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Abstract

The greedy spanner is arguably the simplest and most well-studied spanner construction. Experi-
mental results demonstrate that it is at least as good as any other spanner construction, in terms of both
the size and weight parameters. However, a rigorous proof for this statement has remained elusive.

In this work we fill in the theoretical gap via a surprisingly simple observation: The greedy spanner
is existentially optimal (or existentially near-optimal) for several important graph families, in terms of
both the size and weight. Roughly speaking, the greedy spanner is said to be existentially optimal (or
near-optimal) for a graph family G if the worst performance of the greedy spanner over all graphs in G
is just as good (or nearly as good) as the worst performance of an optimal spanner over all graphs in G.

Focusing on the weight parameter, the state-of-the-art spanner constructions for both general graphs
(due to Chechik and Wulff-Nilsen [SODA’16]) and doubling metrics (due to Gottlieb [FOCS’15]) are
complex. Plugging our observation on these results, we conclude that the greedy spanner achieves near-
optimal weight guarantees for both general graphs and doubling metrics, thus resolving two longstanding
conjectures in the area.

Further, we observe that approximate-greedy spanners are existentially near-optimal as well. Con-
sequently, we provide an O(n log n)-time construction of (1 + ε)-spanners for doubling metrics with
constant lightness and degree. Our construction improves Gottlieb’s construction, whose runtime is
O(n log2 n) and whose number of edges and degree are unbounded, and remarkably, it matches the
state-of-the-art Euclidean result (due to Gudmundsson et al. [SICOMP’02]) in all the involved parame-
ters (up to dependencies on ε and the dimension).
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1 Introduction

1.1 Graph Spanners. Given a (connected and undirected) n-vertex m-edge graph G = (V,E,w) with
positive edge weights and a parameter t ≥ 1, a subgraph H = (V,E′, w) of G (E′ ⊆ E) is called a t-
spanner for G if for all u, v ∈ V , δH(u, v) ≤ t · δG(u, v). (Here δG(u, v) and δH(u, v) denote the distances
between u and v in the graphs G and H , respectively.) The parameter t is called the stretch of H . Spanners
constitute a fundamental graph structure, and have been extensively and intensively studied since they were
introduced [PS89, PU89a].

In many practical applications one is required to construct a spanner that satisfies a number of useful
properties, while preserving a small stretch. First, the spanner H should have a small number of edges.
Second, its weight w(H) =

∑
e∈E w(E) should be close to the weight of a minimum spanning tree (MST)

of the graphG. We henceforth refer to the normalized notion of weight Ψ(H) = w(H)
w(MST (G)) , which is called

lightness; a light spanner is one with small lightness. Third, its degree ∆(H), defined as the maximum
number of edges incident on a vertex, should be small.

Light and sparse spanners are particularly useful for efficient broadcast protocols in the message-passing
model of distributed computing [ABP90, ABP91], where efficiency is measured with respect to both the
total communication cost (corresponding to the spanner’s size and weight) and the speed of message de-
livery at all destinations (corresponding to the spanner’s stretch). Additional applications of such spanners
in distributed systems include network synchronization and computing global functions [Awe85, PU89a,
ABP90, ABP91, Pel00]. Light and sparse spanners were also found useful for various data gathering and
dissemination tasks in overlay networks [BKR+02, VWF+03, KV02], in wireless and sensor networks
[vRW04, BSDS04, SS10], for VLSI circuit design [CKR+91, CKR+92a, CKR+92b, SCRS01], for routing
[WCT02, PU89a, PU89b, TZ01b], to compute distance oracles and labels [Pel99, TZ01a, RTZ05], and to
compute almost shortest paths [Coh93, RZ04, Elk05, EZ06, FKM+05]. Low degree spanners are also very
useful in many of these applications. For example, the degree of the spanner is what determines local mem-
ory constraints when using spanners to construct network synchronizers and efficient broadcast protocols.
In compact routing schemes, the use of low degree spanners enables the routing tables to be of small size.
More generally, viewing vertices as processors, in many applications the degree of a processor represents its
load, hence a low degree spanner guarantees that the load on all the processors in the network will be low.

The greedy spanner by Althöfer et al. [ADD+93] is arguably the simplest and most well-studied spanner
construction. Althöfer et al. showed that for every weighted n-vertex graph G = (V,E,w) and an integer
parameter k ≥ 1, the greedy algorithm (see Algorithm 1) constructs a (2k − 1)-spanner with O(n1+1/k)
edges; assuming Erdős’ girth conjecture [Erd64], this size bound is asymptotically tight. Althöfer et al.
also showed that the lightness of the greedy spanner is O(n/k). Chandra et al. [CDNS92] improved the
lightness bound, and showed that the greedy spanner for stretch parameter t = (2k − 1) · (1 + ε) (here
k > 1, ε > 0) has lightness O(k · n1/k · (1/ε)1+1/k). Two decades later, Elkin, Neiman and the second
author [ENS14] improved the analysis of [CDNS92] and showed that the greedy (2k−1)·(1+ε)-spanner has
lightness O(n1/k · (1 + k/(ε1+1/k log k))). Very recently Chechik and Wulff-Nilsen [CW16] improved the
lightness bound all the way to O(n1/k(1/ε)3+2/k). Assuming Erdős’ girth conjecture [Erd64] and ignoring
dependencies on ε, the bound of [CW16] on the lightness is asymptotically tight, thus resolving a major
open question in this area. However, the result of Chechik and Wulff-Nilsen [CW16] is not due to a refined
analysis of the greedy spanner. Instead, they devised a different construction, which is far more complex,
and bounded the lightness of their own construction. The following question was left open.

