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Abstract
A partition P of a weighted graph G is (σ, τ,∆)-sparse if every cluster has diameter at most ∆, and
every ball of radius ∆/σ intersects at most τ clusters. Similarly, P is (σ, τ,∆)-scattering if instead for
balls we require that every shortest path of length at most ∆/σ intersects at most τ clusters. Given
a graph G that admits a (σ, τ,∆)-sparse partition for all ∆ > 0, Jia et al. [STOC05] constructed a
solution for the Universal Steiner Tree problem (and also Universal TSP) with stretch O(τσ2 logτ n).
Given a graph G that admits a (σ, τ,∆)-scattering partition for all ∆ > 0, we construct a solution for
the Steiner Point Removal problem with stretch O(τ3σ3). We then construct sparse and scattering
partitions for various different graph families, receiving many new results for the Universal Steiner
Tree and Steiner Point Removal problems.
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1 Introduction

Graph and metric clustering are widely used for various algorithmic applications (e.g.,
divide and conquer). Such partitions come in a variety of forms, satisfying different require-
ments. This paper is dedicated to the study of bounded diameter partitions, where small
neighborhoods are guaranteed to intersects only a bounded number of clusters.

The first problem we study is the Steiner Point Removal (SPR) problem. Here we are
given an undirected weighted graph G = (V,E,w) and a subset of terminals K ⊆ V of size k
(the non-terminal vertices are called Steiner vertices). The goal is to construct a new weighted
graph M = (K,E′, w′), with the terminals as its vertex set, such that: (1) M is a graph
minor of G, and (2) the distance between every pair of terminals t, t′ in M is distorted by
at most a multiplicative factor of α, formally, ∀t, t′ ∈ K, dG(t, t′) ≤ dM (t, t′) ≤ α · dG(t, t′).
Property (1) expresses preservation of the topological structure of the original graph. For
example if G was planar, so will M be. Whereas property (2) expresses preservation of the
geometric structure of the original graph, that is, distances between terminals. The question
is thus: given a graph family F , what is the minimal α such that every graph in F with a
terminal set of size k will admit a solution to the SPR problem with distortion α.
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47:2 Scattering and Sparse Partitions, and Their Applications

Consider a weighted graph G = (V,E,w) with a shortest path metric dG. The weak
diameter of a cluster C ⊆ V is the maximal distance between a pair of vertices in the cluster
w.r.t. dG (i.e., maxu,v∈C dG(u, v)). The strong diameter is the maximal distance w.r.t. the
shortest path metric in the induced graph G[C] (i.e., maxu,v∈C dG[C](u, v)). A partition P
of G has weak (resp. strong) diameter ∆ if every cluster C ∈ P has weak (resp. strong)
diameter at most ∆. Partition P is connected, if the graph induced by every cluster C ∈ P
is connected. Given a shortest path I = {v0, v1, . . . , vs}, denote by ZI(P) =

∑
C∈P 1C∩I6=∅

the number of clusters in P intersecting I. If ZI(P) ≤ τ , we say that I is τ -scattered by P .

I Definition 1 (Scattering Partition). Given a weighted graph G = (V,E,w), we say that a
partition P is (σ, τ,∆)-scattering if the following conditions hold:
P is connected and has weak diameter ∆.
Every shortest path I of length at most ∆/σ is τ -scattered by P, i.e., ZI(P) ≤ τ .

We say that a graph G is (σ, τ)-scatterable if for every parameter ∆, G admits an (σ, τ,∆)-
scattering partition that can be computed efficiently.

The main contribution of this paper is the finding that scattering partitions imply solutions
for the SPR problem. The proof appears in Section 3.1

I Theorem 2 (Scattering Partitions imply SPR). Let G = (V,E,w) be a weighted graph
such that for every subset A ⊆ V , G[A] is (1, τ)-scatterable. Let K ⊆ V be some subset of
terminals. Then there is a solution to the SPR problem with distortion O(τ3) that can be
computed efficiently.

Jia, Lin, Noubir, Rajaraman, and Sundaram [45] 2 defined the notion of sparse partitions,
which is closely related to scattering partitions. Let P be a partition. Given a ball B =
BG(x, r), denote by ZB(P) =

∑
C∈P 1C∩B 6=∅ the number of clusters in P intersecting B.

I Definition 3 (Strong/Weak Sparse Partition). Given a weighted graph G = (V,E,w),
we say that a partition P is (σ, τ,∆)-weak (resp. strong) sparse partition if the following
conditions hold:
P has weak (resp. strong) diameter∆.
Every ball B = BG(v, r) of radius r ≤ ∆/σ intersects at most τ clusters, i.e., ZB(P) ≤ τ .

We say that a graph G admits an (σ, τ)-weak (resp. strong) sparse partition scheme if for
every parameter ∆, G admits an efficiently computable (σ, τ,∆)-weak (resp. strong) sparse
partition.

Jia et al. [45] found a connection between sparse partitions to the Universal Steiner
Tree Problem (UST).3 Consider a complete weighted graph G = (V,E,w) (or a metric space
(X, d)) where there is a special server vertex rt ∈ V , which is frequently required to multicast
messages to different subsets of clients S ⊆ V . The cost of a multicast is the total weight
of all edges used for the communication. Given a subset S, the optimal solution is to use
the minimal Steiner tree spanning S ∪ {rt}. In order to implement an infrastructure for
multicasting, or in order to make routing decisions much faster (and not compute it from
scratch once S is given), a better solution will be to compute a Universal Steiner Tree (UST).
A UST is a tree T over V , such that for every subset S, the message will be sent using the

1 In Observation 2 we argue that (σ, τ,∆)-scattering partition is also (1, τσ,∆)-scattering.
2 Awerbuch and Peleg [8] were the first to study sparse covers (see Definition 5). Their notion of sparse

partition is somewhat different from the one used here (introduced by [45]).
3 A closely related problem is the Universal Traveling Salesman Problem (UTSP), see Section 1.4.
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sub-tree T (S) spanning S ∪ {rt}. The stretch of T is the maximum ratio among all subsets
S ⊆ X between the weight of T (S) and the weight of the minimal Steiner tree spanning
S ∪ {rt}, maxS⊆X w(T (S))

Opt(S∪{rt}) .
Jia et al. [45] proved that given a sparse partition scheme, one can efficiently construct

a UST with low stretch (the same statement holds w.r.t. UTSP as well).

I Theorem 4 (Sparse Partitions imply UST, [45]). Suppose that an n-vertex graph G admits
an (σ, τ)-weak sparse partition scheme, then there is a polynomial time algorithm that given
a root rt ∈ V computes a UST with stretch O(τσ2 logτ n).

