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ABSTRACT

The greedy spanner is arguably the simplest and most well-studied
spanner construction. Experimental results demonstrate that it is at
least as good as any other spanner construction, in terms of both
the size and weight parameters. However, a rigorous proof for this
statement has remained elusive.

In this work we fill in the theoretical gap via a surprisingly simple
observation: The greedy spanner is existentially optimal (or exis-
tentially near-optimal) for several important graph families. Focus-
ing on the weight parameter, the state-of-the-art spanner construc-
tions for both general graphs (due to Chechik and Wulff-Nilsen
[SODA’16]) and doubling metrics (due to Gottlieb [FOCS’15]) are
complex. Plugging our observation on these results, we conclude
that the greedy spanner achieves near-optimal weight guarantees
for both general graphs and doubling metrics, thus resolving two
longstanding conjectures in the area.

Further, we observe that approximate-greedy algorithms are ex-
istentially near-optimal as well. Consequently, we provide an
O(n log n)-time construction of (14-¢)-spanners for doubling met-
rics with constant lightness and degree. Our construction improves
Gottlieb’s construction, whose runtime is O(n log® n) and whose
number of edges and degree are unbounded, and remarkably, it
matches the state-of-the-art Euclidean result (due to Gudmundsson
et al. [SICOMP’02]) in all the involved parameters (up to depen-
dencies on € and the dimension).
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1. INTRODUCTION
1.1 Graph Spanners
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Given a (connected and undirected) n-vertex m-edge graph G =
(V, E,w) with positive edge weights and a parameter ¢ > 1, a
subgraph H = (V, E',w) of G (E’ C E) is called a t-spanner for
G if for all u,v € V, dg(u,v) < t-dg(u,v). (Here ég(u,v)
and dp (u,v) denote the distances between u and v in the graphs
G and H, respectively.) The parameter ¢ is called the stretch of H.
Spanners constitute a fundamental graph structure, and have been
extensively and intensively studied since they were introduced [48,
49].

In many practical applications one is required to construct a span-
ner that satisfies a number of useful properties, while preserving
a small stretch. First, the spanner H should have a small num-
ber of edges. Second, its weight w(H) = ) . w(E) should
be close to the weight of a minimum spanning tree (MST) of the
graph GG. We henceforth refer to the normalized notion of weight
Y(H) = %, which is called lighmess; a light spanner is
one with small lightness. Third, its degree A(H ), defined as the
maximum number of edges incident on a vertex, should be small.

Light and sparse spanners are particularly useful for efficient
broadcast protocols in the message-passing model of distributed
computing [3, 4], where efficiency is measured with respect to both
the total communication cost (corresponding to the spanner’s size
and weight) and the speed of message delivery at all destinations
(corresponding to the spanner’s stretch). Additional applications of
such spanners in distributed systems include network synchroniza-
tion and computing global functions [2, 49, 3, 4, 47]. Light and
sparse spanners were also found useful for various data gathering
and dissemination tasks in overlay networks [8, 61, 44], in wireless
and sensor networks [62, 6, 56], for VLSI circuit design [16, 17, 18,
55], for routing [63, 49, 50, 60], to compute distance oracles and
labels [46, 59, 53], and to compute almost shortest paths [15, 54,
22, 25, 29]. Low degree spanners are also very useful in many of
these applications. For example, the degree of the spanner is what
determines local memory constraints when using spanners to con-
struct network synchronizers and efficient broadcast protocols. In
compact routing schemes, the use of low degree spanners enables
the routing tables to be of small size. More generally, viewing ver-
tices as processors, in many applications the degree of a processor
represents its load, hence a low degree spanner guarantees that the
load on all the processors in the network will be low.

The greedy spanner by Althofer et al. [1] is arguably the sim-
plest and most well-studied spanner construction. Althofer et al.
showed that for every weighted n-vertex graph G = (V, E,w)
and an integer parameter k£ > 1, the greedy algorithm (see Al-
gorithm 1) constructs a (2k — 1)-spanner with O(n'*1/*) edges;
assuming Erd6s’ girth conjecture [26], this size bound is asymp-
totically tight. Althofer et al. also showed that the lightness of the
greedy spanner is O(n/k). Chandra et al. [12] improved the light-



ness bound, and showed that the greedy spanner for stretch param-
etert = (2k — 1) - (1 + ¢€) (here & > 1, € > 0) has lightness
O(k - n'/* . (1/€)'*1/*). Two decades later, Elkin, Neiman and
the second author [23] improved the analysis of [12] and showed
that the greedy (2k—1)-(1+¢)-spanner has lightness O(n'/* - (1+
k/(e€"*/*logk))). Very recently Chechik and Wulff-Nilsen [13]
improved the lightness bound all the way to O(n'/*(1/¢)3+2/F).
Assuming Erd6s’ girth conjecture [26] and ignoring dependencies
on ¢, the bound of [13] on the lightness is asymptotically tight, thus
resolving a major open question in this area. However, the result of
Chechik and Wulff-Nilsen [13] is not due to a refined analysis of
the greedy spanner. Instead, they devised a different construction,
which is far more complex, and bounded the lightness of their own
construction. The following question was left open.

QUESTION 1. Is the lightness analysis of [23] for the greedy
spanner optimal, or can one refine it to derive a stronger bound? In
particular, is the spanner of [13] lighter than the greedy spanner?