Question 1. Is the lightness analysis of [ENS14] for the greedy spanner optimal, or can one refine it to
derive a stronger bound? In particular, is the spanner of [CW16] lighter than the greedy spanner?
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1.2 Spanners for Euclidean and Doubling Metrics. Consider a set P of n points in Rd, d ≥ 2, and a
stretch parameter t ≥ 1. A graph G = (P,E,w) in which the weight w(p, q) of each edge e = (p, q) ∈ E
is equal to the Euclidean distance ‖p − q‖ between p and q is called a Euclidean graph. We say that the
Euclidean graph G is a t-spanner for P (or equivalently, for the corresponding Euclidean metric (P, ‖ · ‖))
if for every pair p, q ∈ P of distinct points, there exists a path Π(p, q) in G between p and q whose weight
(i.e., the sum of all edge weights in it) is at most t · ‖p − q‖. The path Π(p, q) is said to be a t-spanner
path between p and q. For Euclidean metrics, one usually focuses on the regime t = 1 + ε, for ε > 0 being
an arbitrarily small parameter. Euclidean spanners were introduced by Chew [Che86], and were subject to
intensive ongoing research efforts since then. We refer to the book “Geometric Spanner Networks” [NS07],
which is devoted almost exclusively to Euclidean spanners and their numerous applications. As with general
graphs, it is important to devise Euclidean spanners that achieve small size, lightness and degree.

The doubling dimension of a metric space (M, δ) is the smallest value ddim such that every ball B in
the metric space can be covered by at most 2ddim balls of half the radius of B. This notion generalizes
the Euclidean dimension, since the doubling dimension of the Euclidean space Rd is Θ(d). A metric space
is called doubling if its doubling dimension is constant. Spanners for doubling metrics were also subject
of intensive research [GGN04, CGMZ05, CG06, HPM06, Rod07, GR08a, GR08b, Smi09, ES13, CLNS13,
Sol14]. The basic line of work in this context is to generalize the known Euclidean spanner results for
arbitrary doubling metrics.

Das et al. [DHN93] showed that, in low-dimensional Euclidean metrics, the greedy (1 + ε)-spanner
has constant degree (and so O(n) edges) and constant lightness. In n-point doubling metrics, the greedy
(1+ε)-spanner hasO(n) edges and lightnessO(log n) [Smi09]. As for the degree, there exist n-point metric
spaces with doubling dimension 1 for which the greedy spanner has a degree of n − 1 [HM06, Smi09]. It
has been a major open question to determine whether any doubling metric admits a (1 + ε)-spanner with
sub-logarithmic lightness. Recently Gottlieb [Got15] answered this question in the affirmative by devising
such a spanner construction with constant lightness. Again, this result is not due to a refined analysis of the
greedy spanner. Instead, Gottlieb devised a different construction, which is far more complex, and bounded
the lightness of his own construction. The following question was left open.

Question 2. Is the lightness analysis of [Smi09] for the greedy spanner optimal, or can one refine it to
derive a stronger bound? In particular, is the spanner of [Got15] lighter than the greedy spanner?

The high runtime of the greedy spanner is a major drawback. The state-of-the-art implementation of the
greedy spanner in both Euclidean and doubling metrics requires time O(n2 log n) [BCF+10]. Building on
[DHN93], Das and Narasimhan [DN97] devised a much faster algorithm that follows the greedy approach.
The runtime of their “approximate-greedy” algorithm is O(n log2 n), yet its degree and lightness are both
bounded by constants (as with the greedy spanner). Gudmundsson et al. [GLN02] improved the result of
[DN97], implementing the approximate-greedy algorithm within time O(n log n). For doubling metrics,
however, the only spanner construction with sub-logarithmic lightness is that of [Got15]; the runtime of
Gottlieb’s construction is O(n log2 n) rather than O(n log n), and the size and degree of his construction
are unbounded. Hence, there is a big gap in this context between Euclidean and doubling metrics, leading
to the following question.

Question 3. Can one compute (1 + ε)-spanners with constant lightness in doubling metrics within time
O(n log n)? Furthermore, can one extend the state-of-the-art Euclidean result of [GLN02] to arbitrary
doubling metrics?

There have been numerous experimental studies on Euclidean spanners. (See [FG05, Far08], and the
references therein.) The conclusion emerging from these experiments is that the greedy Euclidean spanner
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outperforms the other popular Euclidean spanner constructions, with respect to the size and lightness bounds.
(Specifically, the greedy spanner was found to be 10 times sparser and 30 times lighter than any other
examined spanner.) It is reasonable to assume that a similar situation occurs in arbitrary doubling metrics.

1.3 Our Contribution. In this work we fill in the theoretical gap by making three important observations.

1. Our first observation is surprisingly simple: The greedy spanner is existentially optimal with respect
to both the size and the lightness, for any graph family that is closed under edge removal. Applying
this observation to the family of general weighted graphs, we conclude that the greedy spanner is just
as light as the spanner of [CW16], thus answering Question 1.

2. The first observation does not hold for doubling metrics. Our second observation is that the greedy
spanner is existentially near-optimal with respect to both the size and the lightness, for the family of
doubling metrics. In particular, it is just as light as the spanner of [Got15], thus answering Question 2.

