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Labelings vs. Embeddings:
On Distributed Representations of Distances *

Arnold Filtser®

Abstract

We investigate for which metric spaces the performance
of distance labeling and of ¢,,-embeddings differ, and
how significant can this difference be. Recall that a
distance labeling is a distributed representation of dis-
tances in a metric space (X, d), where each point z € X
is assigned a succinct label, such that the distance be-
tween any two points x,y € X can be approximated
given only their labels. A highly structured special case
is an embedding into ¢,, where each point z € X is as-
signed a vector f(z) such that || f(z)—f(¥)|lo is approx-
imately d(x,y). The performance of a distance labeling
or an {.,-embedding is measured via its distortion and
its label-size/dimension.

We also study the analogous question for the prior-
itized versions of these two measures. Here, a priority
order m = (z1,...,2,) of the point set X is given, and
higher-priority points should have shorter labels. For-
mally, a distance labeling has prioritized label-size «f.)
if every x; has label size at most a(j). Similarly, an em-
bedding f : X — (s has prioritized dimension «(-) if
f(z;) is non-zero only in the first a(j) coordinates. In
addition, we compare these their prioritized measures
to their classical (worst-case) versions.

We answer these questions in several scenarios,
uncovering a surprisingly diverse range of behaviors.
First, in some cases labelings and embeddings have very
similar worst-case performance, but in other cases there
is a huge disparity. However in the prioritized setting,
we most often find a strict separation between the
performance of labelings and embeddings. And finally,
when comparing the classical and prioritized settings,
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we find that the worst-case bound for label size often
“translates” to a prioritized one, but also a surprising
exception to this rule.

1 Introduction

It is often useful to succinctly represent the pairwise
distances in a metric space (X,d) in a distributed
manner. A common model, called distance labeling,
assigns to each point x € X a label I(z), such that
some algorithm A (oblivious to (X, d)) can compute the
distance between any two points z,y € X given only
their labels I(z),{(y), i.e., A(l(z),l(y)) = d(x,y). The
goal is to construct a labeling whose label-size, defined
as maxgzex |[(x)], is small. For general n-point metric
spaces, Gavoille, Peleg, Pérennes and Raz [GPPRO4]
constructed a labeling scheme with label size of O(n)
words, and also proved that this bound to be tight.!

To obtain smaller label size, one often considers
algorithms that approximate the distances. A distance
labeling is said to have distortion t > 1 if

d(z,y) < A(l(z),U(y)) < t-d(z,y).

While the lower bound of [GPPR04] holds even for
distortion ¢ < 3, Thorup and Zwick [TZ05] constructed
a labeling scheme with distortion 2¢ — 1 and label size
O(n'/*logn) for every integer t > 2. These bounds
are almost tight (assuming the Erdés girth conjecture),
and demonstrate that for distortion O(logn), label size
O(logn) is possible.

From an algorithmic viewpoint, there is a significant
advantage to labels possessing additional structure, for
example labels that are vectors in a normed space.
This structure can lead to improved algorithms, for
example nearest neighbor search [Ind98, BG19]. A
natural candidate for vector labels is the £, space, since
every finite metric space embeds into it isometrically

Vr,y € X,

TWe measure size in words to avoid issues of bit representa-
tion. In the common scenario where distances are polynomially-
bounded integers, every word has O(logn) bits, where n = |X|.
The bounds in [GPPRO04] are given in bits and are for unweighted
graphs. Nevertheless, once we consider weighted graphs, O(n)
words are sufficient and necessary for exact distance labeling, see
Theorem 2.1.
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(i.e., with no distortion). As such isometric embeddings
require Q(n) dimensions [LLR95], one may consider
instead embeddings with small distortion. Formally, an
embedding f : X — l, is said to have distortion t > 1
if

Ve,ye X, dz,y) < |f(@) = f(y)llo <t-dz,y).

Matousek [Mat96] showed that for every integer t > 2,
every metric space embeds with distortion 2¢—1 into £,
of dimension O(n'/*-t-logn) (which again is almost tight
assuming the Erdés girth conjecture). For distortion
O(logn), Abraham et al. [ABN11] later improved the
dimension to O(logn).

In this paper, we take the perspective that f..-
embeddings are a particular form of distance labelings,
and study the trade-offs these two models offer between
distortion and dimension/label-size. While the inherent
structure of £,,-embeddings makes them preferable, one
may suspect that their additional structure precludes
the tight trade-off achieved using generic labelings.
Yet we have seen that for general metric spaces, the
performance of /,,-embeddings is essentially equivalent
to that of generic labelings. This observation motivates
us to consider more restricted input metrics, such as ¢,
spaces, planar graph metrics, and trees. The central
question we address is the following.

QUESTION 1.1. In what settings are generic distance
labelings more succinct than £ -embeddings, and how
significant is the gap between them?

Priorities. Elkin, Filtser and Neiman [EFNI1§]
have introduced the problems of prioritized distortion
and prioritized dimension; they posit that some points
have higher importance or priority, and it is desirable
that these points achieve improved performance. For-
mally, given a priority ordering 7 = {z1,...,2,} on
the point set X, we say that embedding f : X — (
possesses prioritized contractive distortion® o : N — N
(w.r.t. m) if for all j < ¢

d(xj 7$i)

T Y~ ) . < d(x:. T .
a(j) = 1f(zj) = f(@i)|loo < d(zj, 2;)
Prioritized distortion is defined similarly for distance
labeling. Furthermore, we say that a labeling scheme
has prioritized label-size 8 : N — N, if every x; has
label length |I(z;)] < B(j). We say that embedding

(1.1)

TIn the original definition of prioritized distortion in [EFN18],
the requirement of equation (1.1) is replaced by the requirement
d(zj,z;) < || f(z5) = f(zi)]|oo < a(j)-d(zj,x;). We add the word
contractive to emphasize this difference. Prioritized contractive
distortion is somewhat weaker in that it does not imply scaling
distortion (see Section 1.2).

f + X — £ has prioritized dimension 3 if every f(x;) is
non-zero only in the first 3(j) coordinates (i.e., fi(x;) =
0 whenever i > (3(j)). Here too ¢y -embeddings are a
more structured case of labelings, and we again ask what
are the possible trade-offs and how these two compare.
It is worth noting that the priority functions «, 3 are
defined on all of N and apply when embedding every
finite metric space; in particular, they are not allowed
to depend on n = | X|. We ask analogously to Question
1.1 about prioritized label size/dimension.

QUESTION 1.2. In what settings are distance labelings
with prioritized label size more succinct than £, embed-
dings with prioritized dimension, and how significant is
the gap between them?

