ratio between capacity and demand
across the cut:

φ(S) =
∑
{u,v}∈E c(u, v)|1S(u)− 1S(v)|∑r

i=1Di|1S(si)− 1S(ti)|
,

where 1S(·) is the indicator for membership in S. Arora et. al. [7] present an Õ
(√

log r
)

approximation algorithm to this problem. Our contribution is the following.

I Theorem 19. If there exists a set K ⊆ V of size k such that any demand pair contains
a vertex of K, then there exists a Õ

(√
log k

)
approximation algorithm for the sparsest-cut

problem.
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The key ingredient of the algorithm of [7] is a non-expansive embedding from `22 (negative-
type metrics) into `1, which has Õ

(√
log r

)
contraction for all demand pairs. We will use

the strong terminal embedding for negative type metrics given in item (7) of Corollary 4 to
improve the distortion to Õ

(√
log k

)
.

We now elaborate on how to use the embedding of `22 into `1 to obtain an approximation
algorithm for the sparsest-cut, all the details can be found in [35, 9, 7], and we provide
them just for completeness. First, write down the following SDP relaxation with triangle
inequalities:

Algorithm 1 Sparsest Cut SDP Relaxation
min

∑
{u,v}∈E c(u, v) · ‖ū− v̄‖22

s.t.
∑r
i=1Di · ‖s̄i − t̄i‖22 = 1

For all u, v, w ∈ V , ‖ū− v̄‖22 + ‖v̄ − w̄‖22 ≥ ‖ū− w̄‖22
For all u ∈ V , ū ∈ Rn

Note that this is indeed a relaxation: if S is the optimal cut, set ρ =
∑r
i=1Di · |1S(si)−

1S(ti)|; for u ∈ S set ū = ( 1√
ρ , 0, ..., 0), and for u /∈ S, set ū = (0, ..., 0). It can be checked

to be a feasible solution of value equal to that of the cut S.

Let K ⊆ V be a vertex cover of the demand graph (V, {{si, ti}ri=1}) of size at most 2k
(recall that we can find such a cover in polynomial time). Let X = {v̄ ∈ Rn | v ∈ V } be an
optimal solution to the SDP (it can be computed in polynomial time), which is in particular
an `22 (pseudo) metric. By Corollary 4 there exists a non-expansive embedding f : X → `1
with terminal distortion Õ

(√
log k

)
(where K is the terminal set).11 This implies that for

any u, v ∈ V and any 1 ≤ i ≤ r,

‖ū− v̄‖22 ≥ ‖f(v̄)− f (ū) ‖1
‖s̄i − t̄i‖22 ≤ Õ(

√
log k) · ‖f(s̄i)− f(t̄i)‖1 . (6)

Let ‖f(v̄) − f (ū) ‖1 =
∑
S⊆V αS |1S(v)− 1S(u)| be a representation of the `1 metric as a

nonnegative linear combination of cut metrics (it is well known that there is such a repres-

11The embedding of Corollary 4 is in fact into `2, but there is an efficient randomized algorithm to embed
`2 into `1 with constant distortion [24].
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entation with polynomially many cuts S having αS > 0). We conclude

opt(SDP) =
∑

{u,v}∈E

c(u, v) · ‖ū− v̄‖22

=
∑
{u,v}∈E c(u, v) · ‖ū− v̄‖22∑r

i=1Di · ‖s̄i − t̄i‖22
(6)
≥

∑
{u,v}∈E c(u, v) · ‖f(v̄)− f (ū) ‖1∑r

i=1Di · Õ
(√

log k
)
· ‖f(s̄i)− f

(
t̄i
)
‖1

= 1
Õ
(√

log k
) · ∑{u,v}∈E c(u, v) ·

∑
S(V αS |1S(v)− 1S(u)|∑r

i=1Di ·
∑
S(V αS |1S(si)− 1S(ti)|

≥ 1
Õ
(√

log k
) min
S:αS>0

∑
{u,v}∈E c(u, v) · |1S(v)− 1S(u)|∑r

i=1Di · |1S(si)− 1S(ti)|

= min
S:αS>0

φ(S)
Õ
(√

log k
) .

In particular, among the polynomially many sets S ⊆ V with αS > 0, there exists one which
has sparsity at most Õ(

√
log k) times larger than the optimal one.

7.2 Min Bisection

In the min-bisection problem, we are given a graph G = (V,E) on an even number n of
vertices, with capacities c : E → R+. The purpose is to find a partition of V into two equal
parts S ⊆ V and S̄ = V \ S, that minimizes

∑
e∈E(S,S̄) c(e). This problem is NP-hard, and

the best known approximation is O (logn) by [40]. We obtain the following generalization.

I Theorem 20. There exists a O(log k) approximation algorithm for min-bisection, where
k is the size of a minimal vertex cover of the input graph.