3. Our third observation concerns the optimality of the approximate-greedy algorithm of [DN97, GLN02]
in doubling metrics, and is more intricate than the first two observations. Informally, it states that the
approximate-greedy spanner with stretch parameter t is existentially near-optimal with respect to the
lightness, for the family of doubling metrics, but when compared to spanners with a slightly smaller
stretch parameter t′ < t. This enables us to conclude that the lightness of the approximate-greedy
spanner is close to that of [Got15]. In this way we manage to extend the state-of-the-art Euclidean
result of [GLN02] to arbitrary doubling metrics, thus answering Question 3.1

Some definitions concerning existential optimality. Although the meaning of existential optimality can be
understood from the context, it is instructive to provide a formal definition. Fix an arbitrary stretch parameter
t ≥ 1 and some graph family G. For a graph G ∈ G, let OPT sparset (G) (respectively, OPT lightt (G)) denote
the optimal size (resp., lightness) of any t-spanner forG, and letOPT sparset (G) = max{OPT sparset (G) |G ∈
G} (resp.,OPT lightt (G) = max{OPT lightt (G) |G ∈ G}) denote the maximum valueOPT sparset (G) (resp.,
OPT lightt (G)) over all graphs G in G. The greedy t-spanner is said to be existentially optimal with respect
to the size (respectively, lightness) if for any graph G ∈ G, the size (resp., lightness) of the greedy t-spanner
for G does not exceed OPT sparset (G) (resp., OPT lightt (G)). This does not mean that the size (respectively,
lightness) of the greedy t-spanner for any graphG ∈ G is bounded byOPT sparset (G) (resp.,OPT lightt (G)).
It simply means that there exists a graph G′ ∈ G, such that the size (resp., lightness) of the greedy t-spanner
for G is bounded by OPT sparset (G′) (resp., OPT lightt (G′)). In other words, the maximum size (resp., light-
ness) of the greedy t-spanner over all graphs in G is equal to the maximum size (resp., lightness) of an
optimal t-spanner over all graphs in G.

For example, let G be the family of general weighted graphs on n vertices, and let H be an n-vertex
dense graph of high girth, namely, with girth t+ 2 and n1+Θ(1/t) edges, where all edge weights are 1. Also,
let S be a star on the same vertex set as H rooted at an arbitrary vertex, so that all edges of S that belong
to H have weight 1 and all edges of S that do not belong to H have weight 1 + ε. Finally, let G be the
graph containing all edges of H and all edges of S with weight 1 + ε. Note that the greedy t-spanner for G
includes all n1+Θ(1/t) edges of the high girth graphH , whereas the optimal t-spanner (assuming t ≥ 2+2ε)
consists of the edges of the star S, hence is much sparser and lighter. (See Figure 1 for an illustration.)
This example, however, does not contradict the existential optimality of the greedy spanner: Although the
size (respectively, lightness) of the greedy t-spanner for G exceeds OPT sparset (G) (resp., OPT lightt (G)),

1The O(n logn) runtime bound of [GLN02] holds in the traditional algebraic computation-tree model with the added power of
indirect addressing. Our result applies with respect to the same computation model.
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Figure 1: The graph H in the figure is the Petersen graph on 10 vertices, with girth 5 and 15 edges. All edges of H
have weight 1, and are colored black. The red dashed edges are the edges of the star S of weight 1 + ε. The greedy
3-spanner for the graph G obtained as the union of the black and red edges in the figure includes all 15 edges of H ,
whereas the optimal 3-spanner for G consists of the 9 edges of S.

it can be shown that it is equal to OPT sparset (H) (resp., OPT lightt (H)), which, in turn, is bounded by
OPT sparset (G) (resp., OPT lightt (G)).

The meaning of existential near-optimality is similar, except that we are allowed to have some slack,
which may depend on the stretch parameter t as well as on parameters of the graph family of interest G. As
mentioned, in our third observation we compare the lightness of the greedy spanner with a certain stretch
parameter t to the optimal lightness of any spanner, but with a slightly smaller stretch parameter t′. This is
just one example of how the slack parameter can be used. Another example is to compare the greedy spanner
in some graph family G to an optimal spanner, but with respect to a different (closely related) graph family
F ′. In particular, in our second and third observations we compare the lightness of the greedy spanner in
metric spaces of bounded doubling dimension to the optimal lightness of any spanner, but with respect to
metric spaces of slightly larger doubling dimension. It would be interesting to study additional ways of
using the slack parameter, as they may lead to new results in this area.

We remark that light spanners were extensively studied in various graph families such as planar graphs
[ADD+93, Kle05], apex graphs [GS02], bounded pathwidth graphs [GH12, Hun12], bounded catwidth
graphs [Hun12], bounded genus graphs [Gri00, GS02, DHM10], bounded treewidth graphs [DHM10, Hun12],
and graphs excluding fixed minors [Gri00, DHM10]. Since all these graph families are closed under edge
removal, our first observation implies that the greedy spanner for them is just as good as any other spanner.

1.4 Organization. In Section 2 we present the notation that is used throughout the paper, and summarize
some statements from previous work that are most relevant to us. In Section 3 we show that the greedy
spanner is existentially optimal for graph families that are closed under edge removal. The basic optimality
argument of Section 3 is extended to doubling metrics in Section 4. Finally, in Section 5 we show that the
approximate-greedy spanner in doubling metrics is light.
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2 Preliminaries

Let G = (V,E,w) be a (connected and undirected) graph with positive edge weights. The weight w(P ) of
a path P is the sum of all edge weights in it, i.e., w(P ) =

∑
e∈P w(e). For a pair of vertices u, v ∈ V , let

δG(u, v) denote the distance between u and v in G, i.e., the weight of a shortest path between them. We
denote by MG = (V, δG) the (shortest path) metric space induced by G; we will view MG as a complete
weighted graph (V,