In many embedding results, the (worst-case) dis-
tortion is a function of the size of the metric space
n = |X|. Elkin et al. [EFN18] demonstrated a general
phenomenon: Often a worst-case distortion «(n) can
be replaced with a prioritized distortion O(a(j)) using
the same . 2 For example, every finite metric space
embeds into a distribution over trees with prioritized ex-
pected distortion O(log j), which extends the O(logn)
known from [FRT04]. Recently, Bartal et al. [BFN19]
showed that every finite metric space embeds into f
with prioritized distortion O(log j), which extends the
O(logn) known from [Bou85]. In fact, we are not aware
of any setting where it is impossible to generalize a
worst-case distortion guarantee to a prioritized guar-
antee. The final question we raise is the following.

QUESTION 1.3. Does this analogy between worst-case
and prioritized distortion extend also to dimension and
to label-size, or perhaps their worst-case and prioritized
versions exhibit a disparity?

1.1 Results: Old and New Our main results and
most relevant prior bounds are discussed below and
summarized in Table 1. Addition related work is
described in Section 1.2.

General Metrics. As discussed above, embed-
dings and labeling schemes for general graphs have es-
sentially the same parameters. But for prioritized label-
ings and embeddings, the comparison is more complex.
For exact labeling, one can obtain label size O(j) by sim-
ply storing in the label of z; its distances to z1,..., 21
(recall that we count words). This is essentially optimal,
even if we allow distortion up to 3, see Theorem 2.1. In
contrast, for embeddings into ¢, we show in Theorem
2.2 that prioritized dimension is impossible for distor-

tion less than % Specifically, we provide an example

3We use O notation to suppress constants and logarithmic
factors, that is O(a(j)) = a(j) - polylog(a(j)).
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Worst-Case Label-Size/Dimension

Distortion

Distance Labeling

Embedding into /.,

1. General Metric | < 3 O(n) * [GPPRO4] | O(n) [Mat13]
2. General Metric | O(logn) O(logn) [TZ05] | ©(logn) [ABN11]
3. lyforpe[l,2] | 1+e€ O(e %logn) (Thm. 3.1) | ©(n) ¥ (Thm. 3.2)
4. Tree 1 O(logn) [TZ01] | ©(logn) [LLR95]
5. Planar 1 O(v/n) [GPPRO4] | O(n) [LLR95]
6. Treewidth k 1 O(klogn) [GPPRO4] | ©(n) * [LLR95]

Prioritized Label-Size/Dimension

Distortion

Distance Labeling

Embedding into /.,

7.  General Metric | < 3 o) * (Thm. 2.1) | O(n) (Thm. 2.2)
8. General Metric | O(logj) O(log j) [EFN18] | O(j) (Cor. 2.1)
9. Lyforpel,2] | 1+e€ O(e2logj) (Thm. 3.1) | ) (Thm. 3.3)
10. Tree 1 O(log j) [EFN18] | O(logj) (Thm. 4.1)
11.  Planar 1 o(y) (Thm. 5.2) | ©(n) (Thm. 5.1)
12.  Treewidth k 1 O(klog 7) [EFN18] | O(n) * (Thm. 5.1)

Table 1: Summary of our findings. Question 1.1 is answered by comparing the last two columns of rows 1-6; in
the very general and very restricted families (lines 1,2,4), labelings and embeddings perform similarly, while other
families (lines 3,5,6) exhibit a strict separation. Question 1.2 is answered by comparing the last two columns
of rows 7-12; we see a strict separation between them in all families other than trees (line 10). Question 1.3

is answered by comparing each row i = 1,...

,6 with row i + 6; for distance labeling, worst-case bound [(n)

translates to prioritized O(5(j)) except for planar graphs (lines 5,11), while for embeddings, dimension translates

to its prioritized version only for trees (lines 4,10).

Table footnotes: ® The upper bound is for distortion 1 (i.e. isometric embedding). © Holds for 1 + € < /2 and
p € [1,00]. ® Holds for k > 2. ¢ This excludes priority dimension for any function a : N — N that is independent

of n =|X].

where the images of 1 and x5 must differ in at least
Q(n) coordinates for arbitrarily large n. This proves
a strong separation between embeddings and labelings,
and also demonstrates an embedding result that has no
prioritized counterpart.

For prioritized distortion O(logj), Elkin et
al. [EFN18] constructed a labeling with prioritized la-
bel size of O(log j). We construct in Theorem 2.3 £-
embeddings with different tradeoffs between the prior-
itized distortion « and dimension 3. Two representa-
tive examples are prioritized distortion «(j) = O(log j)
with prioritized dimension 3(j) = O(j), and «a(j) =
O(loglog j) with 3(j) = O(j?). This is significantly
better than for the O(1)-distortion case, yet consider-
ably weaker than results on labeling.

Additional interesting results in this context were
given in [EFN18], showing that every metric space em-
beds into every ¢,, p € [1,00], with prioritized dis-
tortion O(log?™ j) and prioritized dimension O(log* )
(for every constant € > 0). Furthermore, Elkin and
Neiman [EN19] have communicated to us that they ob-
tained two additional embeddings into (o, with: (1)

klog j
logn

prioritized distortion 2 { —‘ — 1 and prioritized di-

mension O(k - n¥ -logn); and (2) prioritized distortion
2kloglog j+1 and prioritized dimension O(k~j% logn).
Note that the dimension bounds of [EN19] depend on
n = | X| and hence are not truly prioritized. See Table
2 for a comparison of these results with ours.

¢, Spaces. The seminal Johnson-Lindenstrauss
Lemma [JL84] states that every n- point subset of /(o

embeds with distortion 1 + € into €5 Hlogn) (where
as usual Eg denotes a d-dimensional E space), and this
readily implies a labeling with distortion 14 € and label
size O(e ?logn). Since every £,, p € [1,2], embeds iso-
metrically into squared-Lo (equivalently, its snowflake
embeds into Ls), this implies a labeling with the same
performance for £, as well, see Theorem 3.1. Further-
more, we show in Theorem 3.1 (using [NN18]) that this
labeling can be prioritized to achieve distortion 1 + €
with label size O(e~2log j).

For /.- embeddings, the performance is signifi-
cantly worse. We show in Theorem 3.2 that for certain
n-point subsets of ¢, for any p € [1, oo], embedding into
(o, with distortion less than v/2 requires Q(n) coordi-
nates. (Recall that O(n) coordinates are sufficient to
isometrically embed every n-point metric into £n,.) For
prioritized embeddings into £, with distortion 1+ ¢, we
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prove a lower bound of jQ(%) on the prioritized dimen-
sion, see Theorem 3.3.