Jia et al. [45] constructed (O(logn), O(logn))-weak sparse partition scheme for general
graphs, receiving a solution with stretch polylog(n) for the UST problem. In some instances
the communication is allowed to flow only in certain routes. It is therefore natural to
consider the case where G = (V,E,w) is not a complete graph, and the UST is required
to be a subgraph of G. Busch, Jaikumar, Radhakrishnan, Rajaraman, and Srivathsan [12]
proved a theorem in the spirit of Theorem 4, stating that given a (σ, τ, γ)-hierarchical strong
sparse partition, one can efficiently construct a subgraph UST with stretch O(σ2τ2γ logn).
A (σ, τ, γ)-hierarchical strong sparse partition is a laminar collection of partitions {Pi}i≥0
such that Pi is (σ, τ, γi)-strong sparse partition which is a refinement of Pi+1.4 Busch
et al. constructed a

(
2O(
√

logn), 2O(
√

logn), 2O(
√

logn))-hierarchical strong sparse partition,
obtaining a 2O(

√
logn) stretch algorithm for the subgraph UST problem. We tend to believe

that poly-logarithmic stretch should be possible. It is therefore interesting to construct
strong sparse partitions, as it eventually may lead to hierarchical ones.

A notion which is closely related to sparse partitions is sparse covers.

I Definition 5 (Strong/Weak Sparse cover). Given a weighted graph G = (V,E,w), a
(σ, τ,∆)-weak (resp. strong) sparse cover is a set of clusters C ⊂ 2V , where all the clusters
have weak (resp. strong) diameter at most ∆, and the following conditions hold:

Cover: ∀u ∈ V , exists C ∈ C such that BG(u, ∆
σ ) ⊆ C.

Sparsity: every vertex u ∈ V belongs to at most |{C ∈ C | u ∈ C}| ≤ τ clusters.
We say that a graph G admits an (σ, τ)-weak (resp. strong) sparse cover scheme if for every
parameter ∆, G admits an (σ, τ,∆)-weak (resp. strong) sparse cover that can be computed
efficiently.

It was (implicitly) proven in [45] that given (σ, τ,∆)-weak sparse cover C, one can construct
an (σ, τ,∆)-weak sparse partition. In fact, most previous constructions of weak sparse
partitions were based on sparse covers.

1.1 Previous results
SPR. Given an n-point tree, Gupta [38] provided an upper bound of 8 for the SPR problem
(on trees). This result were recently reproved by the author, Krauthgamer, and Trabelsi [33]
using the Relaxed-Voronoi framework. Chan, Xia, Konjevod, and Richa [14] provided a
lower bound of 8 for trees. This is the best known lower bound for the general SPR problem.
Basu and Gupta [11] provided an O(1) upper bound for the family of outerplanar graphs.5
For general n-vertex graphs with k terminals the author [27, 29] recently proved an O(log k)
upper bound for the SPR problem using the Relaxed-Voronoi framework, improving upon

4 We assume here w.l.o.g. that the minimal distance in G is 1.
5 Actually the manuscript [11] was never published, and thus did not go through a peer review process.
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previous works by Kamma, Krauthgamer, and Nguyen [46] (O(log5 k)), and Cheung [16]
(O(log2 k)) (which were based on the Ball-Growing algorithm). Interestingly, there are no
results on any other restricted graph family, although several attempts have been made (see
[25, 50, 17]).

UST. Given an n-point metric space and root rt, Gupta, Hajiaghayi and Räcke [39]
constructed a UST with stretch O(log2 n), improving upon a previous O(log4 n/ log logn)
result by [45]. [45] is based on sparse partitions, while [39] is based on tree covers. Jia et al.
[45] proved a lower bound of Ω(logn) to the UST problem, based on a lower bound to the
online Steiner tree problem by Alon and Azar [6]. Using the same argument, they [45] proved
an Ω( logn

log logn ) lower bound for the case where the space is the n× n grid (using [43]). Given
a space with doubling dimension ddim, 6 Jia et al. [45] provided a solution with stretch
2O(ddim) · logn, using sparse partitions. Given an n vertex planar graph, Busch, LaFortune,
and Tirthapura [13] proved an O(logn) upper bound (improving over Hajiaghayi, Kleinberg,
and Leighton [42]). More generally, for graphs G excluding a fixed minor, both Hajiaghayi
et al. [42] (implicitly) and Busch et al. [13] (explicitly) provided a solution with stretch
O(log2 n). Both constructions used sparse covers. Finally, Busch et al. [12] constructed a
subgraph UST with stretch polylog(n) for graphs excluding a fixed minor (using hierarchical
strong sparse partitions).

Scattering Partitions. As we are the first to define scattering partitions there is not much
previous work. Nonetheless, Kamma et al. [46] implicitly proved that general n-vertex graphs
are (O(logn), O(logn))-scatterable.7

Sparse Covers and Partitions. Awerbuch and Peleg [8] introduced the notion of sparse
covers and constructed (O(logn), O(logn))-strong sparse cover scheme for n-vertex weighted
graphs.8 Jia et al. [45] induced an (O(logn), O(logn))-weak sparse partition scheme.
Hajiaghayi et al. [42] constructed an (O(1), O(logn))-weak sparse cover scheme for n-
vertex planar graph, concluding an (O(1), O(logn))-weak sparse partition scheme. Their
construction is based on the [48] clustering algorithm. Abraham, Gavoille, Malkhi, and
Wieder [5] constructed (O(r2), 2O(r) · r!)-strong sparse cover scheme for Kr-free graphs.
Busch et al. [13] constructed a (48, 18)-strong sparse cover scheme for planar graphs 9

and (8, O(logn))-strong sparse cover scheme for graphs excluding a fixed minor, concluding
a (48, 18) and (8, O(logn))-weak sparse partition schemes for these families (respectively).
For graphs with doubling dimension ddim, Jia et al. [45] constructed an (1, 8ddim)-weak
sparse scheme. Abraham et al. [3] constructed a (2, 4ddim)-strong sparse cover scheme. In a
companion paper, the author [28] constructed an (O(ddim), O(ddim · log ddim))-strong sparse
cover scheme.10 Busch et al. [12] constructed

(
O(log4 n), O(log3 n), O(log4 n)

)
-hierarchical

strong sparse partition for graphs excluding a fixed minor.

6 A metric space (X, d) has doubling dimension ddim if every ball of radius 2r can be covered by 2ddim

balls of radius r. The doubling dimension of a graph is the doubling dimension of its induced shortest
path metric.

7 This follows from Theorem 1.6 in [46] by choosing parameters t = β = O(logn) and using union bounds
over all n2 shortest paths. Note that they assume that for every pair of vertices there is a unique
shortest path.

8 More generally, for k ∈ N, [8] constructed a (2k − 1, 2k · n
1
k )-strong sparse cover scheme.

9 Busch et al. argued that they constructed (24, 18)-strong sparse covering scheme. However they
measured radius rather than diameter.