(
V
2

)
, w) over the vertex set V , where the weight w(u, v) of an edge (u, v) is given by the

graph distance δG(u, v) between its endpoints. A subgraph H = (V,E′, w) of G (where E′ ⊆ E) is called
a t-spanner for G if for all u, v ∈ V , δH(u, v) ≤ t · δG(u, v). The parameter t is called the stretch of the
spanner H . If δH(u, v) ≤ t · δG(u, v) for all edges (u, v) ∈ E, then it also holds that δH(u, v) ≤ t · δG(u, v)
for all pairs of vertices u, v ∈ V . Therefore, to bound the stretch of the spanner, one may restrict the attention
to the edges of the graph. Let |H| = |E′| denote the size of H , and let w(H) = w(E′) =

∑
e∈E′ w(e)

denote its weight. The lightness Ψ(H) of H is the ratio between the weight of H and the weight of an MST
for G, i.e., Ψ(H) = w(H)

w(MST (G)) . (Throughout the paper all logarithms are in base 2.)
We refer the reader to Section 1.3 for some definitions concerning the notion of existential optimality.
The result of Chechik and Wulff-Nilsen [CW16] is summarized in the following theorem.

Theorem 1 ([CW16]). For every weighted n-vertex graph G = (V,E,w) and parameters k ≥ 1 and
0 < ε < 1, there exists a (2k−1) ·(1+ε)-spanner withO(n1+1/k) edges and lightnessO(n1/k(1/ε)3+2/k).
Such a spanner can be constructed in polynomial time.

2.1 Doubling metrics

The following lemma gives the standard packing property of doubling metrics (see, e.g., [GKL03]).

Lemma 1. Let (M, δ) be a metric space with doubling dimension ddim. If S ⊆ M is a subset of points

with minimum interpoint distance r that is contained in a ball of radius R, then |S| ≤
(

2R
r

)O(ddim)
.

The following theorem states that any doubling metric admits a constant degree (1 + ε)-spanner.

Theorem 2 ([CGMZ05, GR08c]). For any n-point metric space (M, δ) with doubling dimension ddim
and parameter 0 < ε < 1/2, there exists a (1 + ε)-spanner with degree ε−O(ddim). The runtime of this
construction is ε−O(ddim)(n log n).

The result of Smid [Smi09] is summarized in the following theorem.

Theorem 3 ([Smi09]). For any n-point metric space (M, δ) with doubling dimension ddim and any pa-
rameter 0 < ε < 1

2 , the greedy (1 + ε)-spanner has (1/ε)O(ddim)n edges and lightness (1/ε)O(ddim) log n.

The result of Gottlieb [Got15] is summarized in the following theorem.

Theorem 4 ([Got15]). For any n-point metric space (M, δ) with doubling dimension ddim and parameter
0 < ε < 1/2, there exists a (1+ε)-spanner with lightness (ddim/ε)O(ddim). The runtime of this construction
is (ddim/ε)O(ddim)(n log2 n).
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Algorithm 1 Greedy(G = (V,E,w), t)

1: H = (V, ∅, w).
2: for each edge (u, v) ∈ E, in non-decreasing order of weight, do
3: if δH(u, v) > t · w(u, v) then
4: Add the edge (u, v) to E(H).
5: end if
6: end for

2.2 The Greedy Spanner and its Basic Properties

The greedy spanner algorithm is presented in Algorithm 1. Let H = (V,EH , w) be the output of an
arbitrary execution of the greedy algorithm with stretch parameter t. It is immediate that H has stretch at
most t. If the edge weights in the graph are distinct, then H is uniquely defined, but this does not hold in
general; nevertheless, by letting H designate an arbitrary such spanner, we may henceforth refer to it as the
greedy t-spanner. The following observation is immediate (see, .e.g., [ENS14, CW16]).

Observation 2. H contains all edges of some MST of G, denoted Z. (Hence Z is also an MST of H .)

3 The Basic Optimality Proof

In this section we show that the greedy spanner is existentially optimal, with respect to both the size and the
lightness, for any graph family that is closed under edge removal.

We start by making the basic observation that the only t-spanner of the greedy t-spanner is itself.

Lemma 3. Let G = (V,E,w) be any weighted graph, let t ≥ 1 be any stretch parameter, and let H be the
greedy t-spanner of G. If H ′ is a t-spanner for H , then H ′ = H .

Proof. Assume for contradiction that H ′ is a t-spanner for H yet there is an edge e ∈ H \H ′. Let P be a
shortest path in H ′ between the endpoints of e. As H ′ is a t-spanner of H , it holds that w(P ) ≤ t · w(e).
Consider the last edge examined by the greedy algorithm among the edges of P and e, denoted e′. By the
description of the greedy algorithm, we have w(e) ≤ w(e′). Consequently, by the time the greedy algorithm
examines edge e′, all the edges of the path (P ∪ e) \ e′ must have already been added to the greedy spanner.
(See Figure 2 for an illustration.) This path connects the endpoints of e′, and its weight is given by

w(P )− w(e′) + w(e) ≤ w(P ) ≤ t · w(e) ≤ t · w(e′).

Hence the greedy algorithm will not add edge e′ to H , a contradiction.

Equipped with Lemma 3, we now turn to the basic optimality proof.

Theorem 5 (Greedy is existentially optimal). Let G be any family of n-vertex graphs that is closed under
edge removal, and let t = t(n) ≥ 1 be any stretch parameter. For every graph G ∈ G, the greedy t-spanner
H of G has at most OPT sparset (G) edges and lightness at most OPT lightt (G). In other words, the greedy
t-spanner is existentially optimal for G with respect to both the size and the lightness.
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e

Figure 2: The path P in H ′ between the endpoints of edge e is depicted by a dashed line. The path P ∪ e\ e′ between
the endpoints of edge e′, all edges of which have been added to H by the time the greedy algorithm examines edge e′,
is colored red.