1.2 Spanners for Euclidean and Doubling Met-
rics.

Consider a set P of n points in R, d > 2, and a stretch param-
eter t > 1. A graph G = (P, E,w) in which the weight w(p, q)
of each edge e = (p,q) € E is equal to the Euclidean distance
|lp — q|| between p and q is called a Euclidean graph. We say that
the Euclidean graph G is a t-spanner for P (or equivalently, for the
corresponding Euclidean metric (P, ||-||)) if for every pairp,q € P
of distinct points, there exists a path II(p, ¢) in G between p and
q whose weight (i.e., the sum of all edge weights in it) is at most
t-|lp — q||. The path II(p, q) is said to be a t-spanner path be-
tween p and q. For Euclidean metrics, one usually focuses on the
regime ¢ = 1 + ¢, for e > 0 being an arbitrarily small parame-
ter. Euclidean spanners were introduced by Chew [14], and were
subject to intensive ongoing research efforts since then. We refer
to the book “Geometric Spanner Networks” [45], which is devoted
almost exclusively to Euclidean spanners and their numerous appli-
cations. As with general graphs, it is important to devise Euclidean
spanners that achieve small size, lightness and degree.

The doubling dimension of a metric space (M, ) is the small-
est value ddim such that every ball B in the metric space can be
covered by at most 294™ balls of half the radius of B. This notion
generalizes the Euclidean dimension, since the doubling dimension
of the Euclidean space R? is ©(d). A metric space is called dou-
bling if its doubling dimension is constant. Spanners for doubling
metrics were also subject of intensive research [30, 10, 9, 40, 52,
32, 34,57, 24, 11, 58]. The basic line of work in this context is to
generalize the known Euclidean spanner results for arbitrary dou-
bling metrics.

Das et al. [19] showed that, in low-dimensional Euclidean met-
rics, the greedy (1 + €)-spanner has constant degree (and so O(n)
edges) and constant lightness. In n-point doubling metrics, the
greedy (1 + €)-spanner has O(n) edges and lightness O(logn)
[57]. As for the degree, there exist n-point metric spaces with dou-
bling dimension 1 for which the greedy spanner has a degree of
n — 1 [41, 57]. It has been a major open question to determine
whether any doubling metric admits a (1 + €)-spanner with sub-
logarithmic lightness. Recently Gottlieb [31] answered this ques-
tion in the affirmative by devising such a spanner construction with
constant lightness. Again, this result is not due to a refined analysis
of the greedy spanner. Instead, Gottlieb devised a different con-
struction, which is far more complex, and bounded the lightness of
his own construction. The following question was left open.

QUESTION 2. Is the lightness analysis of [57] for the greedy
spanner optimal, or can one refine it to derive a stronger bound? In
particular, is the spanner of [31] lighter than the greedy spanner?

The high runtime of the greedy spanner is a major drawback. The
state-of-the-art implementation of the greedy spanner in both Eu-
clidean and doubling metrics requires time O(n? logn) [7]. Build-
ing on [19], Das and Narasimhan [20] devised a much faster al-
gorithm that follows the greedy approach. The runtime of their
“approximate-greedy” algorithm is O(n log? n), yet its degree and
lightness are both bounded by constants (as with the greedy span-
ner). Gudmundsson et al. [38] improved the result of [20], imple-
menting the approximate-greedy algorithm within time O (n log n).
For doubling metrics, however, the only spanner construction with
sub-logarithmic lightness is that of [31]; the runtime of Gottlieb’s
construction is O(n log? n) rather than O(nlogn), and the size
and degree of his construction are unbounded. Hence, there is a
big gap in this context between Euclidean and doubling metrics,
leading to the following question.

QUESTION 3. Can one compute (1+¢€)-spanners with constant
lightness in doubling metrics within time O(nlogn)? Further-
more, can one extend the state-of-the-art Euclidean result of [38]
to arbitrary doubling metrics?

There have been numerous experimental studies on Euclidean
spanners. (See [28, 27], and the references therein.) The conclu-
sion emerging from these experiments is that the greedy Euclidean
spanner outperforms the other popular Euclidean spanner construc-
tions, with respect to the size and lightness bounds. (Specifically,
the greedy spanner was found to be 10 times sparser and 30 times
lighter than any other examined spanner.) It is reasonable to assume
that a similar situation occurs in arbitrary doubling metrics.

1.3 Our Contribution

In this work we fill in the theoretical gap by making three impor-
tant observations.

1. Our first observation is surprisingly simple: The greedy span-
ner is existentially optimal with respect to both the size and
the lightness, for any graph family that is closed under edge
removal. Applying this observation to the family of general
weighted graphs, we conclude that the greedy spanner is just
as light as the spanner of [13], thus answering Question 1.

2. The first observation does not hold for doubling metrics. Our
second observation is that the greedy spanner is existentially
near-optimal with respect to both the size and the lightness,
for the family of doubling metrics. In particular, it is just as
light as the spanner of [31], thus answering Question 2.

3. Our third observation concerns the optimality of the
approximate-greedy algorithm of [20, 38] in doubling met-
rics, and is more intricate than the first two observations. In-
formally, it states that the approximate-greedy spanner with
stretch parameter ¢ is existentially near-optimal with respect
to the lightness, for the family of doubling metrics, but when
compared to spanners with a slightly smaller stretch param-
eter t' < t. This enables us to conclude that the lightness of
the approximate-greedy spanner is close to that of [31]. In
this way we manage to extend the state-of-the-art Euclidean
result of [38] to arbitrary doubling metrics, thus answering
Question 3.!

