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We consider distributed elections, where there is a center and k sites. In such distributed 
elections, each voter has preferences over some set of candidates, and each voter is 
assigned to exactly one site such that each site is aware only of the voters assigned 
to it. The center is able to directly communicate with all sites. We are interested in 
designing communication-efficient protocols, allowing the center to maintain a candidate 
which, with arbitrarily high probability, is guaranteed to be a winner, or at least close 
to being a winner. We consider various single-winner voting rules, such as variants of 
Approval voting and scoring rules, tournament-based voting rules, and several round-based 
voting rules. For the voting rules we consider, we show that, using communication which 
is logarithmic in the number of voters, it is possible for the center to maintain such 
approximate winners; that is, upon a query at any time the center can immediately return 
a candidate which is guaranteed to be an approximate winner with high probability. We 
complement our protocols with lower bounds. Our results are theoretical in nature and 
relate to various scenarios, such as aggregating customer preferences in online shopping 
websites or supermarket chains and collecting votes from different polling stations of 
political elections.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Elections are extensively used to aggregate preferences of voters. Some elections are centralized, but others are carried 
out in distributed settings. Consider, for example, a supermarket chain consisting of a large number of stores. Each store 
collects data on the purchases made in it, and the managers at the chain headquarters might want to aggregate this data, 
to identify, for example, the most popular items being sold. One solution would be to have a central database, collecting all 
data from all stores, and to compute the most popular items on this centralized database. As the number of customers might 
be huge, however, it might not be practical to do so. Further, as the communication between the stores and the headquarters 
might be expensive, a more efficient solution would be to have some computations being made locally at each store, and 
to develop a protocol for efficient communication between the stores and the headquarters, to allow the managers at the 
headquarters to know, at each point in time, what are the most popular items that are being sold throughout the chain.

✩ A preliminary version of this paper was presented at the 16th International Conference on Autonomous Agents and Multiagent Systems 
(AAMAS ’17) [21]. This full version contains all proofs, has improved upper bounds, considers more voting rules, studies further lower bounds, and discusses 
several issues in more detail.
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A similar situation happens in online shopping websites, where buyers from all around the world make purchases. As 
the design of modern websites is based on data centers, aggregating the data concerning all buyers involves communicating 
in a distributed setting. Specifically, in order to identify the current trends, and as communication between data centers 
might be expensive, it is of interest to develop protocols for those data centers to communicate with a central entity.

Our model also captures scenarios of political polls and political elections. That is, in political elections and in TV polls, it 
is usually the case that there are several polling stations, spread around the country or the region. Then, in order to compute 
the results of the election (or the intermediate results during the day when the poll is being held), the voters’ preferences 
from all those polling stations are aggregated at some central station. For example, in the general political elections held in 
Brazil in 2014, there were roughly 500,000 polling stations, with an average of 300 voters per station. In this situation, it 
is beneficial to have a protocol allowing the polling stations to efficiently communicate with a central entity, allowing the 
central entity to maintain a good estimate on the nation-wide (or region-wide) state of affairs.

In this paper, we model such situations as follows. We are considering an election whose electorate is distributed into 
k sites. Assuming some common axis of time,3 we have that at each point in time, a new voter arrives and votes, and her 
vote is assigned to one of those k sites,4 There is some center which is able to directly communicate with each of the k
sites. With respect to a voting rule R, the goal of the center is to maintain, at any point in time, a candidate which is an 
R-winner of the whole election (given an election E and a voting rule R, an R-winner of E is a winner of E under R). 
More specifically, we are interested in designing communication-efficient protocols, where the center is able, upon request 
at any time, to return a candidate which, with high probability, is an R-winner.

As we are interested in sublinear communication, in addition to allowing mistakes to accrue with some low probability, 
we will also use approximation. We call a candidate an ε-winner with respect to a voting rule R, if by adding up to 
an ε-fraction of new voters, it can become an R-winner. A more formal description of our model and a discussion on our 
notion of approximation is given in Section 2. Previous works were concerned with bribery (where we are allowed to change 
an ε-fraction of the voters), and margin of victory (where we are guaranteed that by changing an ε-fraction of the voters, 
the outcome of the election shall remain unchanged), see Section 1.1 for additional details on these notions. These notions 
are appropriate to deal with noisy data, or to be used in scenarios where some external agent can influence the voters, thus 
change their votes. Here, however, we are concerned with monitoring an election while minimizing the communication, and 
the source of our errors is lack of information (rather than noise). Our approximation notion fits better to our scenario, as 
a candidate is an ε-winner if it might become a winner under full information. Furthermore, in monitoring an election we 
do expect more voters to come, thus, in this aspect, an ε-winner is a candidate who might become a winner very shortly. 
Finally, as we consider an ongoing election, changing previous votes is not an option. However, the information on whether 
a candidate is an ε-winner is very valuable for making, e.g., real-time election policy decisions.

We concentrate on single-winner voting rules, and consider various voting rules, ranging from approval-based rules 
and scoring rules, to tournament-based rules and round-based voting rules; while we naturally cannot cover all voting 
rules available, we choose some of the more popular and representative ones as well as aim at choosing representative 
voting rules. Further, we develop some general techniques for designing protocols for maintaining approximate winners in 
distributed elections, which might be applicable to other voting rules and settings as well. We show how to apply these 
techniques for the rules we consider. We discuss the effect of several parameters on the communication complexity of 
the protocols we design; specifically, the effect that the number n of voters, the number m of candidates, the required 
approximation ε , and the number k of sites have on the amount of communication used by our protocols. We complement 
our communication-efficient protocols with lower bounds.

As a by-product of our lower bounds for maintaining an approximate Plurality winner in distributed elections, we have 
two contributions which might be useful in other contexts. First, we improve the state-of-the-art lower bound on the
Count-tracking problem, which is a central problem in distributed streams; this result is discussed in detail in Remark 5. In 
short, in the Count-tracking problem, the task is to maintain a value which approximates the number of items in a given 
distributed stream. In the regime where k ≥ 1/ε2, we improve the lower bound for Count-tracking from �(k), proved 
by Huang et al. [22, Theorem 2.3], to �(k log n/ log k) (see Remark 5). Second, we define a novel problem in multiparty 
communication complexity and show a tight lower bound for it; in this problem, which we call the No Strict Majority
problem, we have several players, each with its own private binary string, and, by communicating bits, the players should 
decide whether there is some index for which a majority of the players have 1 in it. We prove a lower bound on the No Strict 
Majority problem, showing that the naive protocol for this problem is essentially optimal: asymptotically, all the bits have 
to be transmitted. See Section 5 for further details on our lower bounds and their implications to continuous distributed 
monitoring and to multiparty communication complexity.

1.1. Related work

We first review related work on sublinear algorithms in computational social choice, as the current paper fits naturally 
within this line of research. Then we review papers on compilation complexity, vote elicitation, and mention some connec-

3 To avoid confusion, let us mention that, while we indeed speak about “time”, we do not consider any external clocks (or, importantly, clocks accessible 
to the sites or the center). In particular, the voters can be assumed to come at fixed intervals, whose speed is not known to the sites nor to the center.

4 For convenience, we refer to voters as females, while the candidates are males.
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tions between our notion of approximation to work on control and bribery in elections (as well as to the concept of margin 
of victory). Finally, we give an overview on the available literature on the continuous distributed monitoring model, which 
is the computational model we use in the current paper (its formal definition is given in section 2).

Sublinear social choice. As the amount of data in general, and data concerning preferences in particular, is consistently 
increasing, the study of identifying election winners using time or space which is sublinear in the number of voters is 
receiving increasing attention. Specifically, the size of some elections might be too big to process in linear time, thus 
algorithms with sublinear time and/or space complexity are of interest.

We first mention a follow-up to the conference version of this paper which was recently published [12]. That paper 
provides a different protocol for winner tracking which is based on our checkpoints technique. Their technique achieves an 
improvement of a (1 + log k

log n/k ) over our checkpoints-based protocols. Notably, they also performed computer simulations to 
evaluate the practical communication complexity of theirs and our protocols.

In two papers, Bhattacharyya and Dey [15,2] study sampling algorithms for winner determination as well as winner 
determination in the streaming model. In fact, some of our sampling-based protocols are inspired by Bhattacharyya and 
Dey [15]. In their model, they assume that they are given an election in which the margin of victory is at least εn (where n
is the number of voters); this means that the winner is guaranteed to remain such even if an adversary is allowed to change 
εn votes. Given such elections, they evaluate the number of vote samples needed in order to identify the winner with high 
probability. In our current paper, we have a different notion of approximation and we do not assume such margins of victory 
(we formally describe our notion of approximation in Section 2).

Remark 1. There is a mistake in the preliminary version of this work [21], which claims that the sampling-based protocols 
are implied by the work of Bhattacharyya and Dey [15,2]. This is incorrect as our notion of approximation is different than 
theirs, specifically due to this margin of victory assumption which in particular means that, while an approximate winner 
under our definition always exists, this does not necessarily hold in their model.

In a recent paper, Dey et al. [18] study winner determination for several multiwinner voting rules aiming at proportional 
representation. Dey and Narahari [17] study sampling algorithms for estimating the margin of victory. These works deal 
with centralized elections, while the current paper considers distributed elections. Another paper worth mentioning in this 
context is the paper of Lee et al. [25] which argues for the importance of developing fast communication-efficient protocols 
for computing winner in (centralized) streams; they also provide a simple sampling-based algorithm for approximating 
Borda winners.

Not strictly considering sublinear social choice, but nonetheless concentrating on “huge elections”, in a recent paper, Csar 
et al. [8] study winner determination using the MapReduce framework which may allow processing such elections efficiently 
by distributing the computation among clusters of machines.

Compilation complexity. In a series of papers, Chevaleyre et al. [7,6] and Xia and Conitzer [31] define and study the 
compilation complexity of various voting rules; in their model, the electorate is partitioned into two parts, and the general 
concern is the amount of communication which needs to be transmitted between the two parts, in order to determine an 
election winner. In compilation complexity there are no rounds of communication, as only one message is being passed 
between the two parts. This stands in contrast to our protocols, which use small amounts of communication due to their 
use of several rounds of communication between the center and the sites.

Vote elicitation. There is quite an extensive literature which deal with vote elicitation [16,13,25,24]; these works provide 
algorithms for finding approximate winners under various voting rules, by elicitating the voters’ preference orders. Conitzer 
and Sandholm [14] study communication complexity for various voting rules. In their model, each voter acts as a site. 
Conitzer and Sandholm were interested in finding exact winners. In a follow up paper, Service and Adams [29] allowed 
approximation. For example, for Borda, they define the approximation ratio of a candidate c to be sc(c)

sc(w)
, where w is the true 

winner and sc is the Borda score function. Their goal is to find a candidate with 1 − ε approximation ratio; approximation 
ratios for other voting rules are defined similarly. However, as each voter acts as a site, their upper bounds are quite high: In 
particular, they depend linearly on the number of voters. It is also interesting to mention that our notion of approximation is 
strictly stronger than theirs, at least for Borda (that is, an ε-Borda winner has O (ε) approximation ratio under the definition 
used by Service and Adams [29]).

Approximate winners, margin of victory, and election control. In the current paper we do not require our protocols to 
maintain exact winners, but are satisfied with approximate winners. We formally define our notion of approximation in 
Section 2; roughly speaking, we consider a candidate to be an approximate winner if it can become a winner if we are 
allowed to add a small number of additional voters (where we can set their votes as we wish). Our notion of approximation 
somehow resembles the vast amount of research done on electoral control and bribery in elections (see, e.g., the survey 
by Faliszewski and Rothe [20]). In electoral control by adding voters, there is usually a set of unregistered voters, and the 
question is whether it is possible to change the outcome of the election, e.g., to have some predefined, preferred candidate 
to become a winner in a new election, where a small number of those unregistered voters are added to the election.

In bribery problems, such as shift bribery and swap bribery [19], an external agent can change the way some voters vote 
in order to have some predefined, preferred candidate to become a winner. As observed by Xia [33], the number of such 
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changes that needs to be done in order to make a specific candidate to become a winner (the so-called margin of victory), 
is a natural notion of this candidate’s closeness to be a winner. Indeed, in this sense, our approximation notion is related to 
those notions of control and bribery in elections.

Continuous distributed monitoring. The model of computation which we study in the current paper is called the continu-
ous distributed monitoring model, and is usually studied within theoretical computer science and database systems. There is a 
fairly recent survey about this model [11], as well as quite extensive line of work studying various problems in this model, 
such as sampling-based protocols [10,30], protocols for approximating moments [9,1], protocols for counting with dele-
tions [26] (interestingly, that paper specifically mentions elections as a motivation, but do not study it explicitly), heuristic 
protocols for monitoring most-frequent items [3], and randomized protocols for counting the number of items in a dis-
tributed stream and finding frequent items [22]. In the current paper we complement this line of work by studying winner 
determination in this model.

2. Preliminaries

We begin by providing preliminaries regarding elections and voting rules, continue by describing our notion of approx-
imation, and finish by discussing our model concerning continuous monitoring of distributed streams. We use standard 
notions from computational complexity. For n ∈N , we denote the set {1, . . . , n} by [n].

2.1. Elections and voting rules

An election E = (C, V ) consists of a set of candidates C = {c1, . . . , cm} and a collection of voters V = (v1, . . . , vn). We 
consider both approval elections, where voters cast approval ballots, and ordinal elections, where voters cast ordinal ballots.

Specifically, in approval elections, each voter is associated with her set of approved candidates, such that vi ⊆ C . We say 
that vi approves candidate c if c ∈ vi (and disapproves him otherwise). In ordinal elections each voter is a total order �vi

over C . A single-winner voting rule R is a function that gets an election E and returns a set R(E) ⊆ C of co-winners of that 
elections, such that c is a winner of the election E under R if c ∈R(E).