Proof. Consider an arbitrary graph G in G, and let H be the greedy t-spanner of G. Since G is closed under
edge removal and H is a subgraph of G, H belongs to G. Hence, there exist t-spanners Hsparse and Hlight
of H with at most OPT sparset (G) edges and lightness at most OPT lightt (G), respectively. Lemma 3 implies
that Hsparse = Hlight = H , from which the size bound on H immediately follows. The lightness bound is
slightly trickier, as the spanner Hlight is computed on top of the greedy spanner H rather than the original
graph G. Nevertheless, Observation 2 implies that G and H have the same MST Z. Since the lightness of
Hlight is at most OPT lightt (G) and Z is an MST for H , it follows that

OPT lightt (G) ≥ Ψ(Hlight) =
w(Hlight)

w(MST (H))
=

w(Hlight)
w(Z)

.

Using the fact thatHlight = H , we conclude that the lightness of H satisfies

Ψ(H) =
w(H)

w(MST (G))
=

w(H)

w(Z)
=

w(Hlight)
w(Z)

≤ OPT lightt (G).

As the family of weighted graphs is closed under edge removal, we can apply Theorem 5 on it. Hence
the greedy spanner for general graphs has size and lightness at least as good as in Theorem 1.

Corollary 4. For every weighted graph G = (V,E,w) on n vertices and m edges and parameters k ≥ 1
and 0 < ε < 1, the greedy (2k−1)·(1+ε)-spanner hasO(n1+1/k) edges and lightnessO(n1/k(1/ε)3+2/k).
(A naive implementation of the greedy algorithm requires O(mn1+1/k) time.)

In [BFN16] it was proved that for any parameter 0 < δ < 1 and any stretch parameter t = t(n), if
every n-vertex weighted graph admits a t-spanner with at most m(n, t) edges and lightness at most l(n, t),
then for every such graph there also exists a t/δ-spanner with at most m(n, t) edges and lightness at most
1 + δ · l(n, t).2 Applying Theorem 5 again, we derive the following result.

Corollary 5. For every weighted n-vertex graph G = (V,E,w) and parameter 0 < δ < 1, the greedy
O(log n/δ)-spanner has O(n) edges and lightness at most 1 + δ.

2This reduction appears in the full version of [BFN16], which is currently available via http://www.cs.bgu.ac.il/
˜arnoldf/BFN16.pdf.
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As mentioned in the introduction, a plethora of graph families that are closed under edge removal were
studied extensively in the spanner literature. This includes the families of planar graphs, bounded genus
graphs, bounded treewidth graphs, graphs excluding fixed minors, and more. For all these graph families,
Theorem 5 shows that the greedy spanner is existentially optimal.

4 The Optimality Argument in Doubling Metrics

The basic optimality argument of Section 3 applies to graph families that are closed under edge removal.
Note that metric spaces do not fall into this category. Nevertheless, for metric spaces, the basic optimality
argument suffices: On the one hand, the upper bound for general weighted graphs applies to any metric
space, and on the other hand, the lower bound due to high girth graphs naturally applies to the induced
metric spaces (see, e.g., [ADD+93, RR98]).

In this section we study the optimality of the greedy spanner for doubling metrics. For such metric
spaces, one would like to obtain spanners with stretch 1 + ε, where ε is arbitrarily close to 0. We will show
that the greedy (1 + ε)-spanner is existentially near-optimal in doubling metrics, with respect to both the
size and the lightness. The next observation and subsequent lemma will be used for proving the lightness
optimality.

Observation 6. Consider the metric space MG induced by an arbitrary weighted graph G = (V,E,w).
Then any MST of MG is a spanning tree of G. (Hence there is a common MST for G and MG, denoted Z.)

Proof. Consider an MST Z for MG, and suppose for contradiction that Z contains an edge e outside G.
Since e belongs toMG\G, any path inG between the endpoints of e consists of at least two edges. Consider
the (multi) graph obtained from Z by replacing edge e with a shortest path in G between the endpoints of e.
It is a spanning subgraph of MG of weight w(Z), which contains at least n+ 1 edges (some of which may
be multiple edges), and thus at least one cycle. By breaking cycles in this subgraph, we obtain a spanning
tree ofMG of weight strictly smaller than w(Z), yielding a contradiction to the weight minimality of Z.

Lemma 7. Let (M, δ) be any metric space, t ≥ 1 be some stretch parameter, andH be the greedy t-spanner
of M . For every t-spanner H ′ of the metric space MH induced by H , we have w(H) ≤ w(H ′).

Proof. Let H ′ be a t-spanner of MH , and define H ′′ as the subgraph of H obtained from H ′ by replacing
each edge e of H ′ with a shortest path in H between the endpoints of e. Clearly, the distances in H ′′

are no greater than the respective distances in H ′. Since H ′′ is a subgraph of H , it follows that H ′′ is
a t-spanner for H . Lemma 3 implies that H ′′ = H . Finally, noting that w(H ′′) ≤ w(H ′), we have
w(H) = w(H ′′) ≤ w(H ′).

The following lemma will be used for proving the size optimality.

Lemma 8. Let (M, δ) be any metric space, t < 2 be some stretch parameter, andH be the greedy t-spanner
of M . For every t-spanner H ′ of the metric space MH induced by H , we have |H| ≤ |H ′|.
Proof. For every edge e′ ∈ H ′, let Pe′ be a shortest path between the endpoints of e′ in H . We say that edge
e′ ∈ H ′ covers all edges of Pe′ , and all these edges are covered by e′. (An edge e′ ∈ H ∩H ′ covers itself.)