Tree Metrics. In their seminal paper on metric
embeddings, Linial, London and Rabinovich [LLR95]
proved that every m-node tree embeds isometrically
into 2™ Tn the context of routing, Thorup and
Zwick [TZ01] constructed an exact distance labeling
with label size O(logn) (where routing decisions can
be done in constant time), and Elkin et al. [EFN18]
modified it to achieve prioritized label size O(log j).
Our contribution is a prioritized version of [LLR95], i.e.,
an isometric embedding of a tree metric into ¢, with
prioritized dimension O(logj), see Theorem 4.1. We
note that an equivalent result was proved independently
and concurrently by Elkin and Neiman [EN19].

Planar Graphs and Restricted Topologies.
We first consider exact distance labeling and isometric
embeddings. Gavoille et al. [GPPR04] showed that
planar graphs admit exact labeling with label size
O(y/n), and proved a matching lower bound.* They
further showed that treewidth-k graphs admit exact
labeling with label size O(klogn). Linial et al. [LLR95]
proved that an isometric embedding of the n-cycle
graph into /., and in fact into any normed space,
requires Q(n) coordinates.® Notice that the cycle graph
is both planar and has treewidth 2; hence, there is
a strict separation between distance labeling and f.-
embedding.

For exact distance labeling, we prove that planar
graphs require prioritized label size Q(j) (based on
[GPPRO04]), see Theorem 5.2. This bound is tight,
as prioritized label size O(j) is possible already for
general graphs Theorem 2.1. We conclude that priorities
make exact distance labelings much harder for planar
graphs.® This lower bound for exact prioritized labeling
holds for unweighted graphs as well, hence this type
of labeling is now well understood. For embedding of
treewidth-k graphs, Elkin et al. [EFN18] constructed
exact labeling with prioritized label size O(klogj). For
isometric embeddings into {.,, we show in Theorem 5.1
that no prioritized dimension is possible for the cycle
graph, which provides a lower bound for both planar and
treewidth-2 graphs. This implies a dramatic separation
for these families.

IThis lower bound, as well as all other lower bounds
from [GPPRO4], count bits rather than words.

5Their proof is much more general than what is required for
l{s. For a simpler proof for the special case studied here, see
Theorem 5.1.

SInterestingly, for unweighted planar graphs, Gavoille et
al. [GPPRO4] prove only a lower bound of Q(n%) on the label
size, and closing the gap to the upper bound O(y/n) remains an
important open question.

Additional results on labelings with 1+ € distortion,
and embeddings with constant distortion are described
in Section 1.2.

Conclusions. We uncover a wide spectrum of set-
tings and bounds that answer our questions. For Ques-
tion 1.1, in the simplest case of trees, labeling and em-
beddings have similar behavior, and both admit prior-
itization with similar bounds. For the least restricted
case of general graphs/metrics, we find similarly that la-
belings and embeddings exhibit similar behavior across
various distortion parameters. However between these
two extremes, for £, spaces, planar graphs and treewidth
k graphs, we see significant separations between label-
ings and embeddings.

For Question 1.2, we show that labelings admit
far superior prioritized versions than their embedding
counterparts in all settings other than trees, and most
notably for general graphs and for planar/bounded-
treewidth graphs, where no prioritized dimension is
possible. In ¢, spaces, while we did not ruled out
the possibility of prioritized dimension, we demonstrate
a surprising exponential gap between labelings and
embeddings (also in the dependence on ¢).

For Question 1.3 we saw that labeling schemes have
prioritized versions, in all cases other than planar graphs
where instead of the desired O(v/7) label size we show
that ©(j) is surprisingly necessary. For embeddings into
{+, we showed that for larger distortion some prioritized
dimension is possible, even though it is much worse that
its labeling counterpart.

Some interesting remaining open questions are pre-
sented in Section 6.

1.2 Related Work For distortion 1 4+ € in pla-
nar graphs, Thorup [Tho04] and Klein [Kle02] con-
structed distance labels of size O(logn/e). Abraham
and Gavoille [AG06] generalized this result to K,-minor-
free graphs, achieving label size O(g(r)logn/e). 7
No low-dimension embedding into /., with distortion
1 + € is known for planar graphs or even treewidth-2
graphs. If one allows larger distortion, Krauthgamer et
al. [KLMNO5] proved that planar graphs embed with

distortion O(1) into z?o“"gm, or more generally that
K,-minor-free graphs embed with distortion O(r?) into
QG718 Abraham et al. [AFGN18] showed that
K,-minor-free graphs embed with distortion O(1) into
¢Se(r) log"n), Turning to priorities, Elkin et al. [EFN18]
constructed prioritized versions of distance labeling with
distortion 1 4 €. Specifically, for planar and K,-minor-
free graphs they achieve label sizes of O(logj/e) and

The function g(r) depends only on r and is taken from the

structure theorem of Robertson and Seymour [RS03].
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O(g(r)logn/e), respectively. No prioritized embeddings
are known, nor lower bounds thereof.

Elkin et al. [EFN17] studied the problem of terminal
distortion, where there is specified a subset K C X of
terminal points, and the goal is to embed the entire
space (X, d) while preserving pairwise distances among
K x V. Embeddings with terminal distortion can be
used used to construct embeddings with prioritized
distortion. We utilize this approach in Theorems 3.1
and 4.1.

Abraham et al. [ABN11] studied scaling distortion,
which provides improved distortion for 1 — € fractions
of the pairs, simultaneously for all e € (0,1), as a
function of e. A stronger version called coarse scaling
distortion has improved distortion guarantees for the
farthest pairs. Bartal et al. [BFN19] showed that scaling
distortion and prioritized distortion (in the sense of
[EFN18]) are essentially equivalent, but this is not
known to hold for the prioritized contractive distortion
we use in the current paper (see footnote (2)).

Another way to represent distances is a distance
oracle [TZ05]. This is a data structure that, given a
pair of points, returns an estimate of their pairwise
distance. The properties of interest are distortion, space
and query time. A distance labeling can be viewed as a
distributed version of a distance oracles, see also [MNO7,
Chel4, Chel5, EFN18, ACET18, CGMW19].

Exact distance labelings were studied in the preces-
sion of bits (i.e. not asymptotically) see e.g. [AGHP16].
Another type of labeling studied is adjacency labeling
[AKTZ19], where given two labels one can compute
whether the vertices are adjacent. Efficiency of the la-
beling algorithms has also been studied [WP11].

