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Abstract

We present an improved technique for extracting quasi-random bits from
two sources of weak randomness. Given random variables X, Y over {0, 1}n,
we denote the min-entropy of X by bX and the min-entropy of Y by bY . We
show how to extract bX +Ω(bX +bY −n) quasi-random bits, when bX +bY

is at least n + Ω(polylog(n)). This is the first explicit construction that
extracts Ω(n) quasi-random bits even when bX + bY = n + o(n).

For the proof, we show that the extraction method of Vazirani ([Vaz87b])
extracts Ω(bX +bY −n) bits that are almost independent of X . We use these
bits as a seed for an extractor and extract all the randomness from X .
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1 Introduction

1.1 Randomness in Computer Science

Randomness is a central tool in computer science. For many problems, random-
ized algorithms give more efficient or simpler solutions than the best known de-
terministic algorithms for these problems (for examples, see [AS91] and the ref-
erences therein).

Randomized algorithms and protocols assume an auxiliary source of truly random
input bits, i.e. independent and unbiased bits.

There are physical phenomena that are known to be random. Sampling a random
physical phenomenon can give a random source. However, such sources are usu-
ally biased, and may have dependencies between the sampled bits. Furthermore,
the bias of such sources increases with the sampling rate (see [Mur70], and the
discussion in [Rit]).

Denote by Un the uniform distribution on {0, 1}n. For a randomized algorithm
that uses n random bits, we assume they are coming from Un. If the bits are
coming from a distribution Dn, then the bias of Dn (defined as half the statistical
distance between Dn from Un) may add up to the error probability of the algo-
rithm. Sources with super-polynomially small (in n) bias are called quasi-random
sources. Quasi-random sources are statistically indistinguishable from truly ran-
dom sources, and can be used instead (see also the discussion at [Gol02], pages
70-71). On the other hand, sources with distributions that are “far” from uniform
are called weak random sources.

1.2 Extracting Randomness from Imperfect Sources

Several classes of weak random sources were defined and studied in the past. The
motivation for studying such sources is to find a general characterization of weak
random sources, and show that such sources can be used efficiently in randomized
algorithms.

One way to use a weak random source in randomized algorithms is by transform-
ing the weak random source into a strong source (e.g., quasi-random source). This
problem has been studied extensively in the last decade, although some works date
as early as 1951 [vN51].
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We view a random source as a random variable over {0, 1}n. An extraction func-
tion is a function that transforms a weak random source (or possibly more than
one random source) into a stronger random source. To be able to extract random-
ness from a source, we first have to define more clearly the randomness that is
present in the source.

Consider, for example, von Neumann’s work ([vN51]). The class of random
sources he studied was those sources that can be produced by biased coins; For
every 0 < δ < 1, let Dn,δ be the following distribution over {0, 1}n. A random
variable X = (X1, . . . , Xn) with distribution Dn,δ has Pr[Xi = 1|X1, . . . , Xi−1 =
~z] = δ, for every 1 ≤ i ≤ n and for every ~z ∈ {0, 1}i−1.

von Neumann’s protocol extracts truly random bits from any source X with dis-
tribution Dn,δ, for every 0 < δ < 1. It divides the input string into n

2
pairs of

bits. For every pair, it outputs 0 if the pair is (01) or 1 if the pair is (10), and
outputs nothing if the pair is (00) or (11). The probability of outputting 1 and the
probability of outputting 0 is equal to δ · (1 − δ), and as we assume the input bits
are independent, so are the output bits. This algorithm works for any δ, although
the expected number of output bits is not optimal. Elias [Eli72], and later Peres
[Per92], showed how to extract truly random bits at optimal rate, which is the
entropy rate of the source.

More general types of sources were studied by Blum [Blu84]. He studied sources
where the bits are assumed to be the output of a finite Markov chain, with un-
known (fixed) transition probabilities. He showed an algorithm to extract perfect
random bits at optimal rate from such sources.

Cohen and Wigderson [CW89] studied bit fixing sources, where a subset of the
bits have fixed values, and the rest of the bits are unbiased and independent.

Santha and Vazirani ([SV86]) studied sources that are now called SV-sources. For
0 ≤ δ ≤ 1

2
, a δ-SV-source X = (X1, . . . , Xn) is a random variable over {0, 1}n,

such that for every i = 1, . . . , n and for every ~z ∈ {0, 1}i−1, δ ≤ Pr[Xi =
1|X1, . . . , Xi−1 = ~z] ≤ 1 − δ.