For each edge e in H \ H ′, let Qe be a shortest path between the endpoints of e in H ′. Since H ′ is a
t-spanner for MH , we have w(Qe) ≤ t · w(e). Observe that the edges in ∪e′∈QePe′ form a path Πe in H
between the endpoints of e. (It will be shown next that the path Πe is not simple.) We have

w(Πe) ≤
∑
e′∈Qe

w(Pe′) =
∑
e′∈Qe

w(e′) = w(Qe) ≤ t · w(e) .
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Next, we argue that the edge e must belong to Πe. Indeed, otherwise the edges of Πe contain a simple
path in H between the endpoints of e of weight bounded by t ·w(e), implying that the heaviest edge among
the edges of this path and e would not be added to the greedy t-spanner H . Consequently, at least one edge
e′ in Qe must cover e.

We define an injection f : H → H ′ as follows. For each edge e ∈ H ∩H ′, f(e) is defined as e; in this
case edge e = f(e) covers itself. For each e ∈ H \ H ′, f(e) is defined to be an arbitrary edge of Qe that
covers e. To see that f is injective, suppose for contradiction the existence of two distinct edges e1 and e2

in H and an edge e′ ∈ H ′ such that f(e1) = f(e2) = e′ ∈ H ′. It must hold that e1 and e2 are in H \H ′.
Assume without loss of generality that w(e1) ≤ w(e2). Since both e1 and e2 are covered by e′, it follows
that w(e′) ≥ w(e1) + w(e2) ≥ 2 · w(e1). On the other hand, by the definition of f , the shortest path Qe1
in H ′ between the endpoints of e1 contains the edge e′ = f(e1). Hence the weight of a shortest path in H ′

between the endpoints of e1 is given by w(Qe1) ≥ w(e′) ≥ 2 ·w(e1) > t ·w(e1), which contradicts the fact
that H ′ is a t-spanner for H . It follows that f is injective, from which we conclude that |H| ≤ |H ′|.

LetM(n, ddim) denote the family of n-point metric spaces with doubling dimension bounded by ddim,
for any n and ddim. The following observation shows that a small “stretching” of any metric space does not
change the doubling dimension of the metric space by much.

Observation 9. Let H be a t-spanner of an arbitrary metric space M ∈ M(n,ddim), for t ≤ 2. Then the
metric space MH induced by H belongs toM(n, 2ddim).

Proof. Clearly, any ball of radius r in the “stretched” metric space MH is contained in the respective ball of
the original metric space M . By definition, this ball can be covered by 22ddim balls of radius r

4 in M , and
so by 22ddim balls of radius t · r4 ≤ r

2 in the stretched metric space MH .

The existential near-optimality result for doubling metrics is summarized in the following theorem.

Theorem 6 (Greedy is near-optimal in doubling metrics). For every metric M ∈ M(n,ddim) and any
stretch parameter t < 2, the greedy t-spanner H of M has at most OPT sparset (M(n, 2ddim)) edges and
lightness at most OPT lightt (M(n, 2ddim)).

Proof. Let M be an arbitrary metric space inM(n, ddim), let H = (V,E) be the greedy t-spanner for M ,
and let MH be the metric space induced by H . By Observation 9, MH ∈M(n, 2ddim). Hence, there exist
t-spannersHsparse andHlight for MH with at most OPT sparset (M(n, 2ddim)) edges and lightness at most
OPT lightt (M(n, 2ddim)), respectively. Lemma 8 implies that |H| ≤ |Hsize|, from which the size bound
on H immediately follows. As for the lightness bound on H , note that Hlight is computed on top of MH

rather than the original metric space M . Nevertheless, Observation 2 and Observation 6 imply that M and
MH have the same MST Z. Since the lightness of Hlight is at most OPT lightt (M(n, 2ddim)), it follows
that

OPT lightt (M(n, 2ddim)) ≥ Ψ(Hlight) =
w(Hlight)

w(MST (MH))
=

w(Hlight)
w(Z)

,

hence w(Hlight) ≤ OPT lightt (M(n, 2ddim)) · w(Z). By Lemma 7, we have w(H) ≤ w(Hlight), hence
the lightness of H satisfies

Ψ(H) =
w(H)

w(MST (M))
=

w(H)

w(Z)
≤ w(Hlight)

w(Z)
≤ OPT lightt (M(n, 2ddim)) .
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By Theorem 3, the greedy (1 + ε)-spanner for n-point doubling metrics has O(n) edges and light-
ness O(log n), where the O-notation hides a multiplicative term of (1/ε)O(ddim). Applying Theorem 6 in
conjunction with Theorem 4, we reduce the lightness bound of the greedy (1 + ε)-spanner to constant.

Corollary 10. For every metric space (M, δ) inM(n, ddim) and any parameter 0 < ε < 1
2 , the greedy

(1 + ε)-spanner has n(1/ε)O(ddim) edges and lightness (ddim/ε)O(ddim).

Remark. Corollary 10 shows that the greedy (1+ε)-spanner in doubling metrics achieves optimal bounds on
the size and the lightness, disregarding dependencies on ε and the doubling dimension. However, improving
these dependencies is a fundamental challenge of practical importance. By Theorem 6, any improvement
whatsoever in the dependencies on ε and the doubling dimension on either the size or the lightness of any
spanner construction for doubling metrics – would trigger a similar improvement to the greedy spanner.

5 The Approximate-Greedy Spanner in Doubling Metrics is Light

Corollary 10 shows that the greedy (1+ε)-spanner in doubling metrics achieves near-optimal bounds on the
size and the lightness. Nevertheless, this spanner has two major disadvantages. First, as mentioned in the
introduction, there exist metric spaces with doubling dimension 1 for which its degree may be unbounded.
(This is in contrast to d-dimensional Euclidean metrics, where the greedy (1+ε)-spanner has degree ε−O(d).)
Second, it cannot be constructed within sub-quadratic time in doubling metrics due to a lower bound of
[HM06]. In fact, even in d-dimensional Euclidean metrics, the state-of-the-art implementation of the greedy
(1 + ε)-spanner requires time ε−O(d)(n2 log n) [BCF+10].