1.3 Preliminaries The /,-norm of a vector x =
(z1,...,2q) € R s ||z, == (0, |i|P)'/?, where
|z|loo := max;|z;|. An embedding f between two
metric spaces (X,dx) and (Y,dy) has distortion ¢ - ¢
if for every z,y € X, % ’ dX(xay) < dy(f(fli),f(y)) <t
dx(z,y). t (resp. c¢) is the expansion (resp. contraction)
of f. If the expansion is 1, we say that f is Lipschitz.
Embedding f : X — ¢4 can be viewed as a
collection of embeddings {f;}¢; to the line R. By
scaling we can assume that the embedding is not
contractive. That is, if f has distortion ¢ then for every
z,y € X and 1, | fi(z) — fi(y)] < t-dx(z,y) and there is
some index i, , such that dx (z,y) > |fi, , (x)—fi, , (¥)]-
We say that the pair x,y is satisfied by the coordinate
We consider connected undirected graphs G =
(V, E) with edge weights w : E — Rsq. Let dg denote
the shortest path metric in G. For a vertex z € V
and a set A CV, let dg(x, A) := minge4 d(x,a), where

da(z,0) := co. We often abuse notation and write the
graph G instead of its vertex set V.

We always measure the size of a label by the number
of words needed to store it (where each word contains
O(logn) bits). For ease of presentation, we will ignore
issues of representation and bit counting. In particular,
we will assume that every pairwise distance can be
represented in a single word. We note however that
the lower bounds of [GPPR04] are given in bits, and
therefore our Theorem 5.2 is as well.

All logarithms are in base 2. Given a set A, (‘3) =
{{z,y} | z,y € A,z # y} denotes all the subsets of size
2. The notation = (1 £¢€) -y means (1 —e)y <z <
(1+e)y.

2 General Graphs

In this section we discuss our result on succinct repre-
sentations of general metric spaces. We start with the
regime of small distortion. Recall that there exist both
exact distance labelings with O(n) label size [GPPR04]
as well as isometric embeddings into ¢, [Mat13], and
both results are essentially tight (even if one allows dis-
tortion < 3). In the following theorem we provide a
prioritized version of the exact distance labeling.

THEOREM 2.1. Given an m-point metric space (X,d)
and priority ordering X = {x1,...,z,}, there is an ez-
act labeling scheme with prioritized label size j. This is
asymptotically tight, that is every exact labeling scheme
must have prioritized label size Q(j). Furthermore, for
t < 3, every labeling scheme with distortion t must have
prioritized label size Q(j).

Proof. [Proof of Theorem 2.1] We begin by constructing
the labeling scheme. The label of x; simply consists
of the index j and d(z1,x;),d(z2,z;),...,d(x;—1,x;).
The size bound and algorithm for answering queries
are straightforward. If one allows distortion ¢t <
3, [GPPRO4] proved that every labeling scheme with
distortion ¢ must have label size of Q(n) bits, or Q(n)
words. As some vertex must have a label of size Q(n),
the prioritized lower bound Q(j) follows.

Finally, we prove the €)(j) lower bound for exact
distance labeling. We begin by arguing that some
label must be of length Q(n) (in words), and then
the Q(j) lower bound for prioritized label size follows.
The proof follows the steps of [GPPRO04]. Consider a
complete graph with (g) edges all having integer weights

in {n+ 1,n+2,...,2n}. Note that there are n(3)
such graphs, where each choice of weights defines a
different shortest path metric. Given an exact labeling
scheme, the labels I(x1),...,I(z,) precisely encode the
graph. Following arguments from [GPPRO04], the sum
of lengths of the labels must be at least logarithmic in
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the number of different graphs. Thus

-log n(3) = Q(nlogn) .

S

max |I(z;)] >

We conclude that some label length must be of
Q(nlogn) bits, or Q(n) words. O

While under the standard worst-case model dis-
tance labelings and embeddings into £, behave iden-
tically, we show that the prioritized versions are very
different. In the following theorem we show that no
prioritized dimension is possible, even if one allows dis-
tortion < %

THEOREM 2.2. There is no function o : N — N such
that every metric space can be embedded into Lo, with
prioritized dimension o« and distortion t < % (for any

fized t).

Proof. Consider the family G of unweighted bipartite
graphs G = (V = LU R, E) where |L| = |R| = n, for
large enough n. We first argue that there is a graph
G € G with the following properties:

(1) For every u,v € R or u,v € L, we have dg(u,v) =
2.

(2) Every embedding f : G — {5 with distortion 2¢
requires 2(n) coordinates.

The existence of G follows by a counting argument
similar to [Matl13]. Note that |G| = 27°. Denote by
G’ C G the graphs in G fulfilling property (1). Our
first step is to lower bound |G’|. Sample uniformly a
graph G € G. For u,v € R (resp. wu,v € L) let
I, be an indicator for the event dg(u,v) # 2. I,
occurs if and only if 4 and v do not have a common
neighbor in L (resp. R). Then Pr[l,,] = (2)". By
a union bound, the probability that property (1) does
not hold is at most 2 - (3) - (3)". We conclude that
G/ > 27" - (1-2-(2)-(3)") > L .27, Matousek
[Mat13] (proposition 3.3.1) implicitly proved that for
any subset G’ of G, if all of G’ embeds into ¢¢ with
distortion 2t < 3, then

Cd<n > ‘g/| ’

where ¢ > 1 is a constant depending on 3 — 2t. Thus
d = Q(n). We conclude that there is a graph G € G
fulfilling both properties (1), (2).

Consider such a graph G = (V =LUR, E). Note
that property (1) implies that there are no isolated
vertexes, and moreover for every u € R, v € L,
da(u,v) € {1,3}. Let G’ be the graph G along with
two new vertices I, where [ (resp. r) has edges to all

vertices in R (resp. L). Note that for every u,v € V,
dg(u,v) = dg/(u,v). Set L' = LU{l} and R’ = RU{r}.

Cramm 2.1. Every embedding f : G' — lo with distor-
tion t has Q(n) coordinates i for which f;(1) # fi(r).

The proof of the claim appears bellow. We conclude
that there are Q(n) coordinates where at least one of I, r
is not mapped to 0. Set 7 to be any priority ordering
wherein [ and r have priorities 1 and 2 respectively.
For every priority function @ : N — N, by taking
n > a(2),a(1), there is no embedding with prioritized
dimension « with respect to m. The theorem follows.
O

Proof. [Proof of Claim 2.1] We assume that the
embedding has expansion at most ¢, and for ev-
ery pair of vertices there is a coordinate where the
pair is satisfied (i.e. not contracted). Set A; =

{{u,v} € (LILQJR,) | dg(u,v) = z} to be all the vertex

pairs at distance exactly ¢. Note that (L,;JR/) =AU

Ao U A3. To satisfy all the pairs in (LIL;R,), Q(n) co-
ordinates are required (this is property (2)). We will
show that we can satisfy all the pairs in .4; U As using
O (logn) coordinates only. Thus satisfying all the pairs
in Ajs requires ©(n) coordinates.