Next we define our voting rules of interest. We ignore issues of tie-breaking; specifically, we assume an arbitrary tie-
breaking order which works in our favor, such that a candidate c is a winner if there is some fixed tie-breaking that makes 
him a winner.

We begin with approval-based voting rules and scoring rules, continue with tournament-based voting rules, and then 
discuss round-based voting rules.

2.1.1. Approval-based rules and scoring rules

Plurality, t-Approval, and Approval. Under Approval, each voter approves a subset of the candidates (that is, it is held in 
approval elections), and the score of a candidate is the number of voters approving him. The candidates with the highest 
score tie as co-winners. t-Approval is similar to Approval, but with the restriction that each voter shall approve exactly 
t candidates (that is, |vi | = t; we assume that t ≤ m/2). Plurality is a synonym for 1-Approval, that is, where each voter 
approves exactly one candidate.

Borda. Borda is the archetypical scoring rule. Under Borda, a voter ranking a candidate at position j is giving him m − j
points, and the candidates with the highest score tie as co-winners. Scoring rules in general are defined similarly, but with 
scoring vectors other than the one used by Borda.

2.1.2. Tournament-based voting rules

Cup. The Cup voting rule is defined via a balanced binary tree T with m leaves, such that there is exactly one leaf for 
each candidate. Starting from the leaves, in a bottom-up fashion, each non-leaf node is associated with the candidate which 
wins in the pairwise election held with only the two candidates corresponding to the two children of that node. Finally, the 
candidate which gets assigned to the root of T is declared the winner of the election.

Copeland and Condorcet. The Copeland score of a candidate c is the number of other candidates c′ 	= c for which a majority 
of voters prefer c to c′ . Under Copeland, the candidates with the highest Copeland score tie as co-winners. A Condorcet winner
is a candidate with Copeland score m −1. Under Condorcet, a Condorcet winner is selected as a winner if it exists; otherwise, 
all candidates tie as co-winners.

2.1.3. Round-based voting rules

Plurality with run-off. Plurality with run-off proceeds in two rounds. In the first round, it selects two candidates with the 
highest Plurality scores, where the Plurality score of a candidate is defined as the number of voters ranking him first. In the 
second round, it considers only those two candidates selected in the first round and selects as a winner the one which is 
preferred to the other by majority of voters.
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Fig. 1. Illustration of our model.

Bucklin. Bucklin also proceeds in rounds. In round i ∈ [m], it computes, for each candidate c, the number of voters ranking 
c among their top i choices. Then, if there is a candidate with a strict majority of the voters ranking him among their top i
choices, then such a candidate is selected as a winner; otherwise, a new round begins.

2.2. Our notion of approximation

Since we will be interested in designing protocols where the center cannot see the full election, it will not be possible 
to guarantee that our protocols will find exact winners; therefore, we will be satisfied with protocols which are guaranteed 
to find approximate winners. There are several possibilities for defining approximate winners of elections; in this paper we 
consider ε-winners. Roughly speaking, an ε-winner is a candidate which is not far from being the winner of the election 
in the sense that he might become a winner after the arrival of only a few additional new voters. A more formal definition 
follows.

Definition 1 (ε-winner). For ε ∈ (0, 1), a candidate c is an ε-winner in an election E (with n voters) under some voting rule 
R if it can become a winner under R by adding at most εn additional voters to E . That is, if there exists an election E ′ , 
where E ⊆ E ′ and |E ′ \ E| ≤ ε · n such that c ∈R(E ′).

Indeed, we view the definition of an ε-winner as a definition of approximation, as the lower ε is, the closer an ε-winner 
is to a real winner. As we will design our protocols to compute ε-winner, the lower ε would be, their guaranteed results 
would become closer and closer to real winners.

Our approximation notion seems particularly relevant to our setting (as compared to, e.g., the notion used by Bhat-
tacharyya and Dey [15,2]), for the following reasons. First, we do not assume a margin-of-victory, namely that some 
candidate is a clear winner. Second, in distributed vote streams we expect more voters to arrive in the future, thus we 
are interested in identifying a candidate which might become a winner in the near future: such candidates are exactly the 
ε-winners.5

2.3. Our model of computation

In our computational model, we have one center and k sites. The center and the sites are arranged in a star-shaped 
network, centered at the center, such that the center has a direct communication link to each site but two sites cannot 
communicate directly.

We assume some axis of time, t1, . . . , tn , and a stream of voters v1, . . . , vn , such that voter vi comes at time ti . Each 
voter is assigned to exactly one site, such that each site is aware only of the subset of voters which are assigned to it. 
We stress that the time is not known to either the center or the sites. Such a stream is called a distributed stream. Fig. 1
illustrates the model. Table 1 provides an example of a distributed stream.

We mention that our model of computation might be seen as the model of computation assumed in the study of 
Continuous Distributed Monitoring, when instantiated for vote streams (and not general, abstract streams). See the Related 
Work section for more details on this subject.

We are interested in designing communication-efficient protocols, whose goals are to allow the center to declare, at 
any point in time, a candidate c which is, with constant probability (say, 0.9), an ε-winner (see Section 4 for a discussion 
on higher probabilities). Formally, for a voting rule R, we are interested in finding efficient protocols for the R-winner-

tracking problem.

5 As a side note, we mention that in political elections such a knowledge might worth much to these candidates, as it can help them decide on when to 
spend their campaigning funds.
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Table 1
An example of a distributed stream corresponding to a Plurality elec-
tion over the candidate set {a, b}. Rows correspond to the exist of time, 
t1, . . . , tn , while each column corresponds to a site; e.g., at time 3, a voter 
voting for b is assigned to site S2. Notice that the situation at a certain 
time can be viewed as the current election; for example, the election at 
time 4 consists of 3 votes for 1 and 1 vote for b. For this election, notice 
that, while a is the winner, and thus an ε-winner for any 0 ≤ ε ≤ 1, b is 
not an ε-winner even for ε = 0.5, as even adding εn = 0.5 · 4 = 2 votes for 
b would not make b a Plurality winner.

t S1 S2 S3

1 a
2 a
3 b
4 a
5 a
6 b
7 b

A protocol is defined via the messages which the center and the sites send to each other, and can consist of several 
rounds. The protocol shall be correct not only at the end of the stream (which is usually the case in streaming algorithms), 
but shall be correct at any point in time. As it is the custom in protocols operating on distributed streams, we describe our 
upper bounds in terms of words of communication, where we assume that a word contains log n bits.

We measure the communication complexity of a protocol with respect to the expected number of words communicated 
in its run. Using Markov inequality, this expectation can be replaced by high probability (or even by probability 1 in the 
expense of slight increase in the failure probability).

2.4. Useful results from probability theory

For the sampling based protocols, we will use the following bound.

Theorem 1 (Chernoff Bound). Let X1, . . . , Xs be a sequence of s i.i.d random variables in [0, 1]. Let X =∑i Xi and let μ = E[X]. 
Then, for any 0 ≤ γ ≤ 1:

Pr[|X − μ| ≥ γμ] < 2 exp(−γ 2μ/3) .

The following corollary will be the main building block for our sampling-based protocols.

Lemma 1. Let X1, . . . , Xs be i.i.d. random variables in [0, 1] with mean p. Let X =∑i Xi and let q = 1
s X . Then, for s ≥ 3

ε2 log( 2
δ
) it 

holds that

Pr[|q − p| ≥ ε] < δ .

Proof. Set μ =E[X] = s · p. Using the Chernoff Bound (i.e., Theorem 1), it follows that:

Pr [|q − p| ≥ ε] = Pr

[
|X − μ| ≥ ε

p
· μ
]

≤ 2 exp

(
−
(

ε

p

)2

· μ/3

)
≤ 2 exp

(
−ε2s/3

)
≤ δ . �

3. Algorithmic techniques

The naive protocol, where each site sends to the center a message for every voter that arrives to it, clearly solves 
our problem, however it uses communication which is linear in the number of voters. For example, for ordinal ballots, it 
communicates O (n · m logm) bits, since m log m bits are sufficient for sending a single vote. In this paper we are interested 
in protocols which use significantly less communication, namely communication which is polylogarithmic in the number of 
voters.

In this section we provide high level descriptions of three algorithmic techniques which are useful for developing pro-
tocols for maintaining approximate winners in distributed vote streams. Accordingly, in Section 4 we demonstrate how to 
realize and instantiate these algorithmic techniques as concrete protocols for maintaining approximate winners for various 
specific voting rules.
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3.1. Protocols based on counting frequencies

In the Frequency-tracking problem, we are given a distributed stream where, instead of voters, the items of the stream 
come from a known universe of items. The goal is for the center to maintain, for each item type in the distributed stream, 
a value which approximates the frequency of that item type. More formally, let us denote the items of the stream by 
v1, . . . , vn and consider m different item types, such that item i ∈ [n] is of type j ∈ [m] if vi = j. Let us denote the frequency 
of item type j by f ( j) = |{i : vi = j}|. A protocol solving the Frequency-tracking problem guarantees that, with constant 
probability, simultaneously for every item type j, the center can maintain a value f ′( j) such that f ′( j) ∈ f ( j) ± εn.

Estimating the frequencies of item types is a fundamental problem in distributed streams (in fact, also in centralized 
streams). A deterministic protocol for Frequency-tracking, using O (ε−1k log n) words of communication, is known [34]; in 
fact, it is also known to be tight. Moreover, there is a randomized protocol which uses O ((ε−1

√
k + k) log n log 1

δ
) words 

of communication, and succeeds with probability 1 − δ [22].6 Formally, the protocol guarantees that for every j ∈ [m] and 
every n, after the arrival of n items, Pr[ f ′( j) ∈ f ( j) ± εn] ≥ 1 − δ. In particular, by setting δ = 1/poly(m) and applying the 
union bound, we get that for every n, Pr[∀ j, f ′( j) ∈ f ( j) ± εn] ≥ 1 − 1

poly(m)
. The communication complexity in this case 

is O ((ε−1
√

k + k) log n · log m).
Many voting rules operate by counting points for candidates, thus, it can be seen as if these voting rules actually count 

frequencies of, say, approvals of each candidate. It turns out that, indeed, it is sometimes possible to reduce the problem of 
maintaining an ε-winner under such voting rules to the problem of maintaining approximate frequencies. For more concrete 
intuition, consider the following distributed stream for the Frequency-tracking problem.

Example 1. Consider the set of m = 3 item types {1, 2, 3} and a distributed stream containing the following n = 10 items: 
[2, 2, 1, 3, 3, 3, 3, 3, 2, 1]. Then, the frequencies f of the item types is: f (1) = 1, f (2) = 3, and f (3) = 5. Observe how the 
above stream might, roughly speaking, correspond to a distributed vote stream for Plurality-winner-tracking containing 
10 votes over the set of candidates {1, 2, 3}, and how, in essence, Plurality simply counts the frequencies of the correspond-
ing items.

During the description of our results for specific voting rules, in Section 4, we will usually use the randomized version 
of the Frequency-tracking protocol, the only exception being the hybrid protocol for Runoff, for which we will use the 
deterministic version.

3.2. Protocols based on checkpoints

Protocols based on checkpoints are deterministic in nature, and the general idea behind such protocols is as follows. 
Assume that the center knows an ε-winner c of the election containing the first n voters. Then, the crucial observation 
is that, until the number of voters reaches (1 + ε)n, the center can declare c as an O (ε)-winner. This suggests protocols 
where the center only updates its declared candidate whenever the number of voters multiplies by a (1 + �(ε))-fraction. 
Such points of time will be called checkpoints. Between two checkpoints, the center will declare the previous estimation 
as the current ε-winner. This intuition is formulated in the following lemma, the proof of which appears in Appendix A.7

Algorithms 1 and 2 provide pseudocode for a general protocol based on checkpoints.

Algorithm 1: Protocol based on checkpoints, for center.

Initiate and maintain an approximate count n′ using a Count-tracking protocol with λ = ε/12;

if n′ ≥ (1 + λ)i for some i, for the first time for this i then
Initiate a static subprotocol to identify an ε

4 -winner c;

Upon query: declare c;

Algorithm 2: Protocol based on checkpoints, for site.

Participate in the Count-tracking protocol initiated by the center;
Participate in each static subprotocol initiated by the center;

6 Notice that Huang et al. [22] consider only situations where k ≤ ε−2, thus their bounds read differently; nevertheless, O ((ε−1
√

k + k) logn · log 1
δ
) is 

the communication complexity of their protocol.
7 While some of the ideas in the proof might fit naturally in the main text, the proof considers each voting rule studied in this paper separately, and 

thus it is slightly repetitive, and thus deferred to the appendix.



86 A. Filtser, N. Talmon / Artificial Intelligence 276 (2019) 79–104
Lemma 2. Let R be some voting rule described in Section 2.1. Let E = {v1, . . . , vn} and E ′ = E ∪ {vn+1, . . . , vn+q}, where q ≤ ε
4 n, be 

two elections. If candidate c is an ε4 -winner w.r.t. E, then c is an ε-winner w.r.t E ′.

In order to identify the checkpoints, the center shall be able to count the number of voters arriving so far. Fortunately, 
for an approximation factor λ ∈ (0, 1), there is an efficient deterministic protocol for solving the Count-tracking problem, 
which uses O (λ−1k log n) words [34]; in the Count-tracking problem, the center maintains a value n′ such that n′ ∈ n ±λn, 
where n is the actual number of items in the distributed stream.