10More generally, for a parameter t = Ω(1), [28] constructed
(
O(t), O(2ddim/t · ddim · log t)

)
-sparse cover

scheme.
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1.2 Our Contribution

Scattering Weak

Strong

Doubling

Pathwidth

Trees

Chordal
Planar, Kr-free

?

General graphs

?

Cactus

SPD

Euclidean space

Figure 1 Classification of various graph families according to the possibility of construction
different partitions. Graphs with bounded doubling dimension or SPD 14 (pathwidth) admit strong
sparse partitions with parameters depending only on the dimension/SPDdepth. Trees, Chordal and
Cactus graphs admit both (O(1), O(1))-weak sparse and scattering partitions, while similar strong
partitions are impossible. Rd with norm 2 admit (1, 2d) scattering partition while weak sparse
partition with constant padding will have an exponential number of intersections. Planar graphs
admit (O(1), O(1))-weak sparse partitions, while it is an open question whether similar scattering
partitions exist. Finally, while sparse partitions for general graphs are well understood, we lack a
lower bound for scattering partitions.

Formal statements, and proofs of all our partitions are differed to the full version [31]. The
main contribution of this paper is the definition of scattering partition and the finding that
good scattering partitions imply low distortion solutions for the SPR problem (Theorem 2).
We construct various scattering and sparse partition schemes for many different graph families,
and systematically classify them according to the partition types they admit. In addition, we
provide several lower bounds. The specific partitions and lower bounds are described below.
Our findings are summarized in Table 1, while the resulting classification is illustrated in
Figure 1.

Recall that [45] (implicitly) showed that sparse covers imply weak sparse partitions.
We show that the opposite direction is also true. That is, given a (σ, τ,∆)-weak sparse
partition, one can construct an (σ + 2, τ, (1 + 2

σ )∆)-weak sparse cover. Interestingly, in
addition we show that strong sparse partitions imply strong sparse covers, while the opposite
is not true. Specifically there are graph families that admit (O(1), O(1))-strong sparse
cover schemes, while there are no constants σ, τ , such that they admit (σ, τ)-strong sparse
partitions. Description of our findings on the connection between sparse partitions and sparse
covers, and a classification of various graph families are differed to the full version [31].

The scattering partitions we construct imply new solutions for the SPR problem previously
unknown. Specifically, for every graph with pathwidth ρ we provide a solution to the SPR
problem with distortion poly(ρ), independent of the number of terminals. After trees [38] and
outerplanar graphs [11] 5, this is the first graph family to have solution for the SPR problem
independent from the number of terminals (although attempts were made). Furthermore, we
obtain solution with constant distortion for Chordal and Cactus graphs.11

11Note that the family of cactus graph is contained in the family of outerplanar graph. Basu and Gupta
[11] solved the SPR problem directly on outerplanar graphs with constant distortion. However, this
manuscript was never published. See also 5.
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47:6 Scattering and Sparse Partitions, and Their Applications

Table 1 Summery of the various new/old, weak/strong scattering/sparse partitions.
Table footnotes: ♣ More generally, there is a partition P s.t. every ball of radius ∆

8α intersects at
most Õ(n1/α) clusters, for all α > 1 simultaneously. � More generally, it must hold that τ ≥ nΩ(1/σ).
♠ More generally, there is a partition P s.t. every ball of radius Ω( ∆

α
) intersects at most O(2ddim/α)

clusters, for all α > 1 simultaneously. � More generally, it must hold that τ > (1 + 1
2σ )d. F Note

that this lower bound holds chordal/cactus/planar/Kr-free graphs. More generally, it must hold
that τ ≥ Ω(n2/σ+1)).

Family Partition type Padding (σ) #inter. (τ ) Ref.

General
n-vertex
Graphs

Weak O(logn) O(logn) [45]
Scattering O(logn) O(logn) [46]
Strong O(logn) O(logn) This paper ♣

Weak L.B. Ω(logn/log logn) O(logn) This paper �

ddim doubling
dimension

Weak 1 8ddim [45]
Strong O(ddim) Õ(ddim) This paper ♠

Euclidean space(
Rd, ‖ · ‖2

) Scattering 1 2d This paper

Weak L.B.
O(1) 2Ω(d)

This paper �

Ω(d/log d) poly(d)

Trees

Scattering 2 3 This paper
Weak 4 3 This paper

Strong L.B.
logn/log logn logn

This paper F√
logn 2

√
logn

Pathwidth ρ

(SPDdepth 14)
Strong O(ρ) O(ρ2) This paper
Weak 8 5ρ This paper

Chordal
Scattering 2 3 This paper
Weak 24 3 This paper

Kr free Weak O(r2) 2r This paper

Cactus Scattering 4 5 This paper

The weak sparse partitions we construct imply improved solutions for the UST (and
UTSP) problem. Specifically, we conclude that for graphs with doubling dimension ddim a
UST (and UTSP) with stretch poly(ddim) · logn can be efficiently computed, providing an
exponential improvement in the dependence on ddim compared with the previous state of
the art [45] of 2O(ddim) · logn. For Kr-minor free graphs we conclude that an UST (or UTSP)
with stretch 2O(r) · logn can be efficiently computed, providing a quadratic improvement in
the dependence on n compared with the previous state of the art [39] of O(log2 n). 12 Finally,
for pathwidth ρ graphs (or more generally, graph with SPDdepth ρ) we can compute a UST
(or UTSP) with stretch O(ρ · logn), improving over previous solutions that were exponential
in ρ (based on the fact that pathwidth ρ graphs are Kρ+2-minor free).

Before we proceed to describe our partitions we make two observations.

12This result is a mere corollary obtained by assembling previously existing parts together. Mysteriously,
although UTSP on minor free graphs was studied before [42, 13], this corollary was never drawn.
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I Observation 1. Every (σ, τ,∆)-strong sparse partition is also scattering partition and
weak sparse partition with the same parameters.

I Observation 2. Every (σ, τ,∆)-scattering partition is also (1, στ,∆)-scattering partition.

Observation 1 follows as every path of weight σ∆ is contained in a ball of radius σ∆.
Observation 2 follows as every shortest path of length≤ ∆ can be assembled as a concatenation
of at most σ shortest paths of length ≤ ∆

σ .
Next we survey the partitions for various graph families. Formal statements and proofs

are differed to the full version [31].

General Graphs. Given an n-vertex general graph and parameter ∆ > 0 we construct a
single partition P which is simultaneously

(
8k,O(n1/k · logn),∆

)
-strong sparse partition

for all parameters k ≥ 1. Thus we generalize the result of [45] and obtained a strong
diameter guarantee. This partition implies that general graphs are (O(logn), O(logn))-
scatterable (reproving [46] via an easier proof), inducing a solution for the SPR problem
with stretch polylog(|K|). While quantitatively better solutions are known, this one is
arguably the simplest, and induced by a general framework. Further, we provide a lower
bound, showing that if all n-vertex graphs admit (σ, τ)-weak sparse partition scheme, then
τ ≥ nΩ( 1

σ ). In particular there is no sparse partition scheme with parameters smaller than
(Ω(logn/log logn),Ω(logn)). This implies that both our results and [45] are tight up to second
order terms. Although we do not provide any lower bound for scattering partitions, we
present some evidence that general graphs are not (O(1), O(1))-scatterable. Specifically, we
define a stronger notion of partitions called super-scattering and show that general graphs
are not (1,Ω(logn))-super scatterable.