The clique K, can be embed isometrically into
¢l°8 ™1 [LLR95]. Such an embedding can be constructed
by simply mapping K, to different combinations of
{0,1}Meen] " Ag 1 is the minimal distance, we can
just embed all the the 2n + 2 points as a clique using
O(log(n)) coordinates. By doing so, all the pairs in A,
will be satisfied. As equals (L2/) U (1;/). Note that the

metric induced on (Lz) is just a scaled clique. Thus
we can embed all of L' to the vectors {41}90ogn),
Additionally send all of R’ to 0. Note that by doing

so we satisfied all the pairs in (LZ/) while incurring no

expansion. Similarly we can satisfy all the pairs in (Fg)
using O(logn) additional coordinates.

Next we argue that in a coordinate f : G' — R
where f;(I) = f;(r), no pair of Ajg is satisfied. Indeed,
every vertex v € L’UR' is at distance 1 from either [ or .
As we have expansion at most ¢, in a coordinate i where
fi(l) = fi(r) the maximal distance between a pair of
vertices v, u is 2-t. In particular, for every {v,u} € As,
|fi(z) — fi(y)| < 2-t < 3. Thus no pair {v,u} € Az is
satisfied.

As there must be Q(n) coordinates where some
pair from Aj is satisfied, necessarily there are Q(n)
coordinates where f;(l) # f;(r). a

Considering that for distortion less than % no priori-
tized dimension is possible, it is natural to ask for what
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distortion are prioritized embeddings possible? Some
previous results of this nature are described in the in-
troduction to [EFN18, EN19]. As exact distance la-
beling is possible using O(j) labels, it is also natural
to ask what distortion can be obtain with prioritized
dimension O(j)? The following is a meta theorem con-
structing various trade-offs. We present some specific
implications in Corollary 2.1. A comparison between
our results and others appears in Table 2.

Consider a monotone function 8 : N — N. For j €
N, let xg(j) be the minimal ¢ such that 5(xs(j)) > j.

THEOREM 2.3. Given a metric space (X, d) with prior-
ity ordering X = {x1,...,zn} and a function f : N —
N, there is an embedding f : X — lo with contractive
prioritized dimension B(xg(j)) and prioritized distor-

tion 2 - x5(J)-

Proof. We suggest that while inspecting the proof, it
may be helpful for the reader to focus on the setting
B(i) = 2%, wherein x5(j) = [logj]. Set So = 0 and
S; = {z; |j < B(i)}. We define embedding f by setting
its j’th coordinate to be

fi(z) = d(z, Sy )1 U{;}) -

Note that for every j/ such that x5(j’) > x5(j), fj (j) =
0. Note also that there may be many points j' with
j' < jand yet f;(xz;) # 0. Thus z; is non-zero only in
the first B(xg(j)) coordinates as required.

Next we argue the prioritized distortion. It is clear
that f is Lipschitz. Consider a pair of vertices x;,y. Set
A =d(zj,y), and o; = d ({z;,y},S;). Then co = o >

ap > ag > -+ >y, ;) = 0. There must be some index
) A A A
i such that o — @iy1 2 57 and i1 < 5 — 575
Otherwise, as ;) = 0, k()y (ir;du)ciion Uxs()—a <

gA : e@)—-Da _ A _A
PIPIGIR In partlcular N () R S Z10)

and oo = oy < 2, a contradiction.

Choose z E Sit1 such that d({z;,y},2) = qit1.
Without loss of generality, d(z;,z) = d({z;,y}, 2 )
aip1. In particular, d(y,z) > d(z;,y) — d(z;,2) > 5.
It holds that d (y,S; U{z}) = min{d(y, S;),d(y,z)} >
min {a;, £}. Thus

1f(25) = Wl = ld(2j, Si U{z}) — d(y, Si U{z})]

{ A} A
Q41 — INIn Ozi,E

~ 2x8(4)
Prioritized distortion 2 - xg(j) follows. a

V

COROLLARY 2.1. Given a metric space (X,d) with pri-
ority ordering X = {x1,...,z,},

1. For everyt € N, there is an embedding f : X — l
with prioritized distortion 2 - [lo%] and prioritized
dimension 2t - j.

2. There is an embedding f : X — {o with prioritized
distortion 2 - [loglog j] and prioritized dimension

7%
Proof. The first case follow by choosing the function
B(i) = 2v%. Here y5(j) = [logy j] = [*°&1], thus the
prioritized distortion is 2 - (10%1 while the prioritized

dimension is S(xg(j)) = ot [#F] < ottlogs — ot . j

For the second case choose 3(i) = 22" Here xs(J) =
[loglog 7], thus the prioritized distortion is 2- [loglog j]
and the prioritized dimension is 5(x3(j)) = g2liosiesdl

] N 2
.ologlog j log log j .
A () p g

Note that the first case implies prioritized distortion
2 [log j] and prioritized dimension 2j.

3 {, Spaces

In this section we consider representations of ¢, spaces.
As these spaces are somewhat restricted, we focus on
the 1 4 € distortion regime. We begin with the upper
bound for distance labeling.

THEOREM 3.1. For every € > 0, p € [1,2] and n points
in €y, there is an 1 + e-labeling scheme with label size
O(e=%logn). Furthermore, given a priority ordering m,
there is an 1 + e-labeling scheme with prioritized label
size O(e~2log j).

Proof. [Proof of Theorem 3.1] We begin by constructing
a labeling scheme for a set X on n points in ¢5. Then
we will generalize the result to ¢, for p € [1,2].

As a consequence of the Johnson Lindenstrauss
lemma [JL84], there is an embedding f X -

63(6 *logn) with 1 4 € distortion. By simply storing
f(z) as the label of z € X, we obtain an 1 + € labeling
scheme with O(e=2logn) label size.

Next we consider a set X with priority order-
ing # = {1,22,...,2,}. Narayanan and Nelson
[NN18] (improving a previous result by Mahabadi et
al. [MMMRI18]) constructed a terminal version of the
JL transform: Specifically, given a set K of k points
in /o there is an embedding f of the entire f5 space

into 60(6 16 k) suich that for every z € K and y € fo,

1f(2) = f®)ll2 = (L £ €)l|x — yl

For i = 0,1,...[loglogn], set S; = {z; | j <
22} Let f; : X — (50815 16 o terminal JL
transform w.r.t. S;.  The label of z; will consist
of fo(xj),fl(xj),...,fﬂoglogﬂ(xj). Given a query on
xj, x5, where j < j', our answer will be || friog 10g j1 () —
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Embeddings of General Metrics

Prioritized Distortion Prioritized Dimension Notes
O(log™ ™€ %) O(log® §) [EFN18] | V constant e.
2. [£o8d] 1 O(k - n'/* - logn) [EN19] | Vk € N

2k - loglog j + 1 O(k - §** -logn) [EN19] | Vk €N

2 - [log j] 27 Corollary 2.1

2 - [loglog 7] 52 Corollary 2.1

Table 2: o, -embeddings of general metrics with different trade-offs between prioritized distortion and dimension.
Note that the results from [EN19] depend on n and hence are not truly prioritized.