'The O(n logn) runtime bound of [38] holds in the traditional al-
gebraic computation-tree model with the added power of indirect
addressing. Our result applies with respect to the same computa-
tion model.




Figure 1: The graph H in the figure is the Petersen graph on 10 ver-
tices, with girth 5 and 15 edges. All edges of H have weight 1, and
are colored black. The red dashed edges are the edges of the star S of
weight 1 + e. The greedy 3-spanner for the graph G obtained as the
union of the black and red edges in the figure includes all 15 edges of
H, whereas the optimal 3-spanner for G consists of the 9 edges of S.

To clarify the meaning of existential optimality, suppose that the
greedy spanner is existentially optimal with respect to the lightness,
for some graph family F. This does not imply that for any graph
G € F, the lightness of the greedy spanner for G is bounded by
the optimal lightness of any spanner for G. It simply means that
for any graph G € F, there exists a graph G’ € F, such that the
lightness of the greedy spanner for GG is bounded by the optimal
lightness of any spanner for G’. Put in other words, for a graph
G € F, let [(G) = I:(G) denote the optimal lightness of any ¢-
spanner for GG, for an arbitrary stretch parameter ¢ > 1, and let
I(F) = max{l(G) | G € F} denote the maximum value [(G)
over all graphs G in F. Then, for any graph G € F, although the
lightness of the greedy t-spanner for G may well exceed (G), it
must be upper bounded by I(F). For example, let F be the family
of general weighted graphs on n vertices, and let H be an n-vertex
dense graph of high girth, namely, with girth ¢ + 2 and n!T®1/%
edges, where all edge weights are 1. Also, let S be a star on the
same vertex set as H rooted at an arbitrary vertex, so that all edges
of S that belong to H have weight 1 and all edges of S that do
not belong to H have weight 1 + e. Finally, let G be the graph
containing all edges of H and all edges of .S with weight 1+-¢. Note
that the greedy ¢-spanner for G includes all pitea/H edges of the
high girth graph H, whereas the optimal ¢-spanner (assuming ¢ >
2+ 2¢) consists of the edges of the star S, hence is much sparser and
lighter. (See Figure 1 for an illustration.) This example, however,
does not contradict the existential optimality of the greedy spanner:
Although the lightness of the greedy ¢-spanner for G exceeds [(G),
it can be shown that it is equal to [(H ), which, in turn, is bounded
by I(F).

The meaning of existential near-optimality is similar, except that
we are allowed to have some slack, which may depend on the
stretch parameter ¢ as well as on parameters of the graph family
of interest /. As mentioned, in our third observation we compare
the lightness of the greedy spanner with a certain stretch parameter
t to the optimal lightness of any spanner, but with a slightly smaller
stretch parameter ¢’. This is just one example of how the slack pa-
rameter can be used. Another example is to compare the greedy
spanner in some graph family F to the optimal spanner, but with
respect to a different (closely related) graph family F'. In particu-
lar, in our second and third observations we compare the lightness

of the greedy spanner in metric spaces of bounded doubling di-
mension to the optimal lightness of any spanner, but with respect to
metric spaces of slightly larger doubling dimension. (See Section
2 for the definition of doubling dimension.) It would be interesting
to study additional ways of using the slack parameter, as they may
lead to new results in this area.

We remark that light spanners were extensively studied in vari-
ous graph families such as planar graphs [1, 43], apex graphs [37],
bounded pathwidth graphs [36, 42], bounded catwidth graphs [42],
bounded genus graphs [35, 37, 21], bounded treewidth graphs [21,
42], and graphs excluding fixed minors [35, 21]. Since all these
graph families are closed under edge removal, our first observation
implies that the greedy spanner for them is just as good as any other
spanner.

1.4 Organization

In Section 2 we present the notation that is used throughout the
paper, and summarize some statements from previous work that are
most relevant to us. In Section 3 we show that the greedy spanner is
existentially optimal for graph families that are closed under edge
removal. The basic optimality argument of Section 3 is extended to
doubling metrics in Section 4. Finally, in Section 5 we show that
the approximate-greedy spanner in doubling metrics is light.

2. PRELIMINARIES

Let G = (V, E, w) be a (connected and undirected) graph with
positive edge weights. The weight w(P) of a path P is the sum
of all edge weights in it, i.e., w(P) = > .pw(e). For a pair of
vertices u, v € V, let dg(u, v) denote the distance between u and v
in G, i.e., the weight of a shortest path between them. We denote by
Mg = (V, éc) the (shortest path) metric space induced by G; we
will view M as a complete weighted graph (V, (%), w) over the
vertex set V/, where the weight w(u, v) of an edge (u, v) is given
by the graph distance ¢ (u, v) between its endpoints. A subgraph
H = (V,E',w) of G (where E' C E) is called a t-spanner for G
if for all w,v € V, 0n(u,v) < t-dg(u,v). The parameter ¢ is
called the stretch of the spanner H. If 6 (u,v) < t - g (u,v) for
all edges (u,v) € E, then it also holds that § g (u,v) < t-dc(u,v)
for all pairs of vertices u, v € V. Therefore, to bound the stretch of
the spanner, one may restrict the attention to the edges of the graph.
Let |H| = |E’| denote the size of H, and let w(H) = w(E’) =
> ecrr w(e) denote its weight. The lightness ¥(H) of H is the
ratio between the weight of H and the weight of an MST for G,
ie, U(H) = % (Throughout the paper all logarithms
are in base 2.)