Now we have all the ingredients for our generic protocol. Specifically, the center will maintain a value n′ using a Count-

tracking protocol with precession parameter λ = ε
12 . Each time n′ exceeds (1 +λ)i for the first time,8 for some i, the center 

will initiate a static subprotocol to identify an ε
4 -winner c of the election so far. The center will declare c as ε-winner until 

the next checkpoint. We argue that c is indeed an ε-winner. Consider a step in time n. Then the center’s estimation n′ of 
the number of voters is at least (1 − λ)n. In particular, it necessarily had a “checkpoint” at time n′′ , for n′′ ≥ 1−λ

1+λ
n. Thus 

n ≤ (1 + 3λ)n′′ = (1 + ε
4 )n′′ . By Lemma 2, as c was ε

4 -winner at time n′′ , it is also ε-winner at time n.
As the estimation n′ is upper bounded by (1 + λ)n, the number of checkpoints is bounded by log1+λ ((1 + λ)n) =

O (log n/λ) = O (log n/ε). Assuming that it is possible to compute an ε
4 -winner using O (z) words, a protocol based on 

checkpoints would then need O ((k + z)ε−1 log n) words of communication. As z will be at least �(k), we would get 
O (z · ε−1 log n).9 We conclude with the following:

Corollary 1. Let R be a voting rule from those described in Section 2.1. Suppose that there is a static deterministic protocol that 
computes an ε4 -winner using z words of communication, for z ≥ k. Then, there is a protocol for R-winner-tracking which uses O (z ·
ε−1 log n) words.

During the description of our results for specific voting rules, in Section 4, we will describe only the static protocol 
in each protocol based on checkpoints. For simplicity of presentation, we will compute ε-winner instead of ε

4 -winner as 
actually needed.

3.3. Protocols based on sampling

Instead of sending all voters to the center, as the naive protocol does, it is natural to let each site send only some of 
the voters arriving to it. Specifically, we would like the center to have a uniform sample of the voters. Cormode et al. [10]
describe a protocol for maintaining a sample of s items chosen uniformly at random from a distributed stream; its com-
munication complexity is O ((k + s) log n). Since we are sampling voters, we need to take into account the communication 
needed to send each of the sampled voters. Specifically, in approval elections (where the voters cast approval ballots), we 
need m bits per voter. Since we count the communication complexity in words, each of which contains log n bits, we need 

log 2m/ log n� ≤ 1 + m/ log n words per voter. Similarly, in ordinal elections (where the voters cast ordinal ballots), we need 
(logm!) bits per voter, thus 
log m!/ logn� ≤ 1 + m logm/ log n words per voter.

But how many samples are needed in order to determine an ε-winner with high probability? Our main building block 
will be Lemma 1 (see Section 2) and our general framework is as follows. For each voting rule, we will use Lemma 1 to 
argue that, with s samples, chosen uniformly with repetitions, we can determine an ε-winner with high probability. Then, 
assuming that we need w words of communication for each voter, using an efficient sampling protocol [10], as discussed 
above, we will get a communication protocol with complexity O ((k + s)w · log n). (As we use asymptotic analysis, it will be 
enough to find an O (ε)-winner and to adjust the parameters accordingly.)

4. Communication-efficient protocols

Our upper bounds are summarized in Table 2. We begin with approval-based rules and scoring rules, continue with 
tournament-based rules, and then discuss round-based rules. Before we present our specific upper bounds, the following 
remark, concerning the success probability of our protocols, is in place.

Remark 2. Notice that we state our results for protocols which are correct with some constant probability, say 0.9. One can 
always achieve arbitrary high probability 1 − δ, as follows, and depending on the general technique used:

• For protocols based on counting frequencies, following the discussion in Section 3.1, one can get failure probability δ by 
replacing the log m term with a log m

δ
term in the communication complexity.

• Protocols based on checkpoints are deterministic anyhow.

8 In fact, the Count-tracking protocol of [34] only increases its estimation as time goes by.
9 Huang et al. [22] provide a randomized protocol for Count-tracking which uses O (

√
kε−1 logn) bits of communication. As z will be greater than �(k), 

using randomization will not reduce the total asymptotic communication.
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Table 2
Overview of our results. ε is the required approximation, k is the number of sites, m is the number of candidates, and n is the number of voters. There 
are three columns of upper bounds, where the first is for protocols based on counting frequencies, the second is for protocols based on checkpoints, and 
the third is for sampling-based protocols. The results in the first column and in the third column correspond to randomized protocols, while the results 
in the second column correspond to deterministic protocols. For Plurality with run-off, the second protocol is actually a hybrid between checkpoints to 
(deterministic) frequency count. For Cup and Condorcet, one might also use the checkpoints protocol of Copeland. In our randomized lower bound we 
make the usual assumptions that there is no spontaneous communication.

Upper bounds

Voting rule Frequencies Checkpoints Sampling

Plurality O ((ε−1
√

k + k) log n· log m)

t-Approval O ((ε−1
√

kt + k) log tn· log m) O
(

k
ε (m log k

ε + logn)
)

O (ε−2 log(2t) + k)(log
(m

t

)+ logn)

Approval O ((ε−1
√

km + k) log mn· log m) O
(

k
ε (m log k

ε + logn)
)

O ((ε−2 logm + k)(m + logn))

Borda O ((ε−1
√

km + k) log mn· log m) O
(

k
ε (m log k

ε + logn)
)

O ((ε−2 logm + k)(m log m + log n))

Condorcet O ((ε−1
√

km2 + k) log mn· log m) O
(

k
ε (m log k

ε + logm · log n)
)

O ((ε−2 logm + k)(m log m + log n))

Copeland O ((ε−1
√

km2 + k) log mn· log m) O
(

k
ε (m2 log k

ε + logn)
)

O ((ε−2 logm + k)(m log m + log n))

0 Cup O ((ε−1
√

km2 + k) log mn· log m) O
(

k
ε (m log k

ε + logm · log n)
)

O ((ε−2 logm + k)(m log m + log n))

Run Off O ((ε−1
√

km2 + k) log mn· log m) O
(

k
ε logn

)
O ((ε−2 + k)(m logm + logn))

Bucklin O
(
(ε−1

√
km log2 m + k) log mn· log m

)
O (

k log m
ε (m log k

ε + logn)) O ((ε−2 logm + k)(m log m + log n))

Lower bounds

All rules �((ε−1
√

k + k) log n/ log k) Already for m = 2.

Approval �
(
ε−1km · log (n/k)

)
For deterministic protocols.

Algorithm 3: Protocol for Plurality-winner-tracking, for center.

Initiate and maintain approximate frequencies f ′(c) for each candidate using a Frequency-tracking protocol with ε′ = ε/2;
Upon query: declare ĉ for which f ′(ĉ) is the highest;

Algorithm 4: Protocol for Plurality-winner-tracking, for site.

Participate in the Frequency-tracking protocol initiated by the center by reducing a vote for candidate j to an item of type j;

• For protocols based on sampling, we mention that, as can be seen from the corresponding proofs, the increase of the 
required sampling size needed for increasing the success probability is quite small. Specifically, the number of samples 
will increase: in t-Approval to O (ε−2 log( 2t

δ
)), in (Plurality with) Run Off to O (ε−2 log( 1

δ
)), and in all other voting 

rules to O (ε−2 log(m
δ
)).

4.1. Approval-based rules and scoring rules

Let us begin with Plurality, as it is arguably the simplest voting rule. In Plurality, a vote in a distributed vote stream 
is associated with one candidate out of the m candidates participating in the election, and the goal is for the center to 
maintain a candidate c such that the highest number of voters vote for c, or at least it is at most εn-far from being such a 
candidate. Equivalently, a distributed stream for Plurality contains m item types (one item type for each candidate). Given 
an approximate frequency for each type (that is, an approximate number of voters voting for each candidate), the center 
can safely declare the candidate with the highest approximate frequency.

The next result follows by realizing a straight-forward protocol based on counting frequencies, as described in Section 3.1.

Theorem 2. There is a protocol for Plurality-winner-tracking which uses O ((ε−1
√

k + k) log n· log m) words.

Proof. We use the efficient protocol for Frequency-tracking [22] with ε′ = ε/2. This allows the center to maintain, for 
each candidate c, a value which is guaranteed to be at most ε

2 n-far from the real number of voters voting for c. The center 
would declare the candidate ĉ for which the approximate frequency is the highest. A pseudocode of the protocol is given in 
Algorithms 3, 4.
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a,b, c =⇒ a
a,b,d b

c
a
b
d

Fig. 2. Reducing t-Approval to Plurality, for t = 3. Notice that two t-Approval voters become six Plurality voters.

Let us denote the real frequency of a candidate c by f (c) (which equals its Plurality score), and its approximate frequency 
computed by the Frequency-tracking protocol by f ′(c). For each c 	= ĉ, it holds that

f (c) ≤ f ′(c) + ε

2
n ≤ f ′(ĉ) + ε

2
n ≤ f (ĉ) + εn

where the first and third inequalities follows from the ε/2-approximation and the second from our choice of ĉ . Therefore, 
we conclude that ĉ is an ε-winner, as required. �

We go on to consider t-Approval, where each voter specifies t candidates which she approves. We provide three protocols, 
based on counting frequencies, checkpoints, and sampling, respectively.

Remark 3. Notice that here, as well as for other protocols which we discuss later on, we provide a different upper bound 
on the communication complexity of each of the protocols we describe. Note that these upper bounds are incomparable, in 
the sense that each of them is better for different specific values of the parameters. To not clutter the text too much, we 
defer a discussion on the interplay between the parameters, which relates to the decision of which protocol to choose for a 
specific scenario to Section 6.

Theorem 3. There are three protocols for t-Approval-winner-tracking, for t ≤ m/2. Respectively, the protocols use O ((ε−1
√

kt +
k) log tn· logm), O  

(
k
ε (m log k

ε + log n)
)

, and O (ε−2 log(2t) + k)(log
(m

t

)+ log n) words of communication.

Proof. For the first protocol, we reduce t-Approval to Plurality, as follows, and as depicted in Fig. 2. Each site, upon receiving 
a voter v which approves t candidates, instead of considering the voter v , creates and considers t voters, v1, . . . vt , such 
that voter vi (for i ∈ [t]) is set to approve the ith approved candidate of v . For example, a voter approving {a, b, d} would 
be reduced to three voters, approving a, b, and d, respectively.

The reduced election has n′ = nt voters, and will be executed with precision parameter ε ′ = ε/2t . Consider a candidate 
c which is an ε′-winner in the reduced election; we argue that c is an ε-winner in the original election. Indeed, we can 
add εn voters, each approving c, while for each other candidate c′ , at most εn/2 of them approve c′ (as t ≤ m/2); thus, the 
relative score of c increases by εn/2 = ε′n′ . As c is ε′-winner in the reduced election, this is sufficient. By Theorem 2, the 
communication used is O ((ε′ −1

√
k + k) log n′· log m) = O ((ε−1

√
kt + k) log tn· log m).

The second protocol is based on checkpoints. We describe the static protocol for computing an ε-winner. The center 
initiates communication with all sites, asking from each site to send an approximate score for each candidate. That is, each 
site, for each candidate c, sends the number of voters approving c, rounded to the closest multiplication of εn/k. Such 
rounding is enough, since, summing up the possible errors from all k sites, the center would have a value which is at 
most εn/2-far from the real score. Thus, the candidate c with the highest approximated score will indeed be an ε-winner. 

Each site should communicate log( k
ε ) bits per candidate. Thus, the total communication is bounded by k
m log k

ε
log n � ≤ O (k(1 +

m log k
ε

log n )). The bound follows.

For the third protocol, we will show that s = 24
ε2 ln 2t

δ
sampled voters, chosen uniformly at random (with repetitions), 

are enough to determine an ε-winner with failure probability at most δ. As we can communicate each voter using log
(m

t

)
bits, the bound follows. Consider such a sample of s voters, and, for a candidate c, let Xc

i be an indicator for the event 
that the i-th sampled voter approved c. Let Xc = n

s

∑s
i=1 Xc

i , and denote by Y c the actual number of voters that ap-

proved c in the original election. Set μ = E 
[∑

i Xc
i

] = s · Y c

n . Using the Chernoff bound (Theorem 1 in Section 2), we 
have that:

Pr
[∣∣Xc − Y c

∣∣≥ ε

2
n
]

= Pr

[∣∣∣∣∣∑
i

Xc
i − s · Y c

n

∣∣∣∣∣≥ ε

2
s

]

= Pr

[∣∣∣∣∣∑ Xc
i − μ

∣∣∣∣∣≥ ε

2

n

Y c
μ

]

i
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≤ 2 exp

(
−
(ε

2

n

Y c

)2 · μ/3

)

= 2 exp

(
− ε2

12
· ns

Y c

)
.

By union bound, we have that:

Pr
[
∃c s.t.

∣∣Xc − Y c
∣∣≥ ε

2
n
]

≤ 2
∑

c

exp

(
− ε2

12
· ns

Y c

)
≤ 2t · e− ε2s

12 ≤ δ ,

where the second inequality follows from Claim 1 below, by setting λ = ε2·ns
12 and noting that (Y c1 , . . . , Y cm ) lies in the 

convex hull of the set A described there. The center will return a candidate c with maximal Xc . Correctness follows by the 
same arguments as in the frequency-count protocol. �
Claim 1. Consider the set Nm of points with m integer coordinates. Let A ⊂ Nm contain exactly those points in Nm for which the 
value of exactly t coordinates is n, while the value of all their other m − t coordinates is 0. Let λ ≥ 2n. Then, for any arbitrary point 
(x1, . . . , xm) in the convex hull of A, it holds that:

m∑
i=1

e
− λ

xi ≤ t · e− λ
n .

Proof. Consider the function f (x) = e− λ
x and notice that its second derivative is

( f (x))′′ =
(

e− λ
x

)′′ =
(

λ

x2
· e− λ

x

)′
= −2λ

x3
· e− λ

x + λ2

x4
· e− λ

x = λ

x3
· e− λ

x ·
(

λ

x
− 2

)
.