Jriogiog j1(zj7)[l2. The distortion follows as z; €
SToglogj1- The length of the label of z; is bounded

by

[oglog j] [log log j1 _
S o0 oglsih =0 Y 2
i=0 i=0

_ 0(6—2) . 9lloglog j]+1
=0(e 2% logj) .

words, as required.

To generalize the labeling schemes to ¢, for p €
[1,2], we note that every ¢, p € [1,2], embeds isomet-
rically into squared-Ls, or equivalently, the snowflake
of ¢, embeds into Ly (see e.g. [DLI7]). Then a label-
ing scheme for {5 implies the same performance for ¢, as
well, the only change being that the computed distances
must be squared. 0

Next we turn our attention to lower bounds. Every
n-point set in fo embeds isometrically into any other ¢,
space, for p € [1,00] (see e.g. [Mat13]). This implies
that any lower bound that we prove for ¢, will holds as
well for any other ¢, space (as the hard example will
reside in /£, as well).

THEOREM 3.2. For every p € [1,00] and n € N, there
is a set A of 2n points in £y, such that every embedding
of A into Lo with distortion smaller than gmax{z,1-3}
has dimension at least n.

Proof. [Proof of Theorem 3.2] Set A =
{e1,—e€1,€2,—€9,...,€,,—€,}, the standard Dbasis
and its antipodal points (here {e;, —e;} is an antipodal
pair). Fix p, and we will prove that every embedding
of A C ¢, with distortion smaller that 21=% into loo
requires at least n coordinates. As mentioned above,
the lower bound for p = 2 holds for all £, as well; thus
the theorem will follow.

We argue that each coordinate can satisfy at
most a single antipodal pair. As there are m such

pairs, the lower bound follows. Consider a single
coordinate f : A — R. Assume by way of contra-
diction that there are e;,—e;,ej,—e; € A (i # j)
such that 2 < |f(e) = f(=e)l.|f(e;) — F(=e).
As  f(e), f(—e), f(ej), f(—e;) € R, by case
analysis there must be a pair consisting of
one point from {f(e;),f(—e;)}, and one point
from  {f(e;), f(—e;)} at distance at least
min{|f(e;) — f(—e)|.|f(e;) — f(—e;)[} > 2. But
the actual distance between this pair is only 2. Thus

f has distortion 212/p = 217%, a contradiction. 0

Note that Theorem 3.2 implies a lower bound of
Q(7) on the prioritized dimension of an embedding from
¢, into £, with distortion smaller than V2. However,
for distortion 14 € we prove a stronger lower bound with
exponential dependency on e.

THEOREM 3.3. For everye € (0,1) and p € [1,00] there
is a set of points in £, and a priority ordering, such that
every embedding of them into o, with distortion 1 + €
has prioritized dimension at least jé.

Proof. As above, we may assume that p = 2. Further-
more, we will assume that € < %, as otherwise a better
lower bound follows from Theorem 3.2. Let n be large
enough, and H,, = {£1}" C ¢% be the Hamming cube.
We start by creating a symmetric subset A C H,, (i.e.
A = —A), such that all the points in A differ in more
than €/n coordinates, for ¢ = 3¢. The set A is created in
a greedy manner. Initially set S = H,, and A = (). First
pick an arbitrary pair x, —x € S from S and add them to
A. Delete from S all the points that differ in fewer than
€' - n coordinates from either x or —z. Note that when
y € S is deleted, so is its antipodal point —y. Thus,
both S, A are maintained to be symmetric. We con-
tinue with this process until S is empty. The number of
points that differ l/)y at most ¢’n coordinates from every
point v € H is Y227y (1) < (2,) 1+ 5=5) < 2(00,)-
Therefore for each added vertex we deleted fewer than
2(67n) points. We conclude that the size of A is lower
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bounded by

2m 1 2m

(3.2) |A] > > S T—om
2-() — 2 (&)
1

— —.g(l=dlogF)n o 9. 9%

[\

We argue that an embedding f of A into R can sat-
isfy at most a single antipodal pair z, —x. Indeed, as-
sume by way of contradiction that there is f: A — R
and z,y € A such that Van < |f(z) — f(—2)|,|f(y) —
f(=y)| < (1 +¢€)V4n. Similar to the proof of Theo-
rem 3.2, by case analysis, there must be a pair z €
{z,—z} and w € {y,—y} such that |f(z) — f(w)| >
min {|f(z) — f(=2)[,[f(y) = f(=y)|} > V4n. As both
x, —x differs from both y, —y by more that ¢'n coordi-
nates, z coincides with w in at least €’n coordinates.

In particular ||z — w|l2 < /(1 —¢€¢)-4n . Thus f has
distortion at least |f|(|ZZ) Fw)l > V/dn >1+4¢ a

wll2 T \/(1—¢€)4n
contradiction.

Next, let ¥ = {£1}¥7{0}1=<)" he the set of
all points that attain values {£1} in the first €'n
coordinates, and with all other coordinates 0. Consider
a coordinate f : X — R that sends all of Y to 0. We
argue that f will not satisfy any antipodal pair in A.
Indeed, consider an antipodal pair z, —z. Let y € Y be
the point agreeing with = on the first ¢'n coordinates
and 0 everywhere else. It holds that

[f(z) = f(==)|
<|[f@) = FWI+ 1Y) = F=o)l + 1 f(=y) =
<@+ (e =yl + 0+ [[(=2) = (=)lly)

— (1402 /= )n < Van.

As each coordinate can satisfy at most a single antipodal
pair from A, we conclude that every 1 + ¢ embedding
of X into /s, must be non-zero on Y in at least |A|/2
coordinates.

We can now conclude the proof: Assume by way
of contradiction that for any set in £y there is a 1 + ¢
embedding into ¢, with prioritized dimension jé. Set
priority 7 for X with the points in Y occupying the
first |Y| places. By our assumption, there is an 1+ €
embedding where the points of Y are non-zero only in
the first

f(=2)|

(?22) @
2

coordinates. Thus the embedding cannot satisfy all the
pairs in A, a contradiction. 0

1
i = (200) 2

4 Trees

In this section, we present an embedding of trees into
ls with prioritized dimension O(logj). We begin by

sketching the classic isometric embedding of trees into
0205™) que to [LLR95]: First, identify a separator
vertex s, such that a split of tree T" at s results in the
creation of two trees 77,75, each containing at most
2n + 1 vertices, where Ty N T> = {s}. Now create a
new coordinate wherein each vertex v € T; assumes
value d(v,s), while each vertex z € T, assumed value
—d(zx, s). This coordinate satisfies all pairwise distances
Ty x Ty. Recursively (and separately) embed T; and T5
into £, recalling that each has its own copy of s. The
two embeddings are then merged by translating T5 so
that its copy of s is mapped to the same vector assumed
by the copy of s in Tj.