The result of Chechik and Wulff-Nilsen [13] is summarized in
the following theorem.

Theorem 1 ([13]) For every weighted n-vertex graph G = (V, E, w)
and parameters k > 1 and 0 < € < 1, there exists a (2k—1)-(1+
€)-spanner with O(n* /%) edges and lightness O(n'/* (1/€)>T2/%).
Such a spanner can be constructed in polynomial time.

2.1 Doubling metrics

The following lemma gives the standard packing property of
doubling metrics (see, e.g., [39]).

LEMMA 1. Let (M, ) be a metric space with doubling dimen-
sion ddim. If S C M is a subset of points with minimum in-
terpoint distance r that is contained in a ball of radius R, then

R\ O(ddim)
1S < (2%) :

The following theorem states that any doubling metric admits a
constant degree (1 + €)-spanner.



Theorem 2 ([10, 33]) For any n-point metric space (M, §) with
doubling dimension ddim and parameter 0 < € < 1/2, there
exists a (1 + €)-spanner with degree ¢~ © (4™,
—O(ddim) (TL log ’I’l)

The runtime of
this construction is €

The result of Gottlieb [31] is summarized in the following theo-
rem.

Theorem 3 ([31]) For any n-point metric space (M, &) with dou-
bling dimension ddim and parameter 0 < € < 1/2, there exists a
(1 + €)-spanner with lighmess (ddim /€)™ The runtime of
this construction is (ddim/e)© 4™ (nlog? n).

2.2 The Greedy Spanner and its Basic Prop-
erties

Algorithm 1 Greedy(G = (V, E, w), t)

1: H=(V,0,w).

2: for each edge (u,v) € E, in non-decreasing order of weight,
do

30 ifon(u,v) >t w(u,v) then

4: Add the edge (u,v) to E(H).

5:  endif

6: end for

The greedy spanner algorithm is presented in Algorithm 1. Let
H = (V,En,w) be the output of an arbitrary execution of the
greedy algorithm with stretch parameter ¢. It is immediate that H
has stretch at most ¢. If the edge weights in the graph are distinct,
then H is uniquely defined, but this does not hold in general; nev-
ertheless, by letting H designate an arbitrary such spanner, we may
henceforth refer to it as the greedy t-spanner. The following obser-
vation is immediate (see, .e.g., [23, 13]).

OBSERVATION 2. H contains all edges of some MST of G, de-
noted Z. (Hence Z is also an MST of H.)

3. THE BASIC OPTIMALITY PROOF

In this section we show that the greedy spanner is existentially
optimal, with respect to both the size and the lightness, for any
graph family that is closed under edge removal.

We start by making the basic observation that the only ¢-spanner
of the greedy t-spanner is itself.

LEMMA 3. Let G = (V, E, w) be any weighted graph, let t >
1 be any stretch parameter, and let H be the greedy t-spanner of
G. If H' is a t-spanner for H, then H' = H.

PROOF. Assume for contradiction that H’ is a ¢t-spanner for H
yet there is an edge e € H \ H'. Let P be a shortest path in H’
between the endpoints of e. As H' is a t-spanner of H, it holds
that w(P) < ¢ - w(e). Consider the last edge examined by the
greedy algorithm among the edges of P and e, denoted ¢’. By
the description of the greedy algorithm, we have w(e) < w(e’).
Consequently, by the time the greedy algorithm examines edge €',
all the edges of the path (P U e) \ ¢’ must have already been added
to the greedy spanner. (See Figure 2 for an illustration.) This path
connects the endpoints of €', and its weight is given by

w(P) —w(e) +we) < w(P) < t-wle) < t-w(e).

Hence the greedy algorithm will not add edge e’ to H, a contradic-
tion. [

Equipped with Lemma 3, we now turn to the basic optimality
proof.

Figure 2: The path P in H’ between the endpoints of edge ¢ is de-
picted by a dashed line. The path P U e \ ¢’ between the endpoints of
edge €', all edges of which have been added to H by the time the greedy
algorithm examines edge ¢’, is colored red.

Theorem 4 (Greedy is optimal) Let G be any family of n-vertex
graphs that is closed under edge removal, and let t = t(n) be any
stretch parameter. Assume that for every graph G € G, there exists
a t-spanner for G with at most m(n, t) edges and lightness at most
l(n,t). Then for every graph G € G, the greedy t-spanner H of G
has at most m(n, t) edges and lightness at most l(n, t).

PROOF. Consider an arbitrary graph G in G, and let H be the
greedy t-spanner of GG. Since G is closed under edge removal and
H is a subgraph of GG, H belongs to G. Hence, there exists a ¢-
spanner H of H with at most m(n, t) edges and lightness at most
l(n,t). Lemma 3 implies that # = H, from which the size bound
on [ immediately follows. The lightness bound is slightly trickier,
as the spanner # is computed on top of the greedy spanner H rather
than the original graph G. Nevertheless, Observation 2 implies that
G and H have the same MST Z. Since the lightness of # is at most
l(n,t) and Z is an MST for H, it follows that

w(H) w(H)
nt) =2 Y(H) = Sarst@y) ~ wz)’
hence w(#H) < l(n,t) - w(Z). Using the fact that H = H, we
conclude that the lightness of H satisfies

_ w(H) w(H)
VH) = LarsT@) - w(@)
W@ lw@)
w(z) = w(Z) = Un1).
0

As the family of weighted graphs is closed under edge removal,
we can apply Theorem 4 on it. Hence the greedy spanner for gen-
eral graphs has size and lightness at least as good as in Theorem
1.