Hence, f is convex in the domain [0, n] ⊆ [0, λ/2]. Set f̂ (x1, . . . , xn) = ∑n
i=1 f (xi). As sum of convex functions is also 

convex, f̂ is convex in the domain [1, n]n , which in particular contains the convex hull of A. Since f̂ is convex function, the 
maximum value in the convex hull achieved in a point of A. We conclude that:

m∑
i=1

e
− λ

xi = f̂ (x1, . . . , xm) ≤ max
(y1,...,ym)∈A

f̂ (y1, . . . , ym) = t · e− λ
n . �

For Approval, where the set of approved candidates of each voter can be arbitrary, thus upper bounded by the number 
m of candidate, we proceed similarly to t-Approval. Naturally, we have m-factors instead of t-factors in our bounds. (Specif-
ically, in the first protocol the size of the reduced election is n′ = mn and in the second protocol we sample slightly more 
voters.)

Theorem 4. There are three protocols for Approval-winner-tracking. Respectively, the protocols use O ((ε−1
√

km + k) log mn ·
log m), O  

(
k
ε (m log k

ε + log n)
)

, and O ((ε−2 log m + k)(m + log n)) words of communication.

We go on to consider ordinal elections. Specifically, next we consider the Borda rule, for which we describe three proto-
cols.

Theorem 5. There are three protocols for Borda-winner-tracking. Respectively, the protocols use O ((ε−1
√

km + k) log mn· logm), 
O (ε−1k(m log(k/ε) + log n)), and O ((ε−2 log m + k) (m log m + log n)) words of communication.

Proof. We start by discussing the impact of adding voters for elections whose results are decided by Borda. For an arbitrary 
candidate c, consider two voters where one voter is ranking c first and then ranks the other candidates in an arbitrary order, 
and another voter is ranking c first and then ranks the other candidates in reverse order. Adding these two voters causes an 
increase to the score of c by 2(m − 1) while the score of all other candidates increases by m − 2. Thus, by adding εn voters, 
we can increase the relative score of c by εnm/2.

The first protocol is based on reducing Borda to Plurality, similarly to the first protocol stated in Theorem 3. Specifically, 
we begin by reducing Borda to Plurality, as follows, and as depicted in Fig. 3: Each site, upon receiving a voter v with 
preference order c1 � . . . � cm , instead of considering the voter v , creates and considers 

∑
j∈[m] m − j < m2 voters, such that 

for j ∈ [m], it creates m − j voters, each approving c j . For example, a voter v : a � b � d would be transformed into three 
voters, approving a, a, b, respectively.
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a � b � c =⇒ a
c � a � b a

b
c
c
a

Fig. 3. Reducing Borda to Plurality. Notice that two Borda voters become six Plurality voters.

In the reduced election we have n′ < m2n voters, where n is the number of voters in the original election. We use the 
protocol for Plurality described in Theorem 2 with ε′ = ε/(4m). Let us denote the real frequency of a candidate c in the 
reduced election by f (c) and its computed approximate frequency by f ′(c). The error is bounded by 

∣∣ f ′(c) − f (c)
∣∣≤ ε′n′ <

ε
4m · nm2 = εnm

4 . Since by adding εn voters we can increase the relative score of the chosen candidate by εnm/2, we are 
done.

The second protocol is based on checkpoints, thus below we describe the static subprotocol used in each checkpoint. 
Similarly to the second protocol in Theorem 3, each site sends an approximation of the Borda score of each candidate 
rounded to the closest multiplication of εnm/k. Hence the subprotocol uses O (k(1 + (m log k

ε )/(log n))) words, while the 
combined error for the Borda score estimation of each candidate is εnm/2.

For the third protocol, we will show that s = O (ε−2 log m
δ
) sampled voters, chosen uniformly at random (with rep-

etitions), are enough to determine an ε-winner with failure probability at most δ. As we can communicate each voter 
using log(m!) bits, the bound follows. For a candidate c, let Xc

i = αi
m , where αi is the score that candidate c gets 

from the i’s sampled voter. Let Xc = n·m
s

∑s
i=1 Xc

i , and denote by Y c the score of the candidate c in the election. Set 
μ =E 

[ 1
s

∑
i Xc

i

]= 1
n·m Y c . Using Lemma 1 we have that

Pr
[∣∣Xc − Y c

∣∣≥ ε

4
· n · m

]
= Pr

[∣∣∣∣∣1s
∑

i

Xc
i − μ

∣∣∣∣∣≥ ε

4

]
≤ δ

m
,

and hence by union bound it follows that Pr
[∃c s.t.

∣∣Xc − Y c
∣∣≥ ε

4 · n · m
] ≤ δ. The center will return a candidate c with 

maximal Xc . The accuracy of the protocol follows from arguments given in the analysis of the frequency-count protocol. �
Remark 4. Results for other scoring rules, at least those corresponding to scoring vectors whose values are polynomially 
bounded, can be achieved by similar techniques. As the corresponding reductions to plurality are quite technical and do not 
provide new insights to the problem, we do not consider them here.

4.2. Tournament-based rules

In this section we consider Condorcet winners and the Copeland voting rule. The rules we consider below are built upon 
the tournament defined over the election by considering head-to-head contests between all pairs of candidates. The first 
protocol for Copeland proceeds by approximating, for each pair of candidates c1 and c2, the number of voters preferring c1
to c2. Having these approximate counts, we will be able to identify an ε-winner under Copeland. If there is a candidate c
which is preferred to all other candidates, then the center shall declare c as the Condorcet winner.

Theorem 6. There are three protocols for Copeland-winner-tracking. Respectively, the protocols use O ((ε−1
√

km2 + k) log mn ·
logm), O  

(
k
ε (m2 log k

ε + log n)
)

, and O ((ε−2 log m + k)(m log m + log n)) words.

Proof. For the first protocol, we reduce each voter, corresponding to a total order over the candidates, to O (m2) items; 
specifically, the reduced distributed stream will contain items of O (m2) item types, where for each pair of candidates c1
and c2 we have a different type, denoted by (c1, c2). The reduction proceeds as follows. Each site, upon receiving a voter v
which specifies a linear order, instead of considering the voter v , creates and considers 

(m
2

)
items, such that if v prefers c1

to c2, then we create an item (c1, c2) (notice that this is an ordered tuple). The reduction is depicted in Fig. 4. For example, 
a voter v : a � b � d would be transformed into three items, (a, b), (a, d), and (b, d).

The reduced distributed stream has n′ = (m2) · n items and O (m2) types of items. For two candidates c1 and c2, let 
N(c1, c2) denote the number of voters preferring c1 to c2. Now we can use a protocol based on counting frequencies (see 
Section 3.1), with ε′ = ε/m2, to let the center maintain, for each pair of candidates c1 and c2, a value N ′(c1, c2) such that 
N ′(c1, c2) ∈ N(c1, c2) ± ε′n′ ⊆ N(c1, c2) ± εn/2.

Let Sc′(c, E) be the number of candidates c′ such that N ′(c, c′) ≥ n/2 − εn/2 in the election E . We denote by Sc(c, E) the 
(real) Copeland score of candidate c in election E . The center declares as an ε-winner a candidate ĉ with the highest value 
of Sc′(ĉ, E). Note that, for every candidate c′, it holds that Sc(c′, E) ≤ Sc′(c′, E); this is so since the error in the computed 
frequency is bounded by εn/2, while for the declared winner ĉ, it holds that there are at least Sc′(ĉ, E) candidates c′ such 
that N ′(ĉ, c′) ≥ n/2 − εn.
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a � b � c =⇒ (a,b)

a � c � b (a, c)
(b, c)
(a, c)
(a,b)

(c,b)

Fig. 4. Reducing a linear order to frequencies.

Next we argue that ĉ is indeed an ε-winner. We add εn/2 voters which rank ĉ on top and then the other candidates in 
arbitrary order, and another εn/2 voters which rank ĉ on top and then the other candidates in reverse order. Denote the 
modified election, with these additional voters, by E ′ . Then, for every c′ , N(ĉ, c′) increased by εn; thus, Sc(ĉ, E ′) ≥ Sc′(ĉ, E). 
Moreover, the number of wins of any other candidate c′ does not increase. Hence Sc(c′, E ′) ≤ Sc′(c′, E) ≤ Sc′(ĉ, E) ≤ Sc(ĉ, E ′).

The communication complexity follows by the discussion given in Section 3.1; specifically, it is O ((ε′ −1
√

k +
k) log n′· log m) = O ((m2

ε

√
k + k) log(nm)· log m).

The second protocol is based on checkpoints, and thus below we describe the static subprotocol used in each checkpoint. 
For every pair of candidates, c1 and c2, every site sends, to the center, the number of voters preferring c1 over c2, rounded 
to the closest multiplication of εn/2k. In each checkpoint, a candidate achieving estimated score higher that n

2 − εn
2 for 

the maximal number of times (that is, for the largest number of other candidates) is declared a winner. As the error in 
each head-to head contest is upper-bounded by k · εn

2k = εn
2 , correctness follows by similar lines as given above in the proof 

of the frequency-count protocol. As there are m2 quantities to estimate, each site sends O  
(

1 + m2 log k
ε

log n

)
words. The total 

communication follows.
For the third protocol, we will show that s = O (ε−2 log m

δ
) sampled voters, chosen uniformly at random (with repeti-

tions), are enough to determine an ε-winner with failure probability at most δ. As we can communicate each voter using 
log(m!) bits, the bound follows. For two candidates c, c′ , let X (c,c′)

i be an indicator for the event that the i’s sampled voter 
prefers c over c′ . Let N ′(c, c′) = n

s

∑s
i=1 X (c,c′)

i , and denote by N(c, c′) the actual number of voters preferring c over c′ in the 
original election. Set μ =E 

[
1
s

∑
i X (c,c′)

i

]
= 1

n N(c, c′). Using Lemma 1 it follows that

Pr
[∣∣N ′(c, c′) − N(c, c′)

∣∣≥ ε

2
· n
]

= Pr

[∣∣∣∣∣1s
∑

i

X (c,c′)
i − μ

∣∣∣∣∣≥ ε

2

]
≤ δ

m2
.

By union bound, with probability at least 1 − δ, for every pair of candidates we have that∣∣N ′(c, c′) − N(c, c′)
∣∣< ε

2
· n.

Let Sc′(c, E) be the number of candidates c′ such that N ′(c, c′) ≥ n/2 − εn/2 in the election E . The center declares as an 
ε-winner a candidate c with the highest value of Sc′(c, E). The accuracy of the protocol follows from arguments given in 
the analysis of the frequency-count protocol. �

We go on to consider the Cup rule, which differs from Copeland in several aspects. The first aspect is that, in order to 
prove that some estimated candidate c is indeed an ε-winner, it is not enough to add c arbitrary voters ranking c last, but 
rather a more subtle construction of voters is needed. The second aspect is that, intuitively, while in Copeland we had to 
send communication regarding all pairs of candidates, in Cup it is enough to send communication only regarding some pairs 
of candidates, as given by the binary tree corresponding to the “head-to-head” contests performed for finding the winner 
under Cup.

Theorem 7. There are three protocols for Cup. Respectively, the protocols use O ((ε−1
√

km2 +k) log mn · logm), O
( k
ε (m log k

ε + log m ·
log n)

)
, and O ((ε−2 log m + k)(m log m + log n)) words.

Proof. Let T be an implementation of the binary tree of the Cup election: There are n − 1 ordered pairs P of candidates 
(corresponding to the head-to-head “contests”), such that the winning candidate in each such pair goes up in the tree. In 
particular, every election E which agrees with the tree T on P , will have the root of T as its Cup-winner. We argue that 
there is an order πP over the candidates such that, if (c, c′) ∈ P , then c will appear before c′ in πP . Indeed, consider a 
directed graph G with the candidates as its vertices and P as its edges. G is acyclic and thus a topological order of G
will provide us with the desired order π . Later we will use this order π as a preference order. Now we will proceed to 
describing the protocols.

Our first protocol is based on counting frequencies, and is similar to the corresponding Copeland protocol. We estimate 
the frequencies of all head-to-head contests (using the same precision and communication). To return a winner, we simply 
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run a Cup tournament (with the appropriate, given tree), using the estimations N ′(c, c′) instead of the real values NE (c, c′). 
As a result, we have a set P of n −1 ordered pairs. To prove correctness, it will be enough to show that by adding additional 
εn votes it will hold, for every (c, c′) ∈ P , that NE ′(c, c′) ≥ NE ′ (c′, c). Indeed, following the analysis of the frequency count 
of Copeland, with high probability for every pair of candidates c, c′ we have that |N ′(c, c′) − NE(c, c′)| ≤ εn/2. Recall the 
order πP described at the beginning of the proof, and notice that by adding εn voters with preference orders as πP it will 
hold, for every (c, c′) ∈ P , that

NE ′(c, c′) = NE(c, c′) + εn ≥ NE(c′, c) = NE ′(c′, c) ,

as required.
The second protocol is based on checkpoints,10 thus below we describe the static subprotocol carried-out in each check-

point. The subprotocol has log m rounds, corresponding to the height of the binary tree associated with the Cup protocol. In 
each round, the center asks each site to provide approximate values of the pairs currently at interest. Supplied with these 
approximate values, the center then computes the winner of each head-to-head contest, and continue to the nodes further 
up the tree. At the end, the center declares the winner of the highest node in the tree.

More concretely, for every pair of candidates of interest c, c′ , each site sends the center the number of voters preferring 
c over c′ , rounded to the closest multiplication of εn/2k. As the error in each head-to-head contest is upper-bounded by 
k · εn

2k = εn
2 , correctness follows by similar lines as given above in the proof of the frequency-count protocol described above. 