Given a priority ordering on the vertices
V1,V9,...,0y, our goal is to create an isometric
embedding into ¢, with prioritized dimension O(log j).
A natural first step would be to devise a terminal
embedding: Given terminal set K, embed T into
Zooo(log KD while preserving all pairwise distances K x V.
A terminal embedding can be constructed following the
lines of the classic embedding by modifying the sepa-
rator decision rule, and ensuring that after O(log |K|)
recursive steps all terminals are found in different
subtree. However, a terminal embedding of this type
is too weak to yield a prioritized embedding, since the
mapping of all terminals into 0 (subsequent to their
first O(log k) non-zero coordinates) interferes with the
distances between non-terminal pairs.

To circumvent this problem, we shall “fold” the
terminals one above the other, until ultimately all
terminals will fall on a single representative vertex (see
Lemma 4.1). During such a folding, some of the non-
terminal vertices will fold upon each other as well, but
our terminal embedding will be sufficiently robust to
ensure that their distances are retained. We will then
use this result on terminal embeddings of trees into
ls (Lemma 4.1) to derive the stronger result, priority
embeddings of trees into £, (Theorem 4.1).

4.1 Terminal Lemma

LEMMA 4.1. Given a weighted tree T = (V, E,w) and
a set K of k terminals, there exist a pair of embeddings
f:T— z?o(bg ® and g: T — T (into another weighted
tree T ) such that the following properties hold:
1. Lipschitz: For every x,y € V, ||f(z) — f(¥)]oo <
dr(z,y) and dr(g(x),9(y)) < dr(z,y).

2. Preservation: For every x,y € V, either | f(z) —

fWl = dr(z,y) ordr(g9(z),9(y)) = dr(x,y), or
both.

3. Terminal Collapse: g maps all of K into a single
vertez, i.e. |g(K)| = 1.
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Proof. We may assume that all terminals of K are leafs,
as otherwise we can simply add a dummy vertex in
place of each terminal, and connect the terminal to the
dummy vertex with an edge of weight 0. The proof is
by induction on k.

Base cases. For the case K = 1 we can just return
the tree as is, along with the null embedding into £
Next we prove the case of K = 2. Denote the two
terminals by t1,t2, and let P be the unique path in T
connecting tq,t3. Let ¢ € V be the midpoint of ¢; and
to, such that dr(t1,c) = dr(ta,c). (If ¢ does not exist in
V', then add ¢ to V, and split the corresponding middle
edge into two new edges joined at ¢.) Now “fold” P
around c. That is, create a new tree T, where path P is
replaced by a new path that ends at ¢, and every z € P
is found on the new path at distance exactly dr(z,c)
from ¢. Any pair of points in P equidistant from c are
merged — and in particular ¢; and t5 are now the same
point, which is the other endpoint of the new path. All
the other edges and vertices remain the same. As a
result, we obtain an embedding g : dr — T (see Figure
1 for an illustration). It is clear that g is Lipschitz, and
moreover |g({t1,t2})] = 1.

Having specified the function g, we now describe
the function f: separate T into two trees 17,75 where
Ty NTy = {c}. Set the function f: V — R as follows.

dT(U,C) veT

(4.3) flv) = {_dT(ch) v e T\ {c}

See Figure 1 for an illustration of function f. We argue
that f is Lipschitz: Consider a pair of vertices u,v. If
u,v € T; (for some ), then by the triangle inequality
lf(w) = f()| = |dr(u,¢) — dr(v,e)| < dr(u,v). Oth-
erwise, assume without loss of generality that v € T}
while v € Ts. The shortest path from u to v must pass
through ¢, thus

(4.4) |f(u) = f(v)| = |dr(u, c) + dr(v,c)]

It remains only to prove the second property (preserva-
tion). Consider a pair of vertices u,v. If u € T} and
v € Ty, then by equation (4.4) |f(u) — f(v)| = dr(u,v).
Otherwise, if u,v € T}, the shortest path between u and
v in T is isomorphic to the shortest path in 7, and so
d7(u,v) = dr(u,v) as required.

Induction step. For £ > 2 terminals, we will
assume by induction that for every tree with ¥/ < k
terminals there are embeddings f, g as required above,
such that f uses at most a - logk’ coordinates, for
a= W. Consider a tree T', and a terminal set K of
size k. Let s € V be a separator vertex, such that T" can
be separated into two trees 71,75 where Th N Ty = {s},
and each T; contains at most %k terminals. As all

=dr(u,v) .

the terminals are leafs, s ¢ K. Create a single new
coordinate h® : V — R defined as follows

hs( ) dT(.’L‘, S) x el
€T =
—dr(z,s) x €Ty

It is clear that h® is Lipschitz, and that for every
x € T,y € Ty, |h°(x) — h°(y)| = dr(z,y). For
i € {1,2}, invoke the induction hypothesis on T; with
terminal set K; = T; N K, creating embedding pair
£ T — plosl ‘K D and ¢; : T — 7; which together
satisfy requirements (1)-(3). By padding with 0-valued
coordinates, we can assume that both f; and fo use
exactly a - log %k coordinates. Moreover, by translation
we can assume that fi(s) = fa(s) = 0. Set f’ to be the
combined function of fi, fa:

/m _ fl(l‘) .%‘ETl
/@) {fg(x) x €Ty

We argue that the function f’ is Lipschitz Forz,y € T},

1 (@) = Wl = [Ifilz) = filW)llee < dri(z,y) =
dr(z,y). On the other hand for z € T} any y € T,

using the triangle inequality
1/ (z) = f'(y)lloo
< (@) = () lloo + 11(5) =
< dTl (.CE, 8) + de (37 y)
=dr(z,s) +dr(s,y) =dr(z,y) .

f/(y)Hoo

Set f to be the concatenation of f’ with h®, and it
is clear that f is Lipschitz as well. This completes the
description of the embedding into £,

For the embedding into the tree, let T be composed
of the trees 71 and 73 glued together in g1(s), g2(s).
Similarly define §: T — T as follows

v Jo(@) zeT
g(x)_{gg(m) x ey

Using triangle inequality in the same manner as for f’,
it is clear that g is Lipschitz. ~

We argue that requirement (2) holds w.r.t. f,g.
Indeed, for u,v in Tj,

max { || f(2) = F(9) . d7(3(2), 5(v) }
) -

> max {||fi(z) — fi(y)lloo, dr, (9:(2), i (y)) }
= dTi (.%’, y) = dT(x7y)

On the other hand, for v € Ty, u € Tb,

max{”f(v) - f(u)||oo,d¢(§(v),§(u))}
> |h*(v) = h*(u)| = dr(v,u) .