Proof. Our algorithm follows closely the algorithm of [40], the major difference is that we
use our embedding into trees with terminal congestion. Let K ⊆ V be the set of terminals,
which is a vertex cover of size at most 2k, and D a distribution over trees with strong
terminal congestion (O(log k), O(logn)) given by Corollary 17. The algorithm will sample a
tree T = (V,ET ) from D, find an optimal bisection in T and return it. We refer the reader
to Section 6 for details on notation and on the definition of capacities CT : ET → R+ for
T . We note that there is polynomial time algorithm (by dynamic programming) to find a
min-bisection in trees.

It remains to analyze the algorithm. Let S ⊆ V be the optimal solution in G, and ST be
the optimal bisection for the tree T . The expected cost of using ST in G can be bounded
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using Lemma 18 as follows∑
T∈supp(D)

Pr [T ]
∑

e∈E(ST ,S̄T )
c (e)

(4)
≤

∑
T

Pr [T ]
∑

e′∈ET (ST ,S̄T )
CT (e′)

≤
∑
T

Pr [T ]
∑

e′∈ET (S,S̄)
CT (e′)

(4)
≤

∑
T

Pr [T ]
∑

e∈E(S,S̄)
loadT (e)

=
∑

e∈E(S,S̄)
ET∼D [loadT (e)]

≤
∑

e∈E(S,S̄)
O (log k) · c(e)

= O (log k) · opt (G) ,

where the last inequality uses that every edge touches a terminal, so its expected congestion
is O(log k). The algorithm can be derandomized using standard methods, see e.g. [6].

J

7.3 Online Algorithms: Constrained File Migration
We illustrate the usefulness of our probabilistic terminal embedding into ultrametric via
the constrained file migration problem. This is an online problem, in which we are given a
graph G = (V,E) representing a network, each node v ∈ V has a memory capacity mv, and
a parameter D ≥ 1. There is some set of files that reside at the nodes, at most mv files may
be stored at node v in any given time. The cost of accessing a file that currently lies at v
from node u is dG(u, v) (no copies of files are allowed). Files can also be migrated from one
node to another, this costs D times the distance. When a sequence of file requests arrives
online, the goal is to minimize the cost of serving all requests. The competitive ratio of an
online algorithm is the maximal ratio between its cost to the cost of an optimal (offline)
solution. For randomized algorithms the expected cost is used.

We consider the case where there exists a small set of vertices which are allowed to store
files (i.e. mv > 0). One may think about these vertices as servers who store files, while
allowing file requests from all end users. Let K ⊆ V be the set of terminal vertices that are
allowed to store files, with |K| = k. Our result is captured by the following theorem.

I Theorem 21. There is a randomized algorithm for the constrained file migration problem
with competitive ratio O(logm · log k), where k vertices can store files and m is the total
memory available.

This theorem generalizes a result of [12], who showed an algorithm with competitive ratio
O(logm · logn) for arbitrary graphs on n nodes. Both results are based on the following
theorem. (Recall that a 2-HST is an ultrametric (see Definition 13) such that the ratio
between the label of a node to any of its children’s label is at least 2.)

I Theorem 22 ([12]). For any 2-HST, there is a randomized algorithm with competitive
ratio O (logm) for constrained file migration with total memory m.

By Theorem 14 there is a distribution D over embeddings of G into ultrametrics with
expected terminal distortion O (log k), but in fact every tree in that distribution is a 2-HST.
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Assume that in the optimal (offline) solution there are suv times a file residing on v was
accessed by u, and tuv files were migrated from v to u. Let cuv = suv +D · tuv be the total
cost of file traffic from v to u. Note that as mv = 0 for any v /∈ K, then for any u ∈ V we
have cuv = 0. Using the fact that the terminal distortion guarantee of D applies to all of
the relevant distances, we obtain that

optG =
∑

u∈V,v∈K
cuv · dG(u, v) (7)

≥ 1
O(log k) ·

∑
u∈V,v∈K

cuv · ET∼D[dT (u, v)]

= 1
O(log k) · ET∼D

[ ∑
u∈V,v∈K

cuv · dT (u, v)
]
.

Observe that for any tree T ∈ supp (D) we could have served the request sequence in the
same manner as the optimal algorithm, which would have the cost

∑
u∈V,v∈K cuv · dT (u, v).

In particular, the optimal solution optT for the same requests with the input graph T cannot
be larger than that, i.e.∑

u∈V,v∈K
cuv · dT (u, v) ≥ optT . (8)

Our algorithm will operate as follows: Pick a random tree according to the distribution
D, pick a random strategy S for transmitting files in T according to the distribution S(T )
guaranteed to exists by Theorem 22, and serve the requests according to S. Denote by
costH(S) the cost of applying strategy S with distances taken in the graph H. For any
possible T ∈ supp (D) it holds that

optT ≥
ES∼S(T )[costT (S)]

O(logm) ≥
ES∼S(T )[costG (S)]

O(logm) , (9)

where the last inequality holds since T dominatesG (i.e. dT (u, v) ≥ dG(u, v) for all u, v ∈ V ).
Combining equations (7), (8) and (9) we get that

optG ≥
ET∼DES∼S(T )[costG (S)]

O(log k logm) .

Hence our randomized algorithm has O (logm log k) competitive ratio, as promised.
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