Building on [DHN93, DN97], Gudmundsson et al. [GLN02] devised a much faster algorithm that fol-
lows the greedy approach, hereafter Algorithm Approximate-Greedy. The runtime of this algorithm is
ε−O(d)(n log n), yet the degree and lightness of the approximate-greedy spanner produced by the algorithm
are both bounded by ε−O(d), just as with the greedy spanner for Euclidean metrics. The runtime analysis
of Algorithm Approximate-Greedy [GLN02] does not exploit any properties of Euclidean geometry.
Specifically, it relies on the triangle inequality, which applies to arbitrary metric spaces, and on standard
packing arguments (cf. Lemma 1), which apply to arbitrary doubling metrics. Therefore, the runtime of
Algorithm Approximate-Greedy remains ε−O(ddim)(n log n) in arbitrary doubling metrics. Moreover,
the degree bound of ε−O(d) applies to arbitrary doubling metrics as well. (We refer to Chapter 15 in [NS07]
for an excellent description of this algorithm and its analysis.)

In this section we show that the approximate-greedy spanner of [GLN02] has constant lightness in ar-
bitrary doubling metrics. Consequently, Algorithm Approximate-Greedy provides an O(n log n)-time
construction of (1 + ε)-spanners in doubling metrics with lightness and degree both bounded by constants.

5.1 A Rough Sketch of Algorithm Approximate-Greedy

In this section we provide a very rough sketch of Algorithm Approximate-Greedy, aiming to highlight
the high-level ideas behind it. This outline is not required for the analysis that is given in Section 5.2; it is
provided here for clarity and completeness.

In metric spaces, the greedy algorithm sorts the
(
n
2

)
interpoint distances and examines the edges by

non-decreasing order of weight. For each edge that is examined for inclusion in the spanner, the distance
between its endpoints in the current spanner is computed. This is expensive for two reasons: (1) The number
of examined interpoint distances is quadratic in n. (2) Computing the exact spanner distance between two
points is costly.
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Suppose we aim for a stretch of t = 1 + ε, and let t′ be an appropriate parameter satisfying t′ =
1 +O(ε) < t. (Refer to [GLN02, NS07] for the exact constant hiding in the O-notation of O(ε).) Instead of
examining all

(
n
2

)
interpoint distances, Algorithm Approximate-Greedy computes a bounded degree√

t/t′-spanner G′ = (M,E′, δ) for the input metric space (M, δ), and simulates the greedy algorithm
with stretch parameter

√
t · t′ only on the edges of G′. The output of the algorithm is a

√
t · t′-spanner

G = (M,E, δ) for G′, which is a t-spanner for the original metric space (M, δ) by the “transitivity” of
spanners. A spanner G′ of degree ε−O(ddim) can be constructed in ε−O(ddim)(n log n) time via Theorem 2.
Since the output t-spanner G for (M, δ) is a subgraph of G′, its degree will be at most ε−O(ddim).

The greedy simulation is applied only on the edges of G′ that are sufficiently “heavy”. Formally, let
D denote the maximum weight of any edge of the bounded degree spanner G′, and let E0 be the set of
light edges in E′, namely, of weight at most D/n. As |E0| ≤ |E′| = O(n), we have w(E0) = O(D) =
O(MST (M)). All light edges are taken to the output spanner G, and the greedy simulation is applied only
on the edges of E′ \E0. (So the output spanner G will contain all edges of E0 and some edges of E′ \E0.)

As mentioned, computing the exact distance between two points is costly; using Dijkstra’s algorithm,
it requiresO(n log n) time (see, e.g., Section 2.5 and Corollary 2.5.10 in [NS07]). SinceG′ hasO(n) edges,
the overall runtime will beO(n2 log n). To speed up the computation time, Algorithm Approximate-Greedy
does not compute the exact distance between two points, but rather an approximation of that distance. This is
achieved by maintaining a much simpler and coarser cluster graph that approximates the original distances,
on which the distance queries are performed. More specifically, the algorithm partitions the edge set E′ \E0

into logµ n buckets, for an appropriate parameter 1 < µ = O(log n), such that edge weights within each
bucket differ by at most a factor of µ. Then it examines the edges of E′ \E0 by going from one bucket to the
next, examining edges by non-decreasing order of weight. Whenever all edges of some bucket have been
examined, the cluster graph is updated according to the new edges that were added to the spanner. The idea
is to periodically make the cluster graph simpler and coarser, so that the shortest path computations made
on it will be fast. The bottom-line is that one does not simulate the greedy algorithm (with stretch parameter√
t · t′) on the edge set E′ \ E0, but rather an approximate version of it.

5.2 Bounding the Lightness of the Approximate-Greedy Spanner

As mentioned, the runtime of Algorithm Approximate-Greedy is ε−O(ddim)(n log n) in arbitrary dou-
bling metrics. In what follows let G = (M,E, δ) be the t-spanner for (M, δ) returned by Algorithm
Approximate-Greedy. Since G is a subgraph of the bounded degree spanner G′ = (M,E′, δ), its
degree is ε−O(ddim).

It remains to bound the lightness of G. The lightness argument of [GLN02], which relies on previous
works [DHN93, DN97], is based on rather deep properties from Euclidean geometry, most notably the
leapfrog property. In particular, this argument does not apply to arbitrary doubling metrics.