There are logm rounds, where at round i, each site sends 2log m−i values, each requiring log 2k
ε bits. Thus, the total number 

of words in a checkpoint is:

k ·
log m∑
i=1

⌈
2log m−i · log 2k

ε

log n

⌉
≤ k ·

log m∑
i=1

(
1 + 2i · log 2k

ε

log n

)
= O

(
k ·
(

log m + m · log k
ε

log n

))
,

and total communication follows.
The third protocol is based on sampling and is similar to the Copeland sampling protocol. We use the same communi-

cation, and hence we ensure that with high probability, for every pair of candidates c, c′ it holds that |N ′(c, c′) − N(c, c′)| <
ε
2 · n. Correctness now follows by similar lines as in the frequency-count protocol. �

Finally, we consider the Condorcet voting rule. In order to declare a candidate c as a Condorcet ε-winner, it is enough 
to ensure that, by adding εn voters, every other candidate c′ 	= c loses to at least one other candidate in the head-to-head 
contest (and thus, either c can become a Condorcet winner in this way, or there will be no Condorcet winner at all, in 
which case c can be returned). A candidate c which is either Copeland or Cup ε-winner has this property. We conclude that 
every protocol for Copeland as well as every protocol for Cup is in particular a protocol for Condorcet.

Corollary 2. There are three protocols for Condorcet-winner-tracking. Respectively, the protocols use O ((ε−1
√

km2 + k) log mn ·
logm), O  

(
k
ε (m log k

ε + log m · log n)
)

, and O ((ε−2 log m + k)(m log m + log n)) words.

4.3. Round-based rules

In this section we consider two round-based voting rules; we begin with Plurality with run-off and then continue to 
Bucklin. For Plurality with run-off we provide three protocols, one of which is a “hybrid” protocol, specifically combin-
ing checkpoints and sampling. Intuitively, hybrid protocols fit naturally with round-based voting rules, which, informally 
speaking, are themselves “hybrids” of voting rules.

Theorem 8. There are three protocols for Plurality-with-run-off-winner-tracking. Respectively, the protocols use
O ((ε−1

√
km2 + k) log mn · log m), O  

(
kε−1 logn

)
and O ((ε−2 + k)(m log m + log n)) words.

Proof. The first protocol is based on counting frequencies. We combine the protocol for Plurality, described in the proof 
of Theorem 2, with the protocol for Copeland, described in the proof of Theorem 6. Specifically, the Plurality protocol 
maintains a frequency count for the plurality score of each candidate with accuracy ε

6 . The Condorcet protocol, for every two 
candidates c1, c2, maintains a frequency count for the number of times c1 wins c2 with accuracy ε

3 . Following the analysis in 
Theorem 2 and Theorem 6, the communication needed is O ((ε−1

√
k + k) log mn· logm) + O ((ε−1

√
km2 + k) log mn· logm) =

O ((ε−1
√

km2 + k) log mn· logm). When calculating the winner, the center identifies two candidates c1, c2 with the highest 

10 The protocol described here is useful if we assume that logm · log n ≥ m2 log k
ε . If this is not the case, then we can use instead the communication 

protocol of Copeland.
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estimated Plurality scores f ′(c) using the protocol for Plurality. Denoting by f (c) the real Plurality score, for every c′ 	= c1, c2

it holds that

For i ∈ {1,2}, f (c′) ≤ f ′(c′) + ε

6
n ≤ f ′(ci) + ε

6
n ≤ f (ci) + ε

3
n . (1)

Next, the center uses the protocol for Condorcet to decide which of these two candidates it shall declare as an ε-winner. 
Assume, without loss of generality, that it declares c1 as the winner. Then, by adding 2

3 εn (resp. 1
3 εn) voters ranking c1 (resp. 

c2) on top, we can guarantee that c1 and c2 indeed have the highest Plurality score while c1 wins c2 in the head-to-head 
contest.

The second protocol is a “hybrid” protocol which combines checkpoints and frequency count. During the protocol we 
maintain estimated frequencies of the Plurality score of each candidate as in the first protocol (which we execute with pre-
cision ε

6 ). Next we describe the subprotocol executed in each checkpoint. At each checkpoint, we use the Plurality protocol 
to identify two candidates c1 and c2 with the highest (approximated) Plurality score. Given c1 and c2, the center collects 
from all sites the exact number of voters preferring c1 over c2, and declares as a winner the one which is preferred by more 
voters. Correctness follows as by adding ε

2 n voters ranking c1 on top, and ε
2 n voters ranking c2 on top, we guarantee that 

c1 and c2 indeed have the highest plurality score (formally, this follows from equation 1) while the winner between the 
two remains unchanged. The subprotocol uses 2k words of communication, thus the total communication in all the check-
points is O  

(
kε−1 log n

)
. For the frequency count we will use the deterministic protocol with O  

(
kε−1 log n

)
communication. 

Therefore, in total we have a deterministic protocol with O  
(
kε−1 log n

)
communication.

For the third protocol, we will show that s = O (ε−2 log 1
δ
) sampled voters, chosen uniformly at random (with repetitions), 

are enough to determine an ε-winner with failure probability at most δ. We will use two sets of independent samples, S1
and S2, each of size s/2 = O (ε−2 log 1

δ
). According to the proof of Theorem 3 for the case of t = 1, the set of sampled 

voters S1 is sufficient for us to determine the plurality score of each candidate with accuracy ε
6 . Let c1 and c2 by the 

two candidates with the highest plurality score in S1. Next we use S2 to determine the number of times c1 wins c2 (with 
accuracy ε

3 as in our protocol for Copeland; see Theorem 6), and return the candidate who wins in the head-to-head contest 
(in S2). Correctness follows by similar lines to our frequency-count protocol. �

For Bucklin, we suggest three protocols; one is based on counting frequencies, the second is based on checkpoints, while 
the third is a sampling-based protocol.

Theorem 9. There are three protocols for Bucklin-winner-tracking. Respectively, the protocols use O ((ε−1
√

km log2 m +
k) log mn· logm), O  

(
ε−1 · k · log m ·

(
log n + m log k

ε

))
, and O ((ε−2 log m + k)(m log m + log n)) words.

Proof. To make the proof ideas more clear, for simplicity we assume that m is a power of 2 (we mention that if this is 
not the case, than we can add less than m dummy candidates, that always will be ranked after the real candidates). By the 
pigeonhole principle, a Bucklin winner is necessarily found within the first m/2 rounds. This is so, since a candidate which 
is not a Bucklin winner appears less than n/2 times within these n · m/2 positions, thus if no candidate is a Bucklin winner, 
then at least one position in the n · m/2 positions, constituting the m/2 first positions of the n voters, is not filled by any 
candidate.

We start with a discussion regarding the impact of adding voters. Let c be an arbitrary candidate and consider adding 
two voters, each ranking c on top, and ranking the other candidates in reverse orders. As a result, the score of c increases 
by 2 for each level j ≤ m/2, while the status of each candidate c′ 	= c is only weaker (thus, if c′ does not have a majority at 
level j before the addition, then it will also not have a majority after the addition).

The first protocol is based on counting frequencies. It begins by reducing the distributed vote stream into a different 
distributed stream. Intuitively, the idea is to consider binary divisions of the positions between 1 to m; for example, if we 
know the frequency of some candidate c in the first half positions (between position 1 and position m/2) as well as the 
frequency of it in the positions between position m/2 and position 3m/4, then we know its frequency between position 1
and 3m/4. Thus, we will have a different distributed stream for each binary division of the m positions, and we will use 
these to know the (approximated) Bucklin score of each candidate.

Formally, we will be estimating the frequencies of items of the form (c, i, j), where c is a candidate, i ∈ [0, log m], and 
j ∈ [0, m/2i − 1]. To this end, each site, upon receiving a voter v , increases (by 1; this is equivalent to producing those 
entries and feeding them to the frequency count protocol) various entries in the frequency count protocol. Specifically, for 
each candidate c that was ranked at position 	 ∈ [m], the site increases the items (c, i, 

⌊
	−1

2i

⌋
), for all i ∈ [0, log m − 1]

(alternatively (c, i, j) for j ∈ [0, m/2i − 1], such that ( j · 2i + 1) ≤ 	 ≤ (( j + 1) · 2i)). The idea is that we can recover the 
approximate number of voters ranking each candidate c at the first j positions using log m approximate counters of these 
items. See Fig. 5 for an illustrating example.

The protocol initiates a Frequency-tracking protocol on the reduced distributed stream with ε ′ = ε/(2m log2 m). (To 
arrive to the term above, notice that one log factor comes from the fact that each voter is replaced by m log m votes, 
while the second log factor comes to compensate for the fact that we estimate up to log m values.) This will give us 
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i = 1
j = 0︷ ︸︸ ︷ j = 1︷ ︸︸ ︷

i = 0
j = 0︷︸︸︷ j = 1︷︸︸︷ j = 2︷︸︸︷ j = 3︷︸︸︷
c1 � c2 � c3 � c4

Fig. 5. An example for the reduction performed in the protocol for Bucklin. Specifically, a voter v : c1 � c2 � c3 � c4 is considered, which is reduced to the 
following stream elements: (c1, 0, 0), (c1, 1, 0), (c2, 0, 1), (c2, 1, 0), (c3, 0, 2), (c3, 1, 1), (c4, 0, 3), (c4, 1, 1).

Algorithm 5: Frequencies based protocol for Bucklin-winner-tracking, for center.

Initiate and maintain a Frequency-tracking protocol with precision parameter ε′ = ε/(2m log2 m), where the items are all triples (c, i, j) such that c
is a candidate, i ∈ [0, logm] and j ∈ [0, m/2i − 1]. The estimated frequency count of (c, i, j) is denoted f ′(c, i, j);
foreach candidate c and k ∈ {1, . . . , m} do

Let a0, a1, . . . , alog m−1 ∈ {0, 1} such that k =∑log m−1
i=0 ai · 2i ;

Maintain N ′(c, k) =∑log m−1
i=0 ai · f ′

(
c, i,

⌊
k−1

2i

⌋)
;

Upon query: Find the minimum k for which there is at least one candidate c for which N ′(c, k) ≥ n
2 − εn

2 , and return the corresponding c;

Algorithm 6: Frequencies based protocol for Bucklin-winner-tracking, for site.

Participate in the Frequency-tracking protocol initiated by the center;
Upon receiving a vote v : c1 � . . . � cm reduce it to the following items:
for 	 ∈ {1 . . . , m} do

for i ∈ {0, . . . , logm − 1} do

Simulate insertion of item 
(

c	, i,
⌊

	−1
2i

⌋)
to the Frequency-tracking protocol;

approximate values on the number of items of each type in our reduced distributed stream. Let us denote, for a candidate c
and position k ∈ [m], the number of voters ranking c at any position k′ ≤ k by N(c, k). Then, we can approximate each of the 
values N(c, k) by adding log m different approximated frequencies, computed by the Frequency-tracking protocol (on the 
reduced stream). This is, informally, the reason why we reduced each original voter in to the items we reduced to: Given 
those items, it is enough to add log m different approximated frequencies in order to approximate the value of N(c, k); then, 
as we will see below, bounding the error can be done in a finer way, since the error is accumulated only in log m different 
frequencies, and not in m such (which would be the case otherwise).

Formally, for candidate c, index i ∈ [m], and j ∈ {0, . . . , m
2i − 1}, denote by f (c, i, j) the number of voters that ranked 

c between the ( j · 2i + 1)’th position and the (( j + 1) · 2i)’th position. For an index k ∈ [m], let a0, a1, . . . , alog m−1 ∈ {0, 1}
such that k =∑log m−1

i=0 ai · 2i . It holds that N(c, k) =∑log m−1
i=0 ai · f

(
c, i,

⌊
k−1

2i

⌋)
. Denote by f ′(c, i, j) the frequency count 

protocol estimation for f (c, i, j). Set N ′(c, k) =∑log m−1
i=0 ai · f ′

(
c, i,

⌊
k−1

2i

⌋)
to be the approximations of N(c, k).

We are now able to simulate Bucklin; specifically, the center finds the minimum k for which there is at least one 
candidate c for which N ′(c, k) ≥ n

2 − εn
2 , and declares c as an ε-winner.

Next we show correctness. The size of the reduced distributed stream is n′ = nm logm, since each voter is transformed 
into m logm items, specifically log m per each candidate. To approximate the value N(c, k) we add up log m approximate 
frequencies, each of which can be wrong by at most ε ′n′ = εn/(2 log m); thus, the value of N ′(c, k) can be wrong by at 
most εn/2. Therefore, in each level j′ < j where we do not find a winner, there is indeed no candidate with a majority. 
Finally, according to the discussion in the begging of the proof, εn additional voters can indeed make our chosen candidate 
a winner. A pseudocode of the protocol is given in Algorithms 5, 6.

The second protocol is based on checkpoints, and thus below we describe the static subprotocol carried-out in each 
checkpoint. Each checkpoint contains log m rounds, where in each of these log m rounds, the center is performing an ap-
proximate binary search to find the first j for which there is at least one candidate ci for which the estimation of N(ci, j) is 
greater than n

2 − εn
8 , and declares this ci as an ε-winner. In the round when some index j is considered, each site sends to 

the center the number of voters ranking each candidate c among the first j positions, rounded to the closest multiplication 
of εn/4k. Thus, the center can estimate each N(ci, j) with precision εn

8 , as needed.
Let c be our declared candidate, which is declared at round j. Then, according to the discussion in the beginning of 

the proof, by adding ε
4 votes, the declared candidate c will have majority of the votes at round j, while no c′ 	= c will 

have majority of the votes for j′ < j. In particular the candidate c is an ε -winner. Correctness follows by the discussion in 
4
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Section 3.2. As at most k
m log 4k/ε
log n � words of communication are required in each round of the sub-protocol, and there are 

at most log m rounds, the total communication is bounded by

O

(
log n

ε
· log m · k
m log 4k/ε

log n
�
)

≤ O

(
k · log m

ε
·
(

log n + m log
k

ε

))
.