Trees. Trees are the most basic of the restricted graph families. Weak sparse partitions for
trees follows from the existence of sparse covers. Nevertheless, in order to improve parameters
and understanding we construct (4, 3)-weak sparse partition scheme for trees. Further, we
prove that trees are (2, 3)-scatterable. Finally, we show that there are no good strong sparse
partition for trees. Specifically, we prove that if all n-vertex trees admit (σ, τ)-strong sparse
partition scheme, then τ ≥ 1

3 · n
2

σ+1 . This implies that for strong sparse partitions, trees are
essentially as bad as general graphs.

Doubling Dimension. We prove that for every graph with doubling dimension ddim and
parameter ∆ > 0, there is a partition P which is simultaneously

(
58α, 2ddim/α · Õ(ddim),∆

)
-

strong sparse partition for all parameters α ≥ 1. Note that this implies an
(
O(ddim),Õ(ddim)

)
-

strong sparse partition scheme.

Euclidean Space. We prove that the d-dimensional Euclidean space (Rd, ‖ · ‖2) is (1, 2d)-
scatterable 13, while for every (σ, τ)-weak sparse partition scheme it holds that τ > (1 + 1

2σ )d.
In particular, if σ is at most a constant, then τ must be exponential. This provides
an interesting example of a family where scattering partitions have considerably better
parameters than sparse partitions.

13 In Euclidean space, we say that a partition is (σ, τ,∆)-scattering if every interval of length ∆/σ intersects
at most τ clusters.

ICALP 2020
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SPDdepth.14 We prove that every graph with SPDdepth ρ (in particular graph with
pathwidth ρ) admit

(
O(ρ), O(ρ2)

)
-strong sparse partition scheme. Further, we prove that

such graphs admit (8, 5ρ)-weak sparse partition scheme.

Chordal Graphs. We prove that every Chordal graph is (2, 3)-scatterable.

Cactus Graphs. We prove that every Cactus graph is (4, 5)-scatterable.

1.3 Technical Ideas
Scattering Partition Imply SPR. Similarly to previous works on the SPR problem, we
construct a minor via a terminal partition. That is, a partition of V into k connected clusters,
where each cluster contains a single terminal. The minor is then induced by contracting all
the internal edges. Intuitively, to obtain small distortion, one needs to ensure that every
Steiner vertex is clustered into a terminal not much further than its closest terminal, and that
every shortest path between a pair of terminals intersects only a small number of clusters.
However, the local partitioning of each area in the graph requires a different scale, according
to the distance to the closest terminal. Our approach is similar in spirit to the algorithm of
Englert et al. [25], who constructed a minor with small expected distortion15 using stochastic
decomposition for all possible distance scales. We however, work in the more restrictive
regime of worst case distortion guarantee. Glossing over many details, we create different
scattering partitions to different areas, where vertices at distance ≈ ∆ to the terminal set
are partitioned using a (1, τ,∆)-scattering partition. Afterwards, we assemble the different
clusters from the partitions in all possible scales into a single terminal partition. We use
the scattering property twice. First to argue that each vertex v is clustered to a terminal at
distance at most O(τ) ·D(v) (here D(v) is the distance to the closest terminal). Second, to
argue that every shortest path where all the vertices are at similar distance to the terminal
set, intersect the clusters of at most O(τ2) terminals.

1.4 Related Work
In the functional analysis community, the notion of Nagata dimension was studied. The
Nagata dimension of a metric space (X, d), dimN X, is the infimum over all integers n such that
there exists a constant c s.t. X admits a (c, n+ 1)-weak sparse partition scheme. In contrast,
in this paper our goal is to minimize this constant c. See [53] and the references therein.

A closely related problem to UST is the Universal Traveling Salesman Problem (UTSP).
Consider a postman providing post service for a set X of clients with n different locations
(with distance measure dX). Each morning the postman receives a subset S ⊂ X of the
required deliveries for the day. In order to minimize the total tour length, one solution may
be to compute each morning an (approximation of an) Optimal TSP tour for the set S. An
alternative solution will be to compute a Universal TSP (UTSP) tour. This is a universal
tour R containing all the points X. Given a subset S, R(S) is the tour visiting all the points
in S w.r.t. the order induced by R. Given a tour T denote its length by |T |. The stretch
of R is the maximum ratio among all subsets S ⊆ X between the length of R(S) and the
length of the optimal TSP tour on S, maxS⊆X |R(S)|

|Opt(S)|
.

14Every (weighted) path graph has an SPDdepth 1. A graph G has an SPDdepth ρ if there exist a shortest
path P , such that every connected component in G \ P has an SPDdepth ρ− 1. This family includes
graphs with pathwidth at most ρ, and more. See [2].

15A distribution D over solutions to the SPR problem has expected distortion α if ∀t, t′ ∈
K, EM∼D[dM (t, t′)] ≤ α · dG(t, t′) .
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All the sparse partition based upper bounds for the UST problem translated directly to
the UTSP problem with the same parameters. The first to study the problem were Platzman
and Bartholdi [57], who given n points in the Euclidean plane constructed a solution with
stretch O(logn), using space filling curves. Recently, Christodoulou, and Sgouritsa [18]
proved a lower and upper bound of Θ(logn/ log logn) for the n × n grid, improving a
previous Ω( 6

√
logn/ log logn) lower bound of Hajiaghayi, Kleinberg, and Leighton [42] (and

the O(logn) upper bound of [57]). For general n vertex graphs Gupta et al. [39] proved an
O(log2 n) upper bound, while Gorodezky, Kleinberg, Shmoys, and Spencer [36] proved an
Ω(logn) lower bound. From the computational point of view, Schalekamp and Shmoys [59]
showed that if the input graph is a tree, an UTSP with optimal stretch can be computed
efficiently.

The A Priori TSP problem is similar to the UTSP problem. In addition there is a
distribution D over subsets S ⊆ V and the stretch of tour a R is the expected ratio between
the induced solution to optimal ES∼D |R(S)|

|Opt(S)|
(instead of a worst case like in UTSP). Similarly,

A Priori Steiner Tree was studied (usually omitting rt from the problem). See [44, 59, 36] for
further details. Another similar problem is the Online (or dynamic) Steiner Tree problem.
Here the set S of vertices that should be connected is evolving over time, see [43, 6, 37] and
references therein.