Copyright © 2020 by SIAM

1072 Unauthorized reproduction of this article is prohibited



Downloaded 01/22/20 to 23.83.37.184. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

Figure 1:

On the left is illustrated the tree T with two terminals t,to. The path P between the terminals is

colored in purple. The (possibly imaginary) vertex ¢ lies at the midpoint of t1 and ta. On the right is illustrated
the tree T which is obtained by “folding” the path P around c.

In this example, all the edges in T are of unit weight,

except for the edge {y1,y2} that has weight 2. Possible

values for the function f: T — R (eq. (4.3)) are: f(t1) =4, f(t2) = —4, f(a) =7, f(b) = =3, f(x1) =2, f(z2) =

_23 f(Z) =

However, requirement (3) does not immediately
hold, as 7 contains two terminals 91(K1),g2(K2). In-
voke the lemma for the case of kK = 2 to create two
embeddings f T - R, g: T — T that fulfill require-
ments (1)—(3). Set f = f&f(§) to be the concatenation
of f with f(g) and g = §(§) to be the composition of §
with g ending in the tree 7. It is clear that both f, g
are Lipschitz as the Lipschitz property is preserved un-
der concatenation and composition. Moreover, g maps
all terminals to a single vertex. Requirement (3) also
holds:

=max {|| f(v) — f(0)||oc, d7(g(v), g(v))} .

Finally, and recalling that a = the number of

2
log(3/2)
coordinates is bounded by

2 2
a~log§k+1+1 :a-logk+(a-log3—|—2> =a-logk
The lemma follows. O

4.2 Prioritized Embedding of Trees into /.

THEOREM 4.1. Given a weighted tree T = (V, K, w)
and a priority ordering m over V, there is an iso-
metric embedding f into Lo, with prioritized dimension

O(log j).
Proof. Let m = {x1,x2,. ..

, Tn } be a priority order. Set
for 1 < i < [loglogn]. Using

Lemma 4.1, w.r.t terminal set S; construct embeddings
f1 0T — (90°¢15D and gy T — Ty. Tt holds that
91(S7) is a single vertex in T3, and for every u,v € V,
dr(u,v) = max {1 (w) — fi ()] dr, (1), 91(0))}-
Next, using Lemma 4.1 again, w.r.t terminal set g1 (S2),
construct embeddings fo : ¢1 (T) — Q0081520 and
g2 : g1 (T) — T». By translation, we can assume that
f2(g1(S1)) = 0. Furthermore, go(g1(S2)) is a single
vertex in T5. It also holds that,

dr(u,v) = max { || f1(u) = f1(v)]| o
I f2(g1(w) = fa(g1 ()]l > dry (92(91(w)), 92(91(v))) } -

Generally, in the ¢ step, we invoke Lemma 4.1 on
Ti,1 (W.I‘.t. terminal set gifl(gi,Q(--'(g1(Si)))) ) to
construct tree T; and embeddings f;, g;. By induction,
we constructed trees T1,...,T; and embeddings f; :
T — Eooo(log‘sl‘),...,fl T — é?o“"g'sf"), g1
T — Tv,...,9; : T;_1 — T; such that for all ¢ €

[1,17], g4(gq—1(--.(91(Sy)))) 1§ a single vertex in Tj, and
fa(gq—1(. .. (91(Sg=1)))) = {0}. Furthermore
(4.5)
dr(u,v) =
max { || f1(u) = fr(v)llo - --
; filgima (- (g2 () = filgima (- - (91(uw))))lloo

, dr, (gi(gi—l(---(gl<u)))) , 9i(gi—1(. .-

Denote o = [loglogn|. After a steps we get func-
tions and trees as above. Set f = f1 @ (fa091) @
(f30g2091) @D (fa0ga—10---0g1): T = Log. We
argue that f is an isomorphism with prioritized dimen-
sion O (log j) as promised. Note that all vertices of V'

(gr())))} -
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belong to S, and hence mapped by ¢go(ga—1(---(g1)))
to the same vertex. Thus for every u, e V,
0

dT&(ga(ga—l('"(gl(u))))vga(ga—l( ( (1) )))) =

By equation (4.5) we get

dr(u,v) = max{[fi(u) = fi(V)].---
Ifalga—1(..- (g1(w)))) = falga-1(.-- (91())))ll }
= [[f(w) = f(v)ll

Finally we argue that f has prioritized dimension
O(logj). Consider z; € Spogiogj1- For every i >
[loglog j] it holds that f; (gi—1 (gi—2 (-~ (91(z5))))) =0
(as xj € Si_1). Therefore x; might be non-zero only in
the first

[log log j1 [log log 5 4
>, Ooglsih=0| > 2
=1 =1

— 0 (2145455) Z 0 (1og
coordinates. O

5 Planar Graphs

The theorem below demonstrates that any isometric
embedding of the cycle graph Cs, into f., requires
dimension n. Furthermore, no prioritized dimension is
possible for isometric embeddings of the cycle graph.
The cycle graph is an interesting example as it is
both planar and has treewidth 2. Both proofs of
Theorem 5.1 ® and Theorem 5.2 are omitted from this
version.

THEOREM 5.1. For every m € N, every isometric
embedding of Ca, (the unweighted cycle graph) into
Lo requires at least n coordinates. Furthermore, there
is no function a : N — N for which the family of
cycle graphs {Cplnen can be embedded into Lo with
prioritized dimension o.

THEOREM 5.2. Every prioritized labeling scheme for
planar graphs must have prioritized label size of at
least Q(j) (in bits). This lower bound holds even for
unweighted planar graphs.

6 Open Questions

1. How many coordinates are required in order to
embed planar graphs — or even treewidth 2 graphs
— into ¢, with distortion 1 + €?

2. What is the required label size for 1 + € distance
labeling for ¢, spaces, for p > 27
8Theorem 5.1 is a special case of a theorem proved in [LLR95],

which applies to general norms. Nonetheless, our proof (which
appears in the full version) is much simpler.

3. Is it possible to embed ¢, spaces (p € [1,00])
into £, with distortion 1 + ¢ and some prioritized
dimension? Theorem 3.3 provided a jQ(%) lower
bound, but did not rule out this possibility. The
same question applies when considering constant
distortion.

4. All results on embedding of general graphs into £
with both prioritized distortion and dimension (our
Theorem 2.2, Theorem 15 in [EFN18|, and Theo-
rems 2,3 in [EN19]) feature prioritized contractive
distortion. What is possible w.r.t. classic priori-
tized distortion (see footnote (2))?
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