COROLLARY 4. For every weighted graph G = (V, E,w) on
n vertices and m edges and parameters k > 1 and 0 < € <
1, the greedy (2k — 1) - (1 + €)-spanner has O(n'T'/*) edges
and lightness O(n'/* (1/€)>*2/%). (A naive implementation of the
greedy algorithm requires O(mn**/*) time.)

In [5] it was proved that for any parameter 0 < § < 1 and
any stretch parameter ¢ = t(n), if every n-vertex weighted graph
admits a t-spanner with at most m(n, t) edges and lightness at most
l(n,t), then for every such graph there also exists a ¢/J-spanner
with at most m(n, t) edges and lightness at most 1 + & - I(n, t).?
Applying Theorem 4 again, we derive the following result.

2This reduction appears in the full version of [5], which is currently
available via http://www.cs.bgu.ac.il/~arnoldf/BFN16.pdf.



COROLLARY 5. For every weighted n-vertex graph G =
(V,E,w) and parameter 0 < § < 1, the greedy O(logn/é)-
spanner has O(n) edges and lightness at most 1 + 6.

As mentioned in the introduction, a plethora of graph families
that are closed under edge removal were studied extensively in
the spanner literature. This includes the families of planar graphs,
bounded genus graphs, bounded treewidth graphs, graphs exclud-
ing fixed minors, and more. For all these graph families, Theorem
4 shows that the greedy spanner is existentially optimal.

4. THE OPTIMALITY ARGUMENT IN DOU-
BLING METRICS

The basic optimality argument of Section 3 applies to graph fam-
ilies that are closed under edge removal. Note that metric spaces do
not fall into this category. Nevertheless, for metric spaces, the ba-
sic optimality argument suffices: On the one hand, the upper bound
for general weighted graphs applies to any metric space, and on
the other hand, the lower bound due to high girth graphs naturally
applies to the induced metric spaces (see, e.g., [1, 51]).

In this section we study the optimality of the greedy spanner for
doubling metrics. For such metric spaces, one would like to obtain
spanners with stretch 14-€, where € is arbitrarily close to 0. We will
show that the greedy (1 + ¢)-spanner is existentially near-optimal
in doubling metrics, with respect to both the size and the lightness.

The next observation and subsequent lemma will be used for
proving the lightness optimality.

OBSERVATION 6. Consider the metric space M¢g induced by
an arbitrary weighted graph G = (V, E,w). Then any MST of
Mg is a spanning tree of G. (Hence there is a common MST for G
and Mg, denoted Z.)

PROOF. Consider an MST Z for Mg, and suppose for contra-
diction that Z contains an edge e outside G. Since e belongs to
Mg \ G, any path in G between the endpoints of e consists of at
least two edges. Consider the (multi) graph obtained from Z by
replacing edge e with a shortest path in G between the endpoints
of e. It is a spanning subgraph of M¢ of weight w(Z), which con-
tains at least n + 1 edges (some of which may be multiple edges),
and thus at least one cycle. By breaking cycles in this subgraph, we
obtain a spanning tree of M¢ of weight strictly smaller than w(Z),
yielding a contradiction to the weight minimality of Z. [

LEMMA 7. Let (M,d) be any metric space, t > 1 be some
stretch parameter, and H be the greedy t-spanner of M. For ev-
ery t-spanner H' of the metric space My induced by H, we have
w(H) < w(H").

PROOF. Let H' be a t-spanner of My, and define H” as the
subgraph of H obtained from H’ by replacing each edge e of H’
with a shortest path in H between the endpoints of e. Clearly, the
distances in H"' are no greater than the respective distances in H’.
Since H"' is a subgraph of H, it follows that H" is a t-spanner for
H. Lemma 3 implies that H” = H. Finally, noting that w(H") <
w(H"), we have w(H) = w(H") <w(H'). O

The following lemma will be used for proving the size optimal-
ity.

LEMMA 8. Let (M,0) be any metric space, t < 2 be some
stretch parameter, and H be the greedy t-spanner of M. For ev-
ery t-spanner H' of the metric space My induced by H, we have
|H| < |H'|.

PROOF. For every edge ¢/ € H', let P,/ be a shortest path be-
tween the endpoints of ¢’ in H. We say that edge ¢’ € H' covers
all edges of P,/, and all these edges are covered by €’. An edge
e’ € HN H' covers itself.

For each edge e in H \ H’, let Q. be a shortest path between
the endpoints of e in H'. Since H' is a t-spanner for My, we have
w(Qe) < ¢-w(e). Observe that the edges in Upreg, P.r form a
path II. in H between the endpoints of e. (It will be shown next
that the path II. is not simple.) We have

wil) € S wPe) = 3 w(e) = w(Qe) < t-w(e).

e’€Qe e'€Qe

Next, we argue that the edge e must belong to II.. Indeed, oth-
erwise the edges of Il. contain a simple path in H between the
endpoints of e of weight bounded by ¢ - w(e), implying that the
heaviest edge among the edges of this path and e would not be
added to the greedy t-spanner H. Consequently, at least one edge
€’ in Q. must cover e.