Instead, we employ the following lemma, which lies at the heart of the lightness analysis of [GLN02].
While this lemma applies to arbitrary doubling metrics, the way it was used in [GLN02] does not extend to
arbitrary doubling metrics. Specifically, it was used in [GLN02] to show that the edge set E \ E0 satisfies
the leapfrog property. (Recall that E0 is the set of light edges in G′ = (M,E′, δ), all of which are taken to
the approximate-greedy spanner G = (M,E, δ).) In Euclidean metrics, it has been proved [DHN93, NS07]
that any edge set satisfying the leapfrog property has constant lightness, but this proof does not carry over
to arbitrary doubling metrics.

Lemma 11 (Lemma 17 in [GLN02]). Let e = (u, v) ∈ E \ E0. The weight of the second shortest path
between u and v in the approximate-greedy spannerG is greater than t′ ·w(e). (If there are multiple shortest
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paths between u and v, then the weight of the second shortest path equals the weight of the shortest path.)

Remark. The parameter t′ in the statement of this lemma depends on the stretch parameters of the spanners
G′ and G that are constructed by Algorithm Approximate-Greedy. Specifically, recall that the output
spanner G is a

√
t · t′-spanner for G′, which is, in turn, a

√
t/t′-spanner for the input metric space M .

We make the following simple observation.

Observation 12. Let H be an arbitrary weighted graph, and let t be any stretch parameter. For any t-
spanner H ′ of H , w(MST (H ′)) ≤ t · w(MST (H)).

Proof. Consider an MST Z for H . Replace each edge of Z by a t-spanner path in H ′ between the end-
points of that edge, and then break cycles. The resulting structure Z ′ is a spanning tree of H ′, hence
w(MST (H ′)) ≤ w(Z ′), and we have w(MST (H ′)) ≤ w(Z ′) ≤ t · w(Z) = t · w(MST (H)).

The following lemma bounds the lightness of G. Its proof is based on the somewhat surprising observa-
tion that the lightness of the t-spanner G produced by Algorithm Approximate-Greedy is existentially
near-optimal with respect to stretch parameter t′ < t (rather than t). We remark that G is not a greedy span-
ner, but rather an approximate-greedy spanner, and it is inherently different than the greedy t-spanner and
the greedy t′-spanner. In particular, its weight may be larger than the weights of both these greedy spanners.
Nevertheless, our existential near-optimality argument suffices to derive the required lightness bound.

Lemma 13. The lightness of G is (ddim
t′−1 )O(ddim).

Proof. Recall that G = (M,E, δ) is a t-spanner for M , where t = 1 + ε, ε < 1, and let MG be the metric
space induced by G. By Observation 9, the doubling dimension of MG is bounded by 2ddim. Let H ′ be a
t′-spanner of MG with lightness OPT lightt′ (M(n, 2ddim)), where t′ = 1 + O(ε) < t is the parameter ap-
pearing in the statement of Lemma 11, which is optimized as part of Algorithm Approximate-Greedy.
As in the proof of Lemma 7, we transform H ′ into a t′-spanner H ′′ of G of weight at most w(H ′). By
Observation 6 and Observation 12, the MST weights for all graphs M,G,MG, H

′ and H ′′ are the same, up
to a factor of t · t′ = O(1).

We argue that every edge e ∈ E \ E0 belongs to H ′′. Suppose for contradiction that there is an edge
e ∈ E \ E0 that does not belong to H ′′. Let P be a shortest path between the endpoints of e in H ′′. Since
H ′′ is a t′-spanner of G, we have w(P ) ≤ t′ · w(e). Note that this path is contained in G. Since e ∈ G and
M is a metric space, the weight of the second shortest path between u and v is at most w(P ) ≤ t′ · w(e).
On the other hand, By Lemma 11, the weight of this path is greater than t′ ·w(e), a contradiction. It follows
that

w(G) = w(E \ E0) + w(E0) ≤ w(H ′′) + w(E0)

≤ w(H ′) + w(E0) =

(
ddim

t′ − 1

)O(ddim)

· w(MST (M))

Setting t = 1 + ε and t′ = 1 + c · ε (for an appropriate constant c; see [GLN02, NS07]), we conclude:

Theorem 7. For any metric space (M, δ) in M(n, ddim) and parameter 0 < ε < 1
2 , Algorithm

Approximate-Greedy returns a (1 + ε)-spanner with lightness
(

ddim
ε

)O(ddim)
and degree ε−O(ddim).

The runtime of Algorithm Approximate-Greedy is ε−O(ddim)(n log n).
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Remark. Theorem 7 should be compared to Theorem 4 due to [Got15]. Both constructions achieve the
same lightness bound, but the degree and number of edges in the spanner construction of [Got15] are un-
bounded. Moreover, the runtime of the construction of [Got15] is (ddim/ε)O(ddim)(n log2 n), whereas that
of Theorem 7 is ε−O(ddim)(n log n). By combining the light spanner H1 of [Got15] with a bounded degree
spanner H2, one can obtain a spanner with constant degree and lightness. Specifically, such a spanner H is
obtained by replacing each edge of H1 with a shortest (or approximately shortest) path in H2 between the
endpoints of that edge. The lightness of the resulting spannerHwill not exceed that ofH1 by much, whereas
the degree bound will follow from that of H2. There is a major problem with this approach: The runtime
needed for computing spanner H may be very high. Indeed, although there are efficient ways to estimate
the weight of an approximately shortest path inH2 between two points, we must compute the corresponding
path in H2. In particular, to achieve the degree bound of H2, one may not use edges outside H2. Moreover,
even regardless of this computation time, such a path may contain many edges that already belong to the
gradually growing spanner H. Deciding which edges of this path should be added to H may be very costly
by itself.
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