For the third protocol, we will show that s = O (ε−2 log m
δ
) sampled voters, chosen uniformly at random (with repeti-

tions), are enough to determine an ε-winner with failure probability at most δ. As we can communicate each voter using 
log(m!) bits, the bound would follow. So, for each candidate c and j ∈ [m], let X (c, j)

i be an indicator for the event that the i’s 
sampled voter ranks c among the top j positions. Set N ′(c, j) = n

s

∑s
i=1 X (c, j)

i to be an estimation for N(c, j) – the number 
of voters ranking c at among the top j positions. Using Lemma 1 we conclude that Pr

[∣∣N ′(c, j) − N(c, j)
∣∣≥ ε

2 · n
] ≤ δ

m2 . 
By union bound, with probability at least 1 − δ for every all c, j, it holds that 

∣∣N ′(c, j) − N(c, j)
∣∣ < ε

2 · n. The center now 
finds the first j for which there is at least one candidate c for which N ′(c, j) ≥ n

2 − εn
2 , and declares this c as an ε-winner. 

Correctness follows by the same arguments as in the frequency count protocol. �
5. Lower bounds

In this section we provide lower bounds to complement the upper bounds derived above. Our main result is an almost 
tight lower bound (up to a factor of log k· log m) for Plurality-winner-tracking. We mention that our lower bound holds 
already for Plurality with 2 candidates and that it also improves the state-of-the-art lower bound for Count-tracking (refer 
to Theorem 10 for our lower bound and to the remark which follows it for its application to Count-tracking). Later in this 
section we describe a lower bound for deterministic protocols for Approval-winner-tracking, which is of some interest 
mainly since it is almost tight for Approval-winner-tracking and also shows that some dependency on the number m of 
candidates is required.

5.1. Randomized lower bound for Plurality-winner-tracking

Before we describe the randomized lower bound for Plurality-winner-tracking, we mention that it is applicable to all 
other voting rules we consider, via the following reduction.

Lemma 3. Let R be some voting rule described in Section 2.1. A protocol for R-winner-tracking which uses C words of communi-
cation implies a protocol for Plurality with 2 candidates which uses C words of communication.

Proof. Assuming a protocol for a voting rule R, we can use it as a black-box for solving Plurality with 2 candidates; below 
we describe such a reduction.

Let R be a voting rule considered in this paper. Let P be a protocol for R which uses C words of communication. We 
construct a protocol P ′ for Plurality with two candidates, a and b, which uses P as a black-box. Specifically, we describe 
the operation of P ′ for the different R’s considered in this paper; the general idea of the reduction is similar for all these 
voting rules, namely, given a Plurality election to construct a R election where the R winners are equivalent to the Plurality 
winners. The specifics of the reduction very slightly between the voting rules considered. We denote by a and b our two 
Plurality candidates.

If R is Approval, then, for each Plurality voter which arrives and approves some candidate, say a, we create a voter 
approving only a. Notice that the Approval winners are equivalent to the Plurality winners.

If R is one of {Borda, Condorcet, Copeland, Cup, Plurality with run-off, Bucklin}, then, for each Plurality voter which 
arrives and approves a, we create a voter ranking a on top and then b; similarly, for each Plurality voter which arrives and 
approves b, we create a voter ranking b on top and then a. Notice that, in these cases, the R winner are equivalent to the 
Plurality winners.

If R is t-Approval, then we shall create 2t − 2 new candidates c1, . . . , c2t−2, and, for each Plurality voter which arrives 
and approves a, we create one voter ranking a, c1, . . . , ct−1 on top, and another voter ranking a, b, ct , . . . , c2t−3 on top; 
similarly, for each Plurality voter which arrives and approves b, we create one voter ranking b, c1, . . . , ct−1 on top, and 
another voter ranking b, a, ct , . . . , c2t−2 on top; Notice that in this case also, the R winner are equivalent to the Plurality 
winners. �

We mention that in our lower bound for Plurality which we describe next, we assume, as it is usual in studying dis-
tributed streams, that there is no spontaneous communication; that is, the center can initiate communication only as a 
result of receiving a message from the sites, and each site can initiate communication only as a result of receiving a stream 
item or a message from the center.

Now we are ready to state our lower bound for Plurality; the proof of the corresponding theorem (that is, Theorem 10) 
appears at the end of the section, and is based on Lemma 4 and Lemma 5. Recall that for Plurality-winner-tracking, 
Theorem 2 provides an upper bound of O ((ε−1

√
k + k) log n· log m).
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Theorem 10. Any randomized protocol for Plurality-winner-tracking uses at least �((ε−1
√

k + k) log n/ log k) words of commu-
nication, even when there are only two candidates.

The next lemma shows a lower bound when k < ε−2.

Lemma 4. If k < ε−2 , then any randomized protocol for Plurality-winner-tracking uses at least �(ε−1
√

k log n) words of com-
munication, even when there are only two candidates.

Proof. We reduce Count-tracking to Plurality-winner-tracking. To this end, we assume, towards a contradiction, that 
there is a protocol for Plurality-winner-tracking with o(ε−1

√
k log n) communication complexity, and describe a protocol 

with the same communication complexity for Count-tracking. For k < ε−2 this leads to a contradiction, since there is a 
lower bound of �(ε−1

√
k log n) for Count-tracking where k < ε−2 [22, Theorem 2.4].

The distributed stream for Count-tracking contains items of only one type, and a protocol for Count-tracking maintains 
a value n′ such that n′ ∈ n ± εn, where n is the number of items in the distributed stream. We treat those items as voters, 
each of which is approving the candidate c1.

So, our reduction would work as follows: We assume the existence of a protocol for Plurality-winner-tracking in order 
to design a protocol for Count-tracking. Specifically, in order to design a protocol for Count-tracking with k sites, we will 
use (the assumed) protocol for Plurality-winner-tracking with k + 1 sites. The idea would be that the k sites for the
Count-tracking protocol would be mapped to k sites of the Plurality-winner-tracking protocol, where an item received 
by a site of the Count-tracking protocol would be mapped to a vote for candidate c1, delivered to a site of the Plurality-

winner-tracking. Then, we center of the protocol for Count-tracking which we are designing would directly send votes 
for candidate c2 to the remaining site, at certain times. This would cause the protocol for Plurality-winner-tracking with 
k + 1 sites to swap winners back and forth from declaring c1 to be a winner to declaring c2 to be a winner; intercepting 
those flips, we would be able to approximate the number of message, thus indeed describe a protocol for Count-tracking.

Below we explain how does the center operate in our protocol for Count-tracking. The general idea of the reduction 
is as follows: For the center to simulate another site, called a ghost site (we use this name to emphasize that it is not a 
“real” site, but just a “virtual” site which is being simulated by the center, as part of the center’s internal computation), to 
which the center will send ghost voters (again, not real voters, but only simulated by the center). The center will simulate 
a protocol for Plurality with voters approving c1 going to the k “real” sites, and simulated voters approving c2 going to the 
ghost site.

Specifically, the center has three parts (here, by parts we mean the implementation modules of the center; that is, 
the center is a center for Count-tracking which internally uses the following parts/modules in its internal computation). 
The first part is a center for a Plurality-winner-tracking protocol operating on k + 1 sites. The second part is a site in a
Plurality-winner-tracking protocol; this is the ghost site. The third part is for the center to inspect the Plurality-winner-

tracking protocol from above, and (using knowledge about the current winner) to send voters approving the candidate c2
to the ghost site.

Let us denote the number of voters voting for c1 (c2) by s(c1) (respectively, s(c2)). Set δ = ε/10. The protocol for
Plurality-winner-tracking will work with respect to approximation δ, and will consist of k + 1 sites. Next we describe the 
logic of the third part of the center. The estimation for Count-tracking will be est = (1 + 3δ)s(c2) (note that only the ghost 
site receives voters approving c2, hence the center knows s(c2) exactly).

Before there is any communication from the (real) sites to the center, we set s(c2) = 0. Then, at some point in time there 
will be some communication from the sites to the center indicating that some voters approving c1 arrived; specifically, the 
first part of the center would declare c1 as the winner of the election. More generally, our protocol works in phases, where 
a phase starts when the center “flip”s its estimation; that is, the (first part of the) center changes the estimation for the 
Plurality winner from c2 to c1. When such a flip occurs, the center sends some ghost voters (approving c2) to the ghost site 
until s(c2) = (1 + 3δ)i (for some i) and a flip (from c1 back to c2) occurs. (That is, we send ghost voters until a flip occurs 
and then send some additional voters until we reach a power of 1 +3δ; reaching this power of 1 +3δ is actually not needed, 
but it does not affect the communication complexity and it makes the analysis cleaner.) We assume, as is usually done in 
distributed streams, that communication and internal computation happens instantly. Thus, we have that c2 is always the 
winner of the Plurality-winner-tracking protocol. This finishes the description of the reduction.

Next we argue that our estimation (for Count-tracking) is accurate. Specifically, we will show that s(c1) ≤ est ≤ (1 +
ε)s(c1). As c2 is always the winner, it always holds that s(c2) + δ(s(c1) + s(c2)) ≥ s(c1). Since δ < 1/10 (as ε < 1), it holds 
that:

s(c1) ≤ 1 + δ

1 − δ
· s(c2) < (1 + 3δ) · s(c2) = est .

Fix s(c2) = (1 + 3δ)i . Note that when s(c2) was equal to (1 + 3δ)i−1, the protocol for Plurality-winner-tracking considered 
c1 as the winner. Hence, s(c1) + δ(s(c1) + (1 + 3δ)i−1) ≥ (1 + 3δ)i−1; therefore,

s(c1) ≥ 1 − δ
(1 + 3δ)i−1 ≥ (1 + 3δ)

3
(1 + 3δ)i ≥ est

.

1 + δ (1 + 3δ) 1 + ε
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Note that, until the next flip, s(c1) can only grow, while our estimation remains unchanged. Hence, it will still hold that 
est ≤ (1 + ε)s(c1). Finally, we have that the communication of our protocol is bounded by o(δ−1

√
k + 1 log(s(c1) + s(c2))) =

o(ε−1
√

k log n), which contradicts the lower bound for Count-tracking discussed above. �
The next lemma is especially interesting for k ≥ ε−2.

Lemma 5. Any randomized protocol for Plurality-winner-tracking uses at least �(k logn/ log k) words of communication, even 
when there are only two candidates.

Proof. We assume that ε < 1
3 . Consider a protocol for Plurality-winner-tracking which is correct with probability 2

3 on 
every input. Next we describe a distributed stream of voters which come to the sites. Specifically, the stream consists of s
phases. Let x1 = 1, y1 = 1, xi = (1 + 3ε) · k · yi−1, and yi = yi−1 + xi . During the i’th phase, xi voters will go to each site 
and vote for the candidate c(i mod2) . Note that after the i’th phase, exactly yi voters voted at each site. The total number of 
votes for c(i mod2) is at least k · xi , while the total number of votes for c(i−1 mod2) is at most k · yi−1. In particular, c(i mod2)

is a unique ε-winner.
Note that

yi = yi−1 + xi = yi−1 + (1 + 3ε) · k · yi−1 = (1 + (1 + 3ε) · k) · yi−1 = (1 + (1 + 3ε) · k)i−1 · y1 ≤ (3k)i−1 ,

thus the total number of voters is bounded by n = k · ys < (3k)s . In particular, s = �(
log n
log k ).

Next consider the j’s site S j during the phase i. Let Yi, j be the event that some communication between the center 
and S j occurs. Let Zi, j be the event that the center initiates communication with S j . Let Xi, j be the event that S j initiates 
communication with the center, conditioned on the event that the center does not initiate communication with S j (that is, 
Yi, j conditioned on Zi, j). We argue that E[Xi, j] = �(1). Before the i’th phases starts, c(i−1 mod2) is the unique ε-winner.

Consider an alternative scenario where, after the end of the i − 1’th phase, xi voters come to S j (and vote for c(i mod2)), 
while no additional voters arrive. In this alternative scenario the center will not initiate communication with S j , as from its 
point of view nothing have changed since the end of the (i − 1)’s phase (since it did not receive any new messages). Note 
also that in the alternative scenario, c(i mod2) is the unique ε-winner. This is since

k · yi−1 + ε(k · yi−1 + xi) = k · yi−1 + ε(k · yi−1 + (1 + 3ε) · k · yi−1)

= k · yi−1 (1 + ε(1 + (1 + 3ε)))

= k · yi−1

(
1 + 2ε + 3ε2

)
< xi .

Thus, if S j will not initiate communication with the center, then, in the alternative scenario, the center would not hold 
the right estimation both at the end of the i − 1’th phase and at the end of the i’th phase. This is so since it will have 
the same estimation, while there are different unique ε-winners at those times. Therefore, the probability that the center 
is right in both of these times is bounded by Pr

[
Xi, j
]
. As the center has constant probability to have the right estimation 

twice, we conclude that E[Xi, j] = �(1).
Let us go back to our original scenario. Note that, from the point of view of S j , both scenarios are the same (unless the 

center initiates communication). In particular Pr
[

Xi, j | Zi, j
]= �(1). Set Pr

[
Zi, j
]= α. Then, we have that:

E
[
Yi, j
]= Pr

[
Yi, j
]= Pr

[
Zi, j
]+ Pr

[
Zi, j
]

Pr
[

Xi, j | Zi, j
]

= α + (1 − α) · �(1) = �(1) .

The total communication used during the whole protocol can be lower bounded by 
∑s

i=1
∑k

j=1 E 
[
Yi, j
] = �(sk) =

� 
(

k log n
log k

)
. �

We are ready to prove Theorem 10.