We define an injection f : H — H’ as follows. For each edge
e € HNH', f(e) is defined as e; in this case edge e = f(e) covers
itself. For each e € H \ H’, f(e) is defined to be an arbitrary
edge of Q. that covers e. To see that f is injective, suppose for
contradiction the existence of two distinct edges e; and ez in H
and an edge ¢/ € H' such that f(e1) = f(e2) = ¢ € H'. It
must hold that e; and es are in H \ H'. Assume without loss of
generality that w(e1) < w(ez2). Since both e; and e are covered
by €', it follows that w(e’) > w(e1) + w(e2) > 2 - w(e1). On
the other hand, by the definition of f, the shortest path Q., in H’
between the endpoints of e; contains the edge ¢’ = f(e1). Hence
the weight of a shortest path in H' between the endpoints of e;
is given by w(Qe,) > w(e’) > 2-w(e1) > t - w(e1), which
contradicts the fact that H' is a t-spanner for H. It follows that f
is injective, from which we conclude that |H| < [H'|. [

The following observation shows that a small “stretching” of any
metric space does not change the doubling dimension of the metric
space by much.

OBSERVATION 9. Let (M, 6) be a metric space with doubling
dimension ddim. Let H be a t-spanner of M, for t < 2. Then the
metric space My induced by H has doubling dimension at most
2 - ddim.

PROOF. Clearly, any ball of radius 7 in the “stretched” metric
space M is contained in the respective ball of the original metric
space M. By definition, this ball can be covered by 2244i™ palls
of radius 7 in M, and so by 22-ddim palls of radius ¢ - 7 < 5 inthe
stretched metric space My. [

The existential near-optimality result for doubling metrics is sum-
marized in the following theorem.

Theorem 5 (Greedy is near-optimal in doubling metrics) As-
sume that for every n-point metric space (M,0) with doubling
dimension ddim and any stretch parameter t < 2, there is a t-
spanner with at most m(n,ddim, t) edges and lightness at most
l(n,ddim,t). Then for every n-point metric space (M,§) with
doubling dimension ddim, the greedy t-spanner has at most m(n, 2-
ddim, t) edges and lightness at most l(n, 2 - ddim, t).

PROOF. Let M be an arbitrary n-point metric space with dou-
bling dimension ddim, let H = (V, E) be the greedy ¢-spanner for
M, and let My be the metric space induced by H. By Observation
9, the doubling dimension of My is bounded by 2 - ddim. Our
assumption implies that there exists a t-spanner H for My with at



most m(n, 2-ddim, ¢) edges and lightness at most {(n, 2-ddim, t).
Lemma 8 implies that |H| < |#{|, from which the size bound on
H immediately follows. As for the lightness bound on H, note that
‘H is computed on top of My rather than the original metric space
M. Nevertheless, Observation 2 and Observation 6 imply that M
and My have the same MST Z. Since the lightness of H is at most
l(n,2 - ddim, t), it follows that
. w(H) w(H)
l(n,2-ddim,t) > ¥(H) = wMSTOM) — w(Z)’

hence w(H) < I(n,2 - ddim, t) - w(Z). By Lemma 7, we have
w(H) < w(H), hence the lightness of H satisfies

o wlm w() _ w(H)
YH) = LarsTon) T w@ S w@)
l(n,2-ddim, t) - w(Z)

< w(2) = I(n,2-ddim,t).

a

It is known that the greedy (1 + €)-spanner for n-point doubling
metrics has O(n) edges and lightness O(logn) [57], where the
O-notation hides a multiplicative term of (1/¢€)©4™ ~ Applying
Theorem 5 in conjunction with the result of Theorem 3, we reduce
the lightness bound of the greedy spanner to constant.

COROLLARY 10. For every metric space (M, &) with doubling
dimension ddim and any parameter 0 < € < %, the greedy (1+¢)-

spanner has n(1/€)° 4™ edges and lightness (ddim /€)@ ddim),

Remark. Corollary 10 shows that the greedy (1 + €)-spanner
in doubling metrics achieves optimal bounds on the size and the
lightness, disregarding dependencies on € and the doubling dimen-
sion. However, improving these dependencies is a fundamental
challenge of practical importance. By Theorem 5, any improve-
ment whatsoever in the dependencies on € and the doubling dimen-
sion on either the size or the lightness of any spanner construction
for doubling metrics — would trigger a similar improvement to the
greedy spanner.

S. THE APPROXIMATE-GREEDY SPANNER

IN DOUBLING METRICS IS LIGHT

Corollary 10 shows that the greedy (1 + €)-spanner in doubling
metrics achieves near-optimal bounds on the size and the lightness.
Nevertheless, this spanner has two major disadvantages. First, as
mentioned in the introduction, there exist metric spaces with dou-
bling dimension 1 for which its degree may be unbounded. (This is
in contrast to d-dimensional Euclidean metrics, where the greedy
(1 + €)-spanner has degree 9@ ) Second, it cannot be con-
structed within sub-quadratic time in doubling metrics due to a
lower bound of [41]. In fact, even in d-dimensional Euclidean
metrics, the state-of-the-art implementation of the greedy (1 + ¢)-
spanner requires time ¢~ (9 (n? log n) [7].