Unlike the definition used in this paper (taken from [45]), sparse partitions were also
defined in the literature as partitions where only a small fraction of the edges are inter-cluster
(see for example [5]). A closely related notion to sparse partitions are padded and separating
decompositions. A graph G is β-decomposable if for every ∆ > 0, there is a distribution D
over ∆ bounded partitions such that for every u, v ∈ V , the probability that u and v belong
to different clusters is at most β · dG(u,v)

∆ . Note that by linearity of expectation, a path I of
length ∆/σ intersects at most 1 + β/σ clusters in expectation. For comparison, in scattering
partition we replace the distribution by a single partition and receive a bound on the number
of intersections in the worst case. See [48, 9, 26, 40, 1, 5, 4, 34, 28] for further details.

Englert et al. [25] showed that every graph which is β-decomposable, admits a distribution
D over solution to the SPR problem with expected distortion O(β log β). 15 In particular
this implies constant expected distortion for graphs excluding a fixed minor, or bounded
doubling dimension.

For a set K of terminals of size k, Krauthgamer, Nguyen and Zondiner [50] showed that if
we allow the minor M to contain at most

(
k
2
)2 Steiner vertices (in addition to the terminals),

then distortion 1 can be achieved. They further showed that for graphs with constant
treewidth, O(k2) Steiner points will suffice for distortion 1. Cheung, Gramoz and Henzinger
[17] showed that allowing O(k2+ 2

t ) Steiner vertices, one can achieve distortion 2t− 1. For
planar graphs, Cheung et al. al. achieved 1 + ε distortion with Õ((kε )2) Steiner points.

There is a long line of work focusing on preserving the cut/flow structure among the
terminals by a graph minor. See [56, 54, 15, 55, 25, 19, 51, 7, 35, 52].

There were works studying metric embeddings and metric data structures concerned with
preserving distances among terminals, or from terminals to other vertices, out of the context
of minors. See [20, 58, 41, 47, 21, 22, 10, 23, 49, 32, 24].

2 Preliminaries

All the logarithms in the paper are in base 2. We use Õ notation to suppress constants and
logarithmic factors, that is Õ(f(j)) = f(j) · polylog(f(j)).
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Graphs. We consider connected undirected graphs G = (V,E) with edge weights w : E →
R≥0. Let dG denote the shortest path metric in G. BG(v, r) = {u ∈ V | dG(v, u) ≤ r} is
the ball of radius r around v. For a vertex v ∈ V and a subset A ⊆ V , let dG(x,A) :=
mina∈A dG(x, a), where dG(x, ∅) =∞. For a subset of vertices A ⊆ V , let G[A] denote the
induced graph on A, and let G \A := G[V \A].

Special graph families. A graph H is a minor of a graph G if we can obtain H from G

by edge deletions/contractions, and vertex deletions. A graph family G is H-minor-free if
no graph G ∈ G has H as a minor. Some examples of minor free graph families are planar
graphs (K5 and K3,3 free), outerplanar graphs (K4 and K3,2 free), series-parallel graphs (K4
free), Cactus graphs (also known as tree of cycles) ( free), and trees (K3 free).

Given a graph G = (V,E), a tree decomposition of G is a tree T with nodes B1, . . . , Bs
(called bags) where each Bi is a subset of V such that the following properties hold:

For every edge {u, v} ∈ E, there is a bag Bi containing both u and v.
For every vertex v ∈ V , the set of bags containing v form a connected subtree of T .

The width of a tree decomposition is maxi{|Bi| − 1}. The treewidth of G is the minimal
width of a tree decomposition of G. A path decomposition of G is a special kind of tree
decomposition where the underlying tree is a path. The pathwidth of G is the minimal width
of a path decomposition of G.

Chordal graphs are unweighted graphs where each cycle of length greater then 4 contains
a chordal. In other words, if the induced graph on a set of vertices V ′ is the cycle graph, than
necessarily |V ′| ≤ 3. Chordal graphs contain interval graphs, subtree intersection graphs and
other interesting sub families. A characterization of Chordal graphs is that they have a tree
decomposition such that each bag is a clique. That is, there is a tree decomposition T of G
where there is no upper bound on the size of a bag, but for every bag B ∈ T the induced
graph G[B] is a clique.

A Cactus graph (a.k.a. tree of cycles) is a graph where each edge belongs to at most one
simple cycle. Alternatively it can be defined as the graph family that excludes K4 minus an
edge ( ) as a minor.

Abraham et al. [2] defined shortest path decompositions (SPDs) of “low depth”. Every
(weighted) path graph has an SPDdepth 1. A graph G has an SPDdepth k if there exist a
shortest path P , such that every connected component in G \ P has an SPDdepth k − 1. In
other words, given a graph, in SPD we hierarchically delete shortest paths from each connected
component, until no vertices remain. See [2] for formal definition (or full version [31]). Every
graph with pathwidth ρ has SPDdepth at most ρ+ 1, treewidth ρ implies SPDdepth at most
O(ρ logn), and every graph excluding a fixed minor has SPDdepth O(logn). See [2, 30] for
further details and applications.

3 From Scattering Partitions to SPR: Proof of Theorem 2

We will assume w.l.o.g. that the minimal pairwise distance in the graph is exactly 1, otherwise
we can scale all the weights accordingly. The set of terminals denoted K = {t1, . . . , tk}. For
every vertex v ∈ V , denote by D(v) = dG(v,K) the distance to its closest terminal. Note
that minv∈V \K D(v) ≥ 1.

Similarly to previous papers on the SPR problem, we will create a minor using terminal
partitions. Specifically, we partition the vertices into k connected clusters, with a single
terminal in each cluster. Such a partition induces a minor by contracting all the internal edges
in each cluster. More formally, a partition {V1, . . . , Vk} of V is called a terminal partition
(w.r.t to K) if for every 1 ≤ i ≤ k, ti ∈ Vi, and the induced graph G[Vi] is connected. For a
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Figure 2 The left side of the figure contains a weighted graph G = (V,E), with weights specified
in red, and four terminals {t1, t2, t3, t4}. The dashed black curves represent a terminal partition
of the vertex set V into the subsets V1, V2, V3, V4. The right side of the figure represents the
minor M induced by the terminal partition. The distortion is realized between t1 and t3, and is
dM (t1,t3)
dG(t1,t3) = 12

4 = 3.

vertex v ∈ Vi, we say that v is assigned to ti. See Figure 2 for an illustration. The induced
minor by the terminal partition {V1, . . . , Vk}, is a minor M , where each set Vi is contracted
into a single vertex called (abusing notation) ti. Note that there is an edge in M from ti to tj
if and only if there are vertices vi ∈ Vi and vj ∈ Vj such that {vi, vj} ∈ E. We determine the
weight of the edge {ti, tj} ∈ E(M) to be dG(ti, tj). Note that by the triangle inequality, for
every pair of (not necessarily neighboring) terminals ti, tj , it holds that dM (ti, tj) ≥ dG(ti, tj).
The distortion of the induced minor is maxi,j dM (ti,tj)

dG(ti,tj) .