Proof of Theorem 10. If k < ε−2, then Lemma 4 provides us with a lower bound of �(
√

k
ε log n) = � 

(
(

√
k

ε + k)
log n
log k

)
. Other-

wise (k ≥ ε−2), using Lemma 5 we get a lower bound of �(
k log n
log k ) = � 

(
(

√
k

ε + k)
log n
log k

)
. �

Remark 5. Notice that Lemma 5 implies a �(
k log n
log k ) lower bound for the Count-tracking problem. The Count-tracking

problem is a central problem in distributed streams, where the goal is to continuously maintain a counter which is at 
most εn far from the actual number of items arriving to the stream. For the Count-tracking problem in the regime where 
k ≥ ε−2, Huang et al. [22, Theorem 2.3] give a lower bound of �(k).
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Lemma 5 relates to Count-tracking, As there is a reduction from Plurality-winner-tracking with two candidates to
Count-tracking: to implement a protocol for Plurality-winner-tracking with two candidates it is sufficient to use two 
protocols for Count-tracking with ε′ = ε/2, one for each candidate, and to report as winner the candidate corresponding 
to the larger counter.

Thus, we conclude that Lemma 5 implies a �(
k log n
log k ) lower bound for the Count-tracking problem, thus improving the 

state of the art for this problem.

5.2. Deterministic lower bound for Approval-winner-tracking

Next we prove a lower bound on the communication of a deterministic protocol for Approval-winner-tracking. Re-
call the checkpoints-based deterministic protocol described within the proof of Theorem 4: the protocol has O (ε−1 log n)

checkpoints, and in each checkpoint, each site sends log( 4k
ε ) bits per candidate. Thus, if we measure the communication 

in bits (instead of words as in Theorem 4), we get that the total cost of that protocol is O  
(
ε−1 log n · m · k · log( 4k

ε )
)

=
O  
(

m·k·log( k
ε )

ε · log n

)
. In this section we prove Theorem 11, showing that protocol (the one from Theorem 4) to be almost 

optimal in the deterministic regime.

Theorem 11. For ε < 1/16, and for large enough m, any deterministic protocol for Approval-winner-tracking uses at least 
� 
(

mk
ε · log

(n
k

))
bits of communication.

The proof of Theorem 11 is based on a reduction from a new problem in communication complexity; specifically, the vari-
ant of communication complexity which is sometimes referred to as multiparty communication complexity. In this variant we 
have k players, denoted by P1, . . . , Pk , and each player P j possesses a (possibly different) string x j ∈ {0,1}m . The objective 
is to compute the outcome of a function f : {0,1}m×k → {0, 1} on the combined inputs of the players (formally, on the 
concatenation of the x j strings). The players follow some protocol, and can communicate by broadcasting bits. Specifically, 
when a player broadcasts a bit b, all other players receive b and we add 1 to the communication count. The cost of a 
protocol is the maximum number of exchanged bits, over all possible inputs. The deterministic communication complexity 
of the function f , denoted by D( f ), is the minimal cost of a deterministic protocol that computes f . For additional details 
and overview of the field we refer to the textbook of Kushilevitz and Nisan [23] or to the book chapter by Razborov [28].

Next we define the No Strict Majority problem: NSM, in short. In it, we have 2k players and a parameter ε > 0. Each 
player P j has an m-bit string A j ∈ {0, 1}m . The objective is to figure out if there is an index i such that a strict majority of 
the players has 1 in that index. Formally,

NSM2k,m,ε (A1, . . . , A2k) =

⎧⎪⎨
⎪⎩

0 ∃i
∣∣{ j | i ∈ A j

}∣∣≥ (1 + ε)k

1 ∀i
∣∣{ j | i ∈ A j

}∣∣≤ k

Don’t Care Otherwise,

where by “Don’t Care”, we mean that any outcome of the protocol is legitimate. The role of the “Don’t Care” here is to allow 
us to reduce approximation problems to NSM, as strict boundaries will not allow for that.

We denote a conjunction of l instances of NSM2k,m,ε by 
∧l

i=1 NSM2k,m,ε . That is, we have 2k players, each of which is 
given l strings of m bits each (formally, P j gets A j,1, . . . , A j,l); the outcome shall be 1 if and only if, for every index s ∈ [1, l]
and i ∈ [1, m], it holds that 

∣∣{ j | i ∈ A j,s
}∣∣≤ k. An equivalent way to think about 

∧l
i=1 NSM2k,m,ε is that each of the players 

gets a binary l × m matrix and we accept if there is no cell for which a majority of the players has a 1 in.
The proof of the following lemma could be found in Appendix B. We mention that, as far as we know, the 

∧l
i=1 NSM2k,m,ε

problem was not considered in the literature, hence the following lemma is novel and might be useful in other contexts 
besides our current context, that of communication-efficient protocols for monitoring election winners.

Lemma 6. D 
(∧l

i=1 NSM2k,m, 1
4

)
= �(mkl).

To prove Theorem 11, next we show how the communication complexity of 
∧l

i=1 NSM2k,m, 1
4

implies a lower bound 
on the communication of Approval-winner-tracking. The general idea, similarly to the idea underlying the lower bound 
described in Lemma 5, is to exploit the fact that, in any point in time, the center should be able to produce an answer 
without any additional communication. Specifically, we will have l = �( km

ε log n
k ) rounds, such that by sampling the center 

in l different points of time we can determine 
∧l

i=1 NSM2k,m, 1
4

.

Proof of Theorem 11. For the sake of simplicity, during the proof we will consider also non-integer number of voters; this 
issue can easily be fixed by proper rounding, while introducing only a constant overhead to the number of voters.
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Consider an instance of 
∧l

i=1 NSM2k,m, 1
4

, where the input of player P j is 
{

As
j

}l

s=1
∈ {0, 1}m×l . We will use a protocol for

Approval-winner-tracking with m candidates, 2k sites, and precision parameter ε to solve 
∧l

i=1 NSM2k,m, 1
4

. By Lemma 6, ∧l
i=1 NSM2k,m, 1

4
requires �(lmk) communication. This in turn will imply a lower bound for the communication complexity 

of Approval-winner-tracking.
Our reduction is as follows. Each player acts as a site, and will simulate the arrival of voters in some order, to be specified 

shortly. Player P1 will act also as server (this is possible as we assume broadcast communication). We denote the number 
of voters that approve candidate i at site j by (vi) j , and the total number of voters, across all sites, approving candidate i
by vi =∑ j(vi) j . The reduction has several phases. We first describe the first phase and later generalize it to describe how 
the rth phase is executed.

• First phase: Before the first phase starts, the situation is that each candidate is approved by 0 voters at each site. The 
first phase has 3 stages, as follows.
– Vote simulation: each site j simulates that a voter approving A1

j arrives.

– Validation: the center computes a winner q, then it collects (vq) j from all the sites (players). If vq =∑2k
j=1(vq) j > k, 

then it determines that the solution for the first instance is 0. Otherwise it determines that the solution is 1.
– Reset: each site j simulates that a voter approving A1

j comes.

• rth phase: Set xr = (1 + 32ε)r−2 and yr = 32εxr > 16ε
1−8ε xr . Before the rth phase starts, the situation is that each site 

already received exactly 2 · xr voters, such that each candidate was approved by exactly xr voters at each site. The rth 
phase has 3 stages:
– Vote simulation: each site j simulates that yr voters appeared, all approving Ar

j .

– Validation: the center computes a winner q, then it collects (vq) j from all the sites (players). If vq =∑2k
j=1(vq) j >

2k · xr + k · yr , then it determines that the solution for the rth phase is 0. Otherwise it determines that the solution 
is 1.

– Reset: each site j simulates that yr voters appeared, all approving Ar
j .

In total, the number of voters used throughout the protocol is n = 2k · 2 · xl+1 = 4k · (1 + 32ε)l−1. In addition to the 
protocol for Approval-winner-tracking, we also used O (k) communication in each phase to compute the number of votes 
the winner got; to see why O (k) bits of communication suffices for each phase, notice that in phase r, in the validation 
stage, each site sends to the center the number of voters voted for the q’th candidate. As there are only two options for this 
number (xr, xr + yr ), one bit of communication suffices for each site, thus we have O (k) additional bits of communication 
in total for each phase. Thus, the total communication our protocol uses, in addition to the Approval-winner-tracking

protocol, is O (lk).
Next we argue that we indeed compute the right answer for each of the l instances of 

∧l
i=1 NSM2k,m, 1

4
. Note that, at the 

time of the second step in the rth phase, exactly 2xr + yr voters arrived at each site, accumulating to a total of nr = 2k ·(2xr +
yr) voters. Fix some r ∈ [1, l] and consider first the case where there exists an index i such that 

∣∣∣{ j | i ∈ A j
r

}∣∣∣ ≥ (1 + 1
4

)
k. 

In particular, the i’th candidate was approved by at least vi ≥ 2k · xr + (1 + 1
4 ) · k · yr voters. Hence, the Approval protocol 

will return an index q s.t. vq + ε · nr ≥ vi . As yr > 16ε
1−8ε xr it holds that 1

4 · k · yr > ε · nr , and in particular vq ≥ vi − ε · nr >

2k · xr + k · yr . We conclude that, in this case, the algorithm will compute the correct answer in the rth phase.

Otherwise, if for every index i, we have that 
∣∣∣{ j | i ∈ Ar

j

}∣∣∣≤ k, then no matter which index q the algorithm for Approval-

winner-tracking will return, since the center will check it and will find out that vq ≤ 2k · xr + k · yr . Hence, again, it will 
compute the right answer.

Note that the number of voters used throughout the protocol is n = 4k · (1 + 32ε)l−1, hence l = 1+ log1+32ε
n
4k =

� 
( 1
ε log n

k

)
. As, other than the protocol for Approval-winner-tracking, we used only O (lk) bits, while we solved ∧l

i=1 NSM2k,m, 1
4

, a problem requiring �(mkl) bits, we conclude that Approval-winner-tracking requires at least

�(lmk) − O (lk) = �(lmk) = �

(
mk

ε
· log

(n

k

))
,

bits. In the first equality we used the fact that m is large enough. �
6. Discussion and outlook

In this paper we studied communication-efficient protocols for maintaining approximate winners in distributed vote 
streams. We have shown several general techniques for designing such protocols (namely, sampling-based protocols, pro-
tocols based on checkpoints, and protocols based on counting frequencies), and demonstrated their usefulness for various 
single winner voting rules. Indeed, based on these general techniques, for each of the rules we considered here, we have 
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designed several communication-efficient protocols, and analyzed their communication complexity. We complemented our 
protocols with lower bounds.

As a further contribution, we view our paper as a bridge between issues and ideas from artificial intelligence (specifically, 
multiagent systems and computational social choice) and techniques and methods from theoretical computer science and 
database systems (specifically, streaming and sampling algorithms and distributed continuous monitoring). We hope that 
more fruitful research can be done by bridging between those fields.

Below we first discuss several aspects which are somehow hidden in the technical part of the part. Specifically, we begin 
with a discussion on deterministic protocols, showing that, while the technical part of the paper concentrates on randomized 
protocols, communication-efficient deterministic protocols for monitoring election winners in distributed streams exist as 
well. Then, as in this paper we developed several protocols for each voting rule considered, we provide a discussion on how 
to choose which protocol to use at which scenario, depending on the specific parameters of the problem at hand. We end 
this section by mentioning some directions for future research.

6.1. Deterministic protocols

While in this paper we concentrated on randomized protocols, it turns out that some of our protocols are already 
deterministic or can be made deterministic with some slight modifications. To us, this is quite surprising: for example, 
there are usually no efficient deterministic algorithms operating on centralized streams. Specifically, as we show next, while 
there are no natural deterministic equivalents to our sampling-based protocols (since, informally speaking, a deterministic 
equivalent to sampling would basically need to sample the whole electorate), our other protocols can generally be made 
deterministic.

Indeed, protocols based on checkpoints are already deterministic. Further, protocols based on counting frequencies can 
use a deterministic protocol for Frequency count which uses O (ε−1k log n) words of communication [34]. Correspondingly, 
the increase in the communication complexity is by at most a factor of 

√
k. Notice that the corresponding deterministic 

protocols still maintain only approximate solutions.

6.2. Choice of protocol

A closer look at our upper bounds reveals that the choice of which protocol to use for which voting rule crucially 
depends on the relationships between the various parameters; specifically, as a rule of thumb, it looks as if the choice of 
which protocol to use depends on the relation between k and 1/ε−2; specifically, if k < 1/ε−2, then protocols based on 
counting frequencies or on checkpoints shall be used, while if k ≥ 1/ε−2, then sampling-based protocols achieve better 
communication complexity. We believe that both cases make sense; for example, in a supermarket chain with 4000 stores, 
requiring approximation of ε = 1/100 would put us in the first case, while requiring ε = 1/10 would put us in the second 
case.

6.3. Future directions

Below, we discuss several directions for future research.

6.3.1. Improved bounds and more rules
While we considered quite a variety of voting rules in this paper, there are further interesting rules to consider, ranging 

from single-winner voting rules such as Kemeny, Young, Dodgson, Schulze, Maximin, and Ranked pairs, to multiwinner 
voting rules such as committee scoring rules, including Chamberlin–Courant and Monroe. Further, there are still some gaps 
between our upper bounds and lower bounds; closing those gaps is a natural direction for future research.

6.3.2. Simulations and heuristics
Our focus in the current paper, besides bridging between the study of computational social choice within the field of 

artificial intelligence and the topic of continuous distributed monitoring within database systems and theoretical computer 
science, is a theoretic study of communication-efficient protocols for maintaining election winners in distributed elections.