Building on [19, 20], Gudmundsson et al. [38] devised a much
faster algorithm that follows the greedy approach, hereafter Algo-
rithm Approximate-Greedy. The runtime of this algorithm is
e 0@ (nlogn), yet the degree and lightness of the approximate-
greedy spanner produced by the algorithm are both bounded by
O, just as with the greedy spanner for Euclidean metrics. The
runtime analysis of Algorithm Approximate-Greedy [38] does
not exploit any properties of Euclidean geometry. Specifically, it
relies on the triangle inequality, which applies to arbitrary metric
spaces, and on standard packing arguments (cf. Lemma 1), which

apply to arbitrary doubling metrics. Therefore, the runtime of Al-
gorithm Approximate-Greedy remains e °44™ (nlogn) in
arbitrary doubling metrics. Moreover, the degree bound of ¢ =@
applies to arbitrary doubling metrics as well. (We refer to Chap-
ter 15 in [45] for an excellent description of this algorithm and its
analysis.)

In this section we show that the approximate-greedy span-
ner of [38] has constant lightness in arbitrary doubling metrics.
Consequently, Algorithm Approximate-Greedy provides an
O(nlog n)-time construction of (1 + €)-spanners in doubling met-
rics with lightness and degree both bounded by constants.

51 A Rough Sketch of Algorithm
Approximate-Greedy

In this section we provide a very rough sketch of Algorithm
Approximate-Greedy, aiming to highlight the high-level ideas
behind it. This outline is not required for the analysis that is given
in Section 5.2; it is provided here for clarity and completeness.

In metric spaces, the greedy algorithm sorts the (;’) interpoint
distances and examines the edges by non-decreasing order of
weight. For each edge that is examined for inclusion in the span-
ner, the distance between its endpoints in the current spanner is
computed. This is expensive for two reasons: (1) The number of
examined interpoint distances is quadratic in n. (2) Computing the
exact spanner distance between two points is costly.

Suppose we aim for a stretch of ¢ = 1 + ¢, and let ¢ be
an appropriate parameter satisfying ' = 1+ O(e) < t. (Re-
fer to [38, 45] for the exact constant hiding in the O-notation
of O(e).) Instead of examining all () interpoint distances, Al-
gorithm Approximate-Greedy computes a bounded degree
\/t/t'-spanner G’ = (M, E', §) for the input metric space (M, §),
and simulates the greedy algorithm with stretch parameter v/t - ¢/
only on the edges of G’. The output of the algorithm is a v/% - ¢/~
spanner G = (M, E, §) for G’, which is a t-spanner for the origi-
nal metric space (M, J) by the “transitivity” of spanners. A spanner
G’ of degree e~ 9(49i™) can be constructed in e~ 44™) (510 1)
time via Theorem 2. Since the output ¢-spanner G for (M, §) is a
subgraph of G, its degree will be at most ¢~ Oddim),

The greedy simulation is applied only on the edges of G’ that
are sufficiently “heavy”. Formally, let D denote the maximum
weight of any edge of the bounded degree spanner G’, and let Eo
be the set of light edges in E’, namely, of weight at most D /n. As
|Eo| < |E'| = O(n), we have w(Ep) = O(D) = O(MST(M)).
All light edges are taken to the output spanner GG, and the greedy
simulation is applied only on the edges of £’ \ Fo. (So the output
spanner G will contain all edges of Ey and some edges of E’\ Ey.)

As mentioned, computing the exact distance between two points
is costly; using Dijkstra’s algorithm, it requires O(nlogn) time
(see, e.g., Section 2.5 and Corollary 2.5.10 in [45]). Since G’ has
O(n) edges, the overall runtime will be O(n?logn). To speed up
the computation time, Algorithm Approximate—-Greedy does
not compute the exact distance between two points, but rather an
approximation of that distance. This is achieved by maintaining
a much simpler and coarser cluster graph that approximates the
original distances, on which the distance queries are performed.
More specifically, the algorithm partitions the edge set E'\ Fy into
log,, n buckets, for an appropriate parameter 1 < p = O(logn),
such that edge weights within each bucket differ by at most a factor
of p. Then it examines the edges of E’ \ Ey by going from one
bucket to the next, examining edges by non-decreasing order of
weight. Whenever all edges of some bucket have been examined,
the cluster graph is updated according to the new edges that were
added to the spanner. The idea is to periodically make the cluster



graph simpler and coarser, so that the shortest path computations
made on it will be fast. The bottom-line is that one does not sim-
ulate the greedy algorithm (with stretch parameter v/t - ') on the
edge set E' \ Ey, but rather an approximate version of it.

5.2 Bounding the Lightness of the
Approximate-Greedy Spanner

As mentioned, the Algorithm
Approximate-Greedyise nlogn) in arbitrary dou-
bling metrics. In what follows let G = (M, E, §) be the ¢-spanner
for (M,d) returned by Algorithm Approximate-Greedy.
Since G is a subgraph of the bounded degree spanner
G' = (M, E',9), its degree is e~ (ddim)

It remains to bound the lightness of G. The lightness argu-
ment of [38], which relies on previous works [19, 20], is based
on rather deep properties from Euclidean geometry, most notably
the leapfrog property. In particular, this argument does not apply
to arbitrary doubling metrics.