3.1 Algorithm
For i ≥ 1, set Ri = {v ∈ V | 2i−1 ≤ D(v) < 2i} to be the set of vertices at distance between
2i−1 and 2i from K. Set R0 = K. We create the terminal partition in an iterative manner,
where initially each set Vi = {ti} is a singleton, and gradually more vertices are joining. We
will denote the stage of the terminal partition after i steps, using a function fi : V → K∪{⊥}.
For a yet unassigned vertex v we write fi(v) =⊥, otherwise the vertex v will be assigned to
fi(v). Initially for every terminal tj , f0(tj) = tj while for every Steiner vertex v ∈ V \K,
f0(v) =⊥. In iteration i we will define fi by “extending” fi−1. That is, unassigned vertices
may be assigned (i.e., for v such that fi−1(v) =⊥ it might be fi(v) = tj), while the function
will remain the same on the set of assigned vertices (fi−1(v) 6=⊥ ⇒ fi(v) = fi−1(v)). We will
guarantee that all the vertices in Ri will be assigned in fi. In particular, after log (maxvD(v))
steps, all the vertices will be assigned. Denote by Vi the set of vertices assigned by
fi. Initially V0 = K = R0. By induction we will assume that ∪j≤i−1Rj ⊆ Vi−1. Let
Gi = G[V \ Vi−1] be the graph induced by the set of yet unassigned vertices. Fix ∆i = 2i−1.
Let Pi be an (1, τ,∆i)-scattering partition of Gi. Let Ci ⊆ Pi be the set of clusters C which
contain at least one vertex v ∈ Ri. All the vertices in ∪Ci will be assigned by fi.

We say that a cluster C ∈ Ci is at level 1, noting δi(C) = 1, if there is an edge {v, uC}
(in G) from a vertex v ∈ C to a vertex uC ∈ Vi−1 of weight at most 2i. In general, δi(C) = l,
if l is the minimal index such that there is an edge {v, uC} from a vertex v ∈ C to a vertex
uC ∈ C ′ of weight at most 2i, such that δi(C ′) = l− 1. In both cases uC is called the linking
vertex of C. Next, we define fi based on fi−1. For every vertex v ∈ Vi−1 set fi(v) = fi−1(v).
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For every vertex not in ∪Ci (or Vi−1) set fi(v) =⊥. For a cluster C ∈ Ci s.t. δi(C) = 1, let
uC ∈ Vi−1 be its linking vertex. For every v ∈ C set fi(v) = fi(uC). Generally, for level l
suppose that fi is already defined on all the clusters of level l − 1. Let C ∈ Ci s.t. δi(C) = l.
Let uC be the linking vertex of C. For every v ∈ C, set fi(v) = fi(uC). Note that for every
cluster, all the vertices are mapped to the same terminal. This finishes the definition of fi.

The algorithm continues until there is fi where all the Steiner vertices are assigned.
Set f = fi. The algorithm returns the terminal-centered minor M of G induced by
{f−1(t1), . . . , f−1(tk)}.

3.2 Basic Properties
It is straightforward from the construction that f−1(t1), . . . , f−1(tk) define a terminal
partition. We will prove that every vertex v will be assigned during either iteration dlogD(v)e
or dlogD(v)e−1 (Claim 9), to a terminal at distance at most O(τ) ·D(v) from v (Corollary 8).
We begin by arguing that in each iteration, the maximum possible level of a cluster is τ .

B Claim 6. For every cluster C ∈ Ci, δi(C) ≤ τ .

Proof. Consider a cluster C ∈ Ci, and let v ∈ C be a vertex s.t. D(v) ≤ 2i. Let P = {v =
v0, . . . , vs} be a prefix of the D(v) length path from v to its closest terminal such that vs
has a neighbor in Vi−1. Note that P has (weighted) length at most 2i−1 = ∆i (as all vertices
v′ for which D(v′) ≤ 2i−1 are necessarily clustered). Pi is a (1, τ,∆i)-scattering partition.
Hence the vertices of P are partitioned to τ ′ ≤ τ clusters C1, . . . , Cτ ′ where vs ∈ C1, v0 ∈ Cτ ′

and there is an edge from Cj to Cj+1 of weight at most 2i−1 < 2i, while the edge from vs
towards Vi−1 is of weight at most 2i. It holds that δi(C1) = 1, and by induction δ(Cj) ≤ j.
In particular δ(C) ≤ τ ′ ≤ τ . C

B Claim 7. For every vertex v which is assigned during the i’th iteration (i.e., v ∈ C ∈ Ci)
it holds that dG(v, f(v)) ≤ 3τ · 2i.

Proof. The proof is by induction on i. For i = 0 the assertion holds trivially as every terminal
is assigned to itself. We will assume the assertion for i − 1 and prove it for i. Let C ∈ Ci
be some cluster, and let v ∈ C. Suppose first that δi(C) = 1. Let uC ∈ Vi−1 be the linking
vertex of C. By the induction hypothesis dG(uC , f(uC)) ≤ 3τ · 2i−1. As the diameter of
C is bounded by 2i−1, and the weight of the edge towards uC is at most 2i we conclude
dG(v, f(v)) ≤ dG(v, uC) + dG(uC , f(uC)) ≤ (2i−1 + 2i) + 3τ · 2i−1 = 3 · 2i−1 + 3τ · 2i−1.
Generally, for δi(C) = l, we argue by induction that for every v ∈ C it holds that dG(v, f(v)) ≤
l · 3 · 2i−1 + 3τ · 2i−1. Indeed, let uC by the linking vertex of C. By the induction hypothesis
it holds that dG(uC , f(uC)) ≤ (l − 1) · 3 · 2i−1 + 3τ · 2i−1. Using similar arguments, it holds
that dG(v, f(v)) ≤ dG(v, uC) + dG(uC , f(uC)) ≤ (2i−1 + 2i) + (l − 1) · 3 · 2i−1 + 3τ · 2i−1 =
l · 3 · 2i−1 + 3τ · 2i−1. Using Claim 6, dG(v, f(v)) ≤ 3τ · 2i−1 + 3τ · 2i−1 = 3τ · 2i as required.

C

I Corollary 8. For every vertex v it holds that dG(v, f(v)) < 6τ ·D(v).