We believe that a theoretic study is important but also appreciate the possibility of validating our theoretical findings 
by performing simulations. Thus we view an experimental follow-up to the current paper as an important and interesting 
future work. One shall be careful in choosing input instances and evaluation methods, and there is also some hope that 
efficient heuristics (for which the theoretical complexity might not be impressive) outperform our protocols for certain 
scenarios and distributions.

6.3.3. Constrained resources
In this paper, we measured the complexity of our protocols only in terms of their communication cost. It is natural 

to consider other resources, especially studying various trade-offs between space, time, and communication. We mention 
that, for example, our sampling-based protocols do extend to situations where the computational power of the sites is 
very limited, since sampling from a distributed stream can be done with sites which have only logarithmic space [10]. Our 
checkpoint-based protocols, however, generally assume linear space (in m) for each site.
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6.3.4. Various restrictions
In this paper we have concentrated on worst-case notions: first, we assumed that voters are arbitrarily (thus, adversari-

ally) assigned into the sites; second, we did not assume any structure on the electorate itself. Since there might be better 
real-world situations, it is natural to study protocols for elections drawn from, say, Mallow’s model or the Urn model, as 
well as to study situations where the voters are, say, uniformly assigned into the sites. Of course, studying protocols for 
elections which adhere to some domain restrictions, such as single peaked elections and single crossing elections would be 
natural and interesting as well. Indeed, there is hope more efficient protocols exist for such restrictions.

6.3.5. Incomplete votes
In this paper we considered situations in which voters provide full votes; e.g., in the ordinal elections we consider, each 

voter is assumed to provide a full ranking. There are quite a few papers dealing with settings in which voters provide only 
partial rankings: Pini et al. [27] and Xia and Conitzer [32] study the complexity of computing possible winners (alternatives 
for which at least one completion of the votes makes them win the election) and necessary winners (alternatives for which 
all completions of the votes make them win the elections); Bentert and Skowron [4] and Caragiannis et al. [5] identify 
voting rules which are suitable to situations in which the vote elicitation is incomplete, in the sense that they approximate 
well the winners for the full elicitation. It would be interesting to try to generalize our communication protocols to such 
settings in which voters provide only partial ranking.

Declaration of competing interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no 
significant financial support for this work that could have influenced its outcome.

Acknowledgements

The authors thank Robert Krauthgamer for inspiring discussions.

Appendix A. Proof of Lemma 2

Proof of Lemma 2. Set δ = ε
4 . As c is a δ-winner in E , it follows that there exists a set of voters u1, . . . , uq′ , where q′ ≤ δn, 

such that c ∈ R(Ẽ) for Ẽ = E ∪ {u1, . . . , uq′ }: that is, adding those q′ voters to E would make c a winner. The situation is 
that we have an additional q voters, vn+1, . . . , vn+q , which might have a bad impact with respect to c. Thus, our goal is to 
describe an additional set of q′′ ≤ 3q voters, denoted by W = {w1, . . . , wq′′≤3q} which will nullify the (possibly) bad impact 
of those q voters (which arrived after the last checkpoint) on c.

So, for each of the voting rules we consider in this paper, we will argue that c ∈ R(Ẽ ′) where Ẽ ′ = E ′ ∪ {w1, . . . , wq′′ } ∪
{u1, . . . , uq′ } = Ẽ ∪ {vn+1, . . . , vn+q} ∪ {w1, . . . , wq′′ }. Thus, we will conclude that c is a 4δ = ε-winner with respect to E ′ . 
Below we describe the set of voters W for each voting rule separately.

• Plurality, t-Approval, Approval: For i ∈ [q], let wi be a voter approving c, and such that wi is not approving any 
candidate which was approved by vn+i (recall that in the case of t-Approval we assume t ≤ m/2).
As c is a winner in both the elections with voters {vn+1, . . . , vn+q, w1, . . . , wq} and Ẽ , it holds that c ∈R(Ẽ ′).

• Borda: For i ∈ [q], let wi be the “reverse” of vn+i (e.g., if vn+i : a � b � c, then wi : c � b � a). Note that all candidates 
have the same Borda score with respect to the voters {vn+1, . . . , vn+q, w1, . . . , wq}. Thus c ∈R(Ẽ) implies c ∈R(Ẽ ′).

• Cup: Denote the set of candidates by M and consider the election Ẽ . In order to compute a Cup-winner, we shall 
preform a series of m − 1 “head-to-head” contests. That is, there is a set P ⊆ M × M of ordered pairs, of size m − 1, 
such that for every (c1, c2) ∈ P , c1 wins c2 in an head-to-head contest. In fact, in any election Ê such that for every 
(c1, c2) ∈ P , c1 wins c2 in an head-to-head contest with respect to Ê , it holds that c is a Cup-winner.
In the beginning of the proof of Theorem 7 we argued that there is an order πP over M , such that for every (c1, c2) ∈ P , 
c1 precedes c2 in πP . Next we define w1, . . . , wq . All these voters will order the candidates with respect to πP : that 
is, the maximal candidate in πP will be ranked first, the second will be ranked second, and so on. Now, for every 
(c1, c2) ∈ P , c1 wins c2 in the “head-to-head” contest with respect to {vn+1, . . . , vn+q, w1, . . . , wq}, hence c1 wins c2 in 
the “head-to-head” contest with respect to Ẽ ′ . We conclude that c ∈R(Ẽ ′).

• Copeland and Condorcet: We prove the claim for Copeland first. For i ∈ [q], let ui be the “reverse” of vi . For every two 
candidates c1, c2, a majority of the voters prefer c1 to c2 with respect to Ẽ if and only if a majority of the voters prefer 
c1 to c2 with respect to Ẽ ′ . Thus, c ∈ R(Ẽ) implies c ∈ R(Ẽ ′). The above proves the claim for Copeland; thus the claim 
for Condorcet follows, as every Copeland winner is in particular a Condorcet winner.

• Bucklin: For i ∈ [q], let wi be a voter ranking c on top, and such that every candidate c′ 	= c, which is ranked at position 
j in vn+i , will be ranked at position m − j + 1 or m − j + 2 in v j . Note that, for every j ≤ m

2 and c′ 	= c, the number of 
voters among vn+1, . . . , vn+q, w1, . . . wq ranking c′ among the first j positions is at most q, while the number of voters 
ranking c among the first j position is at least q.
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Set n′ = n + q′ + 2q. Suppose that in the elections Ẽ , c wins at round j. Consider the election Ẽ ′ . Then, for every 
candidate c′ 	= c and j′ < j, the number of voters ranking c′ among the first j′ positions is less than n+q′

2 + q = n′
2 , 

while the number of voters ranking c among the first j positions is at least n+q′
2 + q = n′

2 . We conclude that c ∈R(Ẽ ′).

• Run Off: Let c′ be a candidate such that c and c′ get the highest plurality score in Ẽ , and such that c is winning c′
in the “head-to-head” contest with respect to Ẽ . Set w1, . . . , wq to be voters ranking c′ on top, and set wq+1, . . . , w3q

to be voters ranking c on top. Note that with respect to the voters vn+1, . . . , vn+q, w1, . . . , w3q , c and c′ have the 
highest plurality score, while c is winning over c′ in the “head-to-head” contest. Thus this is also the situation in Ẽ ′ . 
We conclude that c ∈R(Ẽ ′). �

Appendix B. Communication lower bound for NO STRICT MAJORITY

A basic machinery for communication complexity lower bounds is fooling sets. Consider a function f : {0, 1}m×k → {0, 1}. 
We have k players, each holding a string from {0, 1}m .

Definition 2 (Fooling set). A set A = {(x1
1, . . . , x

1
k ), . . . , (xs

1, . . . , x
s
k)} ⊆ {0, 1}m×k is called a fooling set for the function f :

{0, 1}m×k → {0, 1}, if there are some bit b ∈ {0, 1} such that:

1. For every i, f (xi
1, . . . , x

i
k) = b.

2. For every i 	= j, there is (y1, . . . , yk) ∈ {xi
1, x

j
1} × · · · × {xi

k, x
j
k} such that f (y1, . . . , yk) 	= b.

A fooling set is called a 1-fooling set if the bit b above is 1 (similarly, a 0-fooling set). The proof of the following fact can 
be found in the textbook by Kushilevitz and Nisan [23].

Fact 1. Let f : {0, 1}n×k → {0, 1} be some function with fooling set A. Then, D( f ) ≥ log |A|.

We denote by f l =∧l
i=1 f : {0, 1}n×k×l → {0, 1} a function that gets as input l inputs for f and returns 1 if and only if the 

output of all the l instance is 1. Formally, f l
(
(x1

1, . . . , x1
k ), . . . , (xl

1, . . . , xl
k)
)= f (x1

1, . . . , x
1
k ) ∧ f (x2

1, . . . , x
2
k ) ∧· · ·∧ f (xl

1, . . . , x
l
k). 

The proof of the following lemma is straightforward, albeit we attach the proof for completeness.

Lemma 7. Suppose f has a 1-fooling set of size s. Then f l has a 1-fooling set of size sl .

Proof. Let A = {y1 = (x1
1, . . . , x

1
k ), . . . , ys = (xs

1, . . . , x
s
k)} ⊆ {0, 1}n×k be a 1-fooling set for f . We argue that Al (l-wise Carte-

sian product of A with itself) is a 1-fooling set for 
∧

f l .
Indeed, for every 

(
yi1 , . . . , yil

) ∈ Al , it holds that

f l
(

yi1 , . . . , yil
)

=
l∧

j=1

f (yi j ) =
l∧

j=1

1 = 1 .

Moreover, take two different points (yi1 , . . . , yil ) and (y j1 , . . . , y jl ) in Al . There is some index r ∈ [l] such that yir 	= y jr . 
Set yir = (z1, . . . , zk) and y jr = (w1, . . . , wk). As yir , y jr ∈ A, there is x ∈ {z1, w1} × · · · × {zk, wk} such that f (x) = 0. In 
particular

f l
(

yi1 , . . . , yir−1 , x, yir+1 , . . . , yil
)

=
∧

j∈[l]\{r}
f (yi j ) ∧ f (x) =

∧
[l]\{r}

1 ∧ 0 = 0,

as required. �
Now, we are ready to prove Lemma 6.

Proof of Lemma 6. Using Lemma 7 and Fact 1, it will be enough to show that NSM2k,m, 1
4

has a 1-fooling set of size �(mk).

We start by defining n metrics over {0, 1}m×2k:

di ((A1, . . . , A2k) , (B1, . . . , B2k)) = ∣∣{ j | i ∈ A j � B j
}∣∣

Here, A j � B j = (A j \ B j
)∪ (B j \ A j

)
is the symmetric difference.11

11 In fact di is just the Hamming distance after we project the strings to the i’th coordinate.
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d ((A1, . . . , A2k) , (B1, . . . , B2k)) = max
i

di ((A1, . . . , A2k) , (B1, . . . , B2k)) .

It is straightforward to verify that d is indeed a metric.
Let S = {(A1, . . . , A2k) ∈ {0,1}m×2k | ∀i ∈ [m], ∣∣{ j | i ∈ A j

}∣∣= k
}

be all the points such that every index i ∈ [m] appears 
in exactly k sets. Note that |S| = (2k

k

)m
, and that ∀x ∈ S , NSM2k,m, 1

4
(x) = 1. We will construct a subset S ′ ⊆ S in a greedy 

manner. In each phase we will choose an arbitrary x ∈ S , which was not deleted yet, add it to S ′ and delete all of B(x, k/2), 
i.e., all the points in S which are at distance at most k/2 from x (with respect to the metric d).

It holds that

|B(x,k/2) ∩ S| =
⎛
⎝ k/4∑

i=0

(
k

i

)2
⎞
⎠m

≤
(

2 ·
(

k

k/4

)2
)m

.

To see the equality, denote x = (A1, . . . , A2k). For each index i ∈ [m], there are k sets containing i. We should choose j ≤ k/4
sets to remove i from, and j new sets to insert i into. All this is taken in power of m as we have m different indices. To see 

the inequity, note that for i ≤ k/4, 
(k

i

)
/
( k

i−1

)= k−i+1
i > 2. Hence 

∑ k
4 −1
i=0

(k
i

)2
<
( k

k/4

)2
.

By the end of the process (when all the points in S were deleted), we have a set S ′ of size at least 

( (2k
k

)
2·( k

k/4

)2
)m

such that 

for every x, y ∈ M ′ , d(x, y) ≥ k/2. We argue that S ′ is a 1-fooling set. As S ′ ⊆ S , it holds that ∀x ∈ S ′ , NSM2k,m, 1
4
(x) = 1. 

Consider x 	= y ∈ S ′ , where x = (A1, . . . , A2k) and y = (B1, . . . , B2k). There is an index i such that di(x, y) ≥ k/2. There-
fore, |{ j | i ∈ Ai ∪ Bi}| ≥ 5

4 k. In particular, there is z ∈ {A1, B1} × · · · × {A2k, B2k} with at least 5
4 sets containing i, implying 

NSM2k,m, 1
4
(z) = 0.

Finally, we lower bound |S ′|. Recalling Stirling’s formula, which says that n! ≈ √
2πn

(n
e

)n , and the identity 
(2k

k

) =∑k
i=0

(k
i

)2
, we have that:

(2k
k

)
2
( k

k/4

)2 ≥
( k

k/2

)2
( k

k/4

)2 =
(

k
4 !
)2 (

3k
4 !
)2

(
k
2 !
)4

= �(1) ·
(

k
4

) 1
2 k (

3k
4

) 3
2 k

(
k
2

)2k
= �(1) ·

(
3

3
2

4

)k

.

We conclude that

D
(

NSM2k,m, 1
4

)
≥ log

(∣∣S ′∣∣)≥ log

⎛
⎝
⎛
⎝�(1) ·

(
3

3
2

4

)k
⎞
⎠m⎞⎠= �(mk) . �
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