Instead, we employ the following lemma, which lies at the heart
of the lightness analysis of [38]. While this lemma applies to arbi-
trary doubling metrics, the way it was used in [38] does not extend
to arbitrary doubling metrics. Specifically, it was used in [38] to
show that the edge set E'\ Ey satisfies the leapfrog property. (Recall
that Fy is the set of light edges in G’ = (M, E’, §), all of which
are taken to the approximate-greedy spanner G = (M, E,4).) In
Euclidean metrics, it has been proved [19, 45] that any edge set sat-
isfying the leapfrog property has constant lightness, but this proof
does not carry over to arbitrary doubling metrics.

runtime of
—O(ddim) (

Lemma 11 (Lemma 17 in [38]) Let e = (u,v) € E \ Eb.
The weight of the second shortest path between u and v in the
approximate-greedy spanner G is greater than t' - w(e). (If there
are multiple shortest paths between u and v, then the weight of the
second shortest path equals the weight of the shortest path.)

Remark. The parameter ¢’ in the statement of this lemma depends
on the stretch parameters of the spanners G’ and G that are con-
structed by Algorithm Approximate—-Greedy. Specifically, re-
call that the output spanner G is a v/t - t/-spanner for G, which is,
in turn, a /¢/t’-spanner for the input metric space M.

We make the following simple observation.

OBSERVATION 12. Let H be an arbitrary weighted graph, and

let t be any stretch parameter. For any t-spanner H' of H,
w(MST(H")) <t -w(MST(H)).

PROOF. Consider an MST Z for H. Replace each edge of Z by
a t-spanner path in [’ between the endpoints of that edge, and then
break cycles. The resulting structure Z' is a spanning tree of H’,
hence w(MST(H')) < w(Z’), and we have w(MST(H')) <
w(Z) <t-w(Z)=t-w(MST(H)).

The following lemma bounds the lightness of G. Its
proof is based on the somewhat surprising observation that
the lightness of the t¢-spanner G produced by Algorithm
Approximate-Greedy is existentially near-optimal with re-
spect to stretch parameter ¢’ < t (rather than t). We remark that
G is not a greedy spanner, but rather an approximate-greedy span-
ner, and it is inherently different than the greedy ¢-spanner and the
greedy t'-spanner. In particular, its weight may be larger than the
weights of both these greedy spanners. Nevertheless, our existen-
tial near-optimality argument suffices to derive the required light-
ness bound.

LEMMA 13. The lightness of G is (%)O(ddim).

PROOF. Recall that G = (M, E,J) is a t-spanner for M,
where ¢ = 1 4 ¢€,¢ < 1, and let Mg be the metric space in-
duced by GG. By Observation 9, the doubling dimension of Mg
is bounded by 2 - ddim. Let H' be the t'-spanner of Mg with
lightness (ddim/(t' — 1))©@4™) that is guaranteed by Theorem
3, where t' = 1 + O(e) < t is the parameter appearing in the
statement of Lemma 11, which is optimized as part of Algorithm
Approximate-Greedy. As in the proof of Lemma 7, we trans-
form H' into a t’-spanner H" of G of weight at most w(H'). By
Observation 6 and Observation 12, the MST weights for all graphs
M,G, Mg, H and H" are the same, up to a factor of ¢-t' = O(1).

We argue that every edge e € E \ Fo belongs to H”. Suppose
for contradiction that there is an edge e € E \ Ejy that does not
belong to H”. Let P be a shortest path between the endpoints of e
in H". Since H" is a t’-spanner of G, we have w(P) < t' - w(e).
Note that this path is contained in G. Since e € G and M is a
metric space, the weight of the second shortest path between u and
v is at most w(P) < t' - w(e). On the other hand, By Lemma 11,
the weight of this path is greater than ¢’ - w(e), a contradiction. It
follows that

w(Q)

w(H") + w(Eo)
w(H') + w(Eo)

ddim \ ©(ddim)
(t, = 1) ~w(MST(M)) .

INIA

O

Settingt = 1+ eand ¢’ = 1 + ¢ - ¢ (for an appropriate constant
c; see [38, 45]), we conclude:

THEOREM 6. For any metric space (M,d) with doubling
dimension ddim and parameter 0 < € < % Algorithm
Approximate-Greedy returns a (1+€)-spanner with lightness
(ddim)o(ddim) —O(ddim)_

€

and degree € The runtime of Algorithm

—O(ddim) (

Approximate—-Greedyise€ nlog n)

Remark. Theorem 6 should be compared to Theorem 3 due to
[31]. Both constructions achieve the same lightness bound, but
the degree and number of edges in the spanner construction of
[31] are unbounded. Moreover, the runtime of the construction of
[31] is (ddim/e)?@4™) (102 n), whereas that of Theorem 6 is
¢~ 9ddim) (1 1og ). By combining the light spanner H; of [31]
with a bounded degree spanner Hs, one can obtain a spanner with
constant degree and lightness. Specifically, such a spanner H is
obtained by replacing each edge of H; with a shortest (or approx-
imately shortest) path in Hs between the endpoints of that edge.
The lightness of the resulting spanner H will not exceed that of H;
by much, whereas the degree bound will follow from that of Hs.
There is a major problem with this approach: The runtime needed
for computing spanner H may be very high. Indeed, although there
are efficient ways to estimate the weight of an approximately short-
est path in Hy between two points, we must compute the corre-
sponding path in Ha. In particular, to achieve the degree bound of
H>, one may not use edges outside Ho. Moreover, even regard-
less of this computation time, such a path may contain many edges
that already belong to the gradually growing spanner H. Deciding
which edges of this path should be added to H may be very costly
by itself.
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