Proof. Let i ≥ 0 such that 2i−1 < D(v) ≤ 2i. The vertex v is assigned at iteration i or
earlier. By Claim 7 we conclude dG(v, f(v)) ≤ 3τ · 2i < 6τ ·D(v). J

B Claim 9. Consider a vertex v such that 2i−1 < D(v) ≤ 2i. Then v is assigned either at
iteration i− 1 or i.
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Proof. Clearly if v remains un-assigned until iteration i, it will be assigned during the i’th
iteration. Suppose that v was assigned during iteration j. Then v belongs to a cluster C ∈ Cj .
In particular there is a vertex u ∈ C such that D(u) ≤ 2j . As C has diameter at most 2j−1,
it holds that

2i−1 < D(v) ≤ D(u) + dG(v, u) ≤ 2j + 2j−1 = 3 · 2j−1 .

i, j are integers, hence j ≥ i− 1. C

3.3 Distortion Analysis

In this section we analyze the distortion of the minor induced by the terminal partition
created by our algorithm. We have several variables that are defined with respect to the
algorithm. Note that all these definitions are for analysis purposes only, and have no
impact on the execution of the algorithm. Consider a pair of terminals t and t′. Let
Pt,t′ = {t = v0, . . . , vγ = t′} be the shortest path from t to t′ in G. We can assume that
there are no terminals in Pt,t′ other than t, t′. This is because if we will prove the distortion
guarantee for every pair of terminals t, t′ such that Pt,t′ ∩K = {t, t′}, then by the triangle
inequality the distortion guarantee will hold for all terminal pairs.

Detours. The terminals t, t′ are fixed. During the execution of the algorithm, for every
terminal tj we will maintain a detour Dtj (or shortly Dj). A detour is a consecutive
subinterval {aj , . . . , bj} of Pt,t′ , where aj ∈ Dj is the leftmost (i.e., with minimal index)
vertex in the detour and bj is the rightmost. Initially Dt = {t} and Dt′ = {t′}, while for
every tj /∈ {t, t′}, Dj = ∅. Every pair of detours Dj ,Dj′ will be disjoint throughout the
execution of the algorithm.

A vertex v ∈ Pt,t′ is active if and only if it does not belong to any detour. It will hold
that every active vertex is necessarily unassigned (while there might be unassigned vertices
which are inactive). Initially, t, t′ are inactive, while all the other vertices of Pt,t′ are active.
Consider the i’th iteration of the algorithm. We go over the terminals according to an
arbitrary order {t1, . . . , tk}. Consider the terminal tj with detour Dj = {aj , . . . , bj} (which
might be empty). If no active vertices are assigned to tj we do nothing. Otherwise, let
a′j ∈ Pt,t′ (resp. b′j) be the leftmost (resp. rightmost) active vertex that was assigned to tj
during the i’th iteration. Set aj to be vertex with minimal index between the former aj and
a′j (a′j if there was no aj). Similarly bj is the vertex with maximal index between the former
bj and b′j . Dj is updated to be {aj , . . . , bj}. All the vertices in {aj , . . . , bj} = Dj become
inactive. Note that a vertex might become inactive while remaining yet unassigned.

Consider an additional detour Dj′ . Before the updating of Dj at iteration i, Dj ,Dj′ are
disjoint. If a′j , b′j were active they cannot belong to Dj′ . Thus after the update, aj , bj did
not belong to Dj′ as well. However, it is possible that after the update Dj and Dj′ are no
longer disjoint. The only such possibility is when Dj′ ⊂ Dj . In such a case, we set Dj′ ← ∅,
maintaining the disjointness property (while not changing the (in)active status of any vertex).

After we nullify all the detours that were contained in Dj , we will proceed to treat the
next terminals in turn. Once we finish going over all the terminals, we proceed to the i+ 1
iteration. Eventually, all the vertices cease to be active, and in particular belong to some
detour. In other words, all the vertices of Pt,t′ are partitioned to consecutive disjoint detours
D`1 , . . . ,D`s .
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Intervals. For an interval Q = {va, . . . , vb} ⊆ Pt,t′ , the internal length is L(Q) = dG(va, vb),
while the external length is L+(Q) = dG(va−1, vb+1) .16 We denote by D(Q) = D(va) the
distance from the leftmost vertex va ∈ Q to its closest terminal. Set cint = 1

7 (“int” for
interval). We partition the vertices in Pt,t′ into consecutive intervals Q, such that for every
Q ∈ Q,

L(Q) ≤ cint ·D(Q) ≤ L+(Q) . (3.1)

Such a partition could be obtained as follows: Sweep along the path Pt,t′ in a greedy
manner, after partitioning the prefix v0, . . . , vh−1, to construct the next interval Q, simply
pick the minimal index s such that L+({vh, . . . , vh+s}) ≥ cint · D(vh). By the minim-
ality of s, L({vh, . . . , vh+s}) ≤ L+({vh, . . . , vh+s−1}) ≤ cint · D(vh) (in the case s =
0, trivially L({vh}) = 0 ≤ cint · D(vh)). Note that such s could always be found, as
L+({vh, . . . , vγ = t′}) = dG(vh−1, t

′) ≥ dG(vh, t′) ≥ D(vh) = D(Q).
Consider some interval Q = {va, . . . , vb} ∈ Q. For every vertex v ∈ Q, by triangle

inequality it holds that D(Q)− L(Q) ≤ D(v) ≤ D(Q) + L(Q). Therefore,

(1− cint)D(Q) ≤ D(v) ≤ (1 + cint)D(Q) . (3.2)

Note that the set Q of intervals is determined before the execution of the algorithm, and is
never changed. In particular, it is independent from the set of detours (which evolves during
the execution of the algorithm).
For an interval Q, we denote by iQ the first iteration when some vertex v belonging to the
interval Q is assigned.

B Claim 10. All Q vertices are assigned in either iteration iQ or iQ + 1.

Proof. Let u ∈ Q be some vertex which is assigned during iteration iQ. Then u belongs to
a cluster C ∈ CiQ , containing a vertex u′ ∈ C such that D(u′) ≤ 2iQ . As C has diameter
at most 2iQ−1, it holds that 2iQ ≥ D(u′) ≥ D(u) − dG(u, u′) ≥ D(u) − 2iQ−1. Hence
D(u) ≤ 3

2 · 2
iQ . It follows that

D(Q)
(3.2)
≤ 1

1− cint
·D(u) ≤ 3

2 ·
1

1− cint
· 2iQ . (3.3)

For every vertex v ∈ Q it holds that,

D(v) ≤ D(Q) + L(Q)
(3.2)
≤ (1 + cint) ·D(Q

(3.3)
≤ 3

2 ·
(1 + cint)
(1− cint)

· 2iQ = 2iQ+1 .

Therefore, in the iQ + 1 iteration, all the (yet unassigned) vertices of Q will necessarily be
assigned. C

I Lemma 11. Consider an interval Q ∈ Q. Then the vertices of Q are partitioned into at
most O(τ2) different detours.

Proof. By definition, by the end of the iQ−1’th iteration all the vertices of Q are unassigned.
We first consider the case where by the end iQ − 1’th iteration some vertex v ∈ Q is inactive.
It holds that v belongs to some detour Dj . As all the vertices of Q are unassigned, necessarily
Q ⊂ Dj . In particular, all the vertices of Q belong to a single detour. This property will not
change till the end of the algorithm, thus the lemma follows.

16For ease of notation we will denote v−1 = t and vγ+1 = t′.
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Next, we consider the case where by the end of the iQ − 1’th iteration all the vertices of
Q are active. The algorithm at iteration iQ creates an

(
1, τ,∆iQ

)
-scattering partition PiQ .

The length of Q is bounded by

L(Q)
(3.1)
≤ cint ·D(Q)

(3.3)
≤ cint ·

3
2 ·

1
1− cint

· 2iQ = 1
4 · 2

iQ < ∆iQ (3.4)

Hence Q is partitioned by PiQ to τ ′ ≤ τ clusters C1, . . . , Cτ ′ ∈ PiQ . It follows that by the
end of the iQ’th iteration, the inactive vertices in Q are partitioned to at most τ detours. If
all the vertices in Q become inactive, then we are done, as the number of detours covering Q
can only decrease further in the algorithm (as a result of detour nullification). Hence we will
assume that some of Q vertices remain active.

A slice is a maximal sub-interval S ⊆ Q of active vertices. The active vertices in Q are
partitioned to at most τ + 1 slices S1, S2, . . . , Sτ ′′ .17 By the end of the iQ + 1 iteration,
according to Claim 10 all Q vertices will be assigned, and in particular belong to some detour.
The algorithm creates a

(
∆iQ+1, τ, 1

)
-scattering partition PiQ+1 of the unassigned vertices.

By equation (3.4) the length of every slice S is bounded by L(S) ≤ L(Q) ≤ 1
4 · 2

iQ ≤ ∆iQ+1.
Therefore the vertices S intersect at most τ clusters of PiQ+1, and thus will be partitioned
to at most τ detours. Some detours might get nullified, however in the worst case, by the
end of the iQ + 1 iteration, the vertices in ∪iSi are partitioned to at most τ · (τ + 1) detours.
In particular all the vertices in Q are partitioned to at most O(τ2) detours. As the number
of detours covering Q can only decrease further in the algorithm, the lemma follows. J

By the end of algorithm, we will charge the intervals for the detours. Consider the detour
Dj = {aj , . . . , bj} of tj . Let Qj ∈ Q be the interval containing aj . We will charge Qj for the
detour Dj . Denote by X(Q) the number of detours for which the interval Q is charged for.
By Lemma 11, X(Q) = O(τ2) for every interval Q ∈ Q.

Recall that by the end of the algorithm, all the vertices of Pt,t′ are partitioned to
consecutive disjoint detours D`1 , . . . ,D`s , where D`j = {a`j , . . . , b`j} and a`j , b`j belong to
the cluster of t`j . In particular t`1 = t and t`s = t′, as each terminal belongs to the cluster of
itself. Moreover, for every j < s, there is an edge {b`j , a`j+1} in G between the cluster of t`j
to that of t`j+1 . Therefore, in the minor induced by the partition there is an edge between
t`j to t`j+1 . We conclude

dM (t, t′) ≤
s−1∑
j=1

dG(t`j , t`j+1) ≤
s−1∑
j=1

[
dG(t`j , a`j ) + dG(a`j , a`j+1) + dG(a`j+1 , t`j+1)

]
≤

s−1∑
j=1

dG(a`j , a`j+1) + 2
s∑
j=1

dG(t`j , a`j ) .

Note that
∑s−1
j=1 dG(a`j , a`j+1) ≤ dG(t, t′) as Pt,t′ is a shortest path. Denote by Q`j the

interval containing a`j . By Corollary 8,

dG(t`j , a`j ) = dG(a`j , f(a`j )) ≤ O(τ) ·D(a`j )
(3.2)= O(τ) ·D(Q`j )

(3.1)= O(τ) · L+(Q`j ) .

By changing the order of summation we get
s∑
j=1

dG(t`j , a`j ) = O(τ) ·
∑
Q∈Q

X(Q) · L+(Q) = O(τ3) ·
∑
Q∈Q

L+(Q) .

Finally, note that
∑
Q∈Q L

+(Q) ≤ 2 · dG(t, t′) as every edge in Pt,t′ is counted at most twice.
We conclude dM (t, t′) ≤ O(τ3) · dG(t, t′). Theorem 2 now follows.

17Actually, as at least one Q vertex remained active, at the beginning of the iQ + 1 iteration the inactive
vertices of Q partitioned to at most τ − 1 detours. Therefore the maximal number of slices is τ .
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4 Discussion and Open Problems

In this paper we defined scattering partitions, and showed how to apply them in order to
construct solutions to the SPR problem. We proved an equivalence between sparse partitions
and sparse covers. Finally, we constructed many sparse and scattering partitions for different
graph families (and lower bounds), implying new results for the SPR, UST, and UTSP
problems. An additional contribution of this paper is a considerable list of (all but question
(5)) new intriguing open questions and conjectures.
1. Planar graphs: The SPR problem is most fascinating and relevant for graph families

which are closed under taking a minor. Note that already for planar graphs (or even
treewidth 2 graphs), the best upper bound for the SPR problem is O(log k) (same as
general graphs), while the only lower bound is 8. The most important open question
coming out of this paper is the following conjecture:
I Conjecture 1. Every graph family excluding a fixed minor is (O(1), O(1))-scatterable.
Note that proving this conjecture for a family F , will imply a solution to the SPR problem
with constant distortion. Proving the conjecture for planar graphs will be fascinating.
However, it is already open for outerplanar graphs, and graphs with treewidth 2.

2. Scattering Partitions for General Graphs: While we provide almost tight upper
and lower bounds for sparse partitions, for scattering partitions, the story is different.
I Conjecture 2. Consider an n vertex weighted graph G such that between every pair of
vertices there is a unique shortet path. Then G is (1, O(logn))-scatterable. Furthermore,
this is tight.
In the full version [31], we provide some evidence that Conjecture 2 cannot be pushed
further. However, any nontrivial lower bound will be interesting. Furthermore, every
lower bound larger than 8 for the general SPR problem will be intriguing.

3. Doubling graphs: While we constructed strong sparse partition for doubling graphs
(which imply scattering), it has no implication for the SPR problem. This is due to the
fact that Theorem 2 required scattering partition for every induced subgraph. As induced
subgraphs of a doubling graph might have unbounded doubling dimension, the proof fails
to follow through. We leave the required readjustments to future work.

4. Sparse Covers: We classify various graph families according to the type of partitions/-
covers they admit. We currently lack any example of a graph family that admits weak
sparse covers but does not admit strong sparse covers. It will be interesting to find such
an example, or even more so to prove that every graph that admits weak sparse cover,
also has strong sparse cover with (somewhat) similar parameters.
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