We think of such a δ-SV-source as being generated by an adversary, who, after
seeing the values of x1, . . . , xi−1, can set the bias of xi (as long as that bias is
smaller than 1

2
− δ ).

A somewhat surprising result is that it is impossible to extract even a single bit
with bias smaller than ( 1

2
− δ) from a general δ-SV-source ([SV86]).
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However, it is possible to extract quasi-random bits from two independent δ-SV-
sources. In a series of works ([SV86, Vaz85, VV85, Vaz87a, Vaz87b]) Santha
& Vazirani, Vazirani & Vazirani, and Vazirani showed that Ω(nδ2) quasi-random
bits can be extracted from two independent δ-SV-sources.

Chor and Goldreich [CG88] suggested a more general characterization of random
sources, which they called probability bounded (PRB) sources. For PRB sources,
every string ~z ∈ {0, 1}n has “small” probability to be the output of the source.

We say that X is a k-source if the maximum probability of any string ~z ∈ {0, 1}n

is 2−k (k is called the min-entropy of this source). 1

PRB sources (as defined above) strictly generalize SV-sources; Every δ-SV-source
is an (n · log2(

1
1−δ

))-source. But there are PRB sources that are not SV-sources.
For example, an (n−1)-source that is uniform on 2n−1 of the strings in {0, 1}n

is not an SV-source. Thus, it is not surprising that it is also impossible to extract
even a single unbiased random bit from a single PRB source (see section 4.1).

As with SV sources, it is sometimes possible to extract random bits from two
independent PRB sources: Chor and Goldreich ([CG88]) show how to extract a
single random bit from two PRB sources, if their min-entropies are high enough:
If X is a bX-source, and Y is a bY -source, and bX +bY are at least n+2+2 log2(

1
ε
),

then the bias of the extracted bit is ε.

They also give a non-constructive proof that even for a very low value of k, it is
possible to extract random bits from every pair of k-sources. 2

We review some of their techniques in detail in section 4.4.

PRB sources not only generalize all the sources mentioned above, but are also
relatively simple to define and to manipulate.

1 We note that the definition in [CG88] is different: They define a PRB source X as an infinite
sequence of k-sources, X1, X2, . . . , where for every positive integer i, for every ~z ∈ {0, 1}n and
for every ~w ∈ {0, 1}i·n, the probability that Xi+1 = ~z, given that (X1, . . . , Xi) = ~w, is at most
2−k. This definition allows every problem in RP and in BPP to be decided using only a single
weak source (see [VV85, CG88])

2 They use counting arguments to show that almost all functions are good for this purpose,
and give tradeoffs between the number of extracted bits, the min-entropies of the sources, and
the bias of the extracted bits. For example, they show that all but 2−2

b

fraction of the functions

f : {0, 1}2n → {0, 1} have bias of ε ≤ 2−
b−3−log2(2n+1)

2 on all pairs of independent b-sources
X,Y . The min-entropy b must be at least log2(2n + 1) + 2 log( 1

ε
) + 3. Note that b is smaller than

n; Constructing an explicit function that achieves this is an open problem (also see section 6 )
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1.2.1 Extractors

Another approach for extracting randomness from weak random sources is to use
a “short” truly random seed, in addition to the weak random source (as opposed
to the methods we described above, that use weak random sources; Here the
seed is truly random). Such constructions are called extractors, and were first
defined by Nisan and Zuckerman ([NZ96]). A (k, ε)-extractor E is a function
E : {0, 1}n × {0, 1}d → {0, 1}m, such that E(X,Ud) is ε-close to Um, when X
is a random variable with min-entropy of at least k. (Note that k, d,m, ε can be
functions of n.) A probabilistic argument shows that for every k there exists a
(k, ε)-extractor, for a constant ε, with d = log(n) + O(1) and m = k + d−O(1).
That is, the number of extracted bits is almost equal to the sum of min-entropies
of the inputs.

A long line of research in the past decade focused on finding explicit construc-
tions of extractors. Ta-Shma was the first to show an explicit construction of an
extractor that has seed length d = logO(1) n (for a constant ε). His extractor ex-
tracts all the randomness from the source, that is m = k ([TS96]). Later explicit
constructions improved on his results, with the best parameters to date achieved
by [LRVW03]: They give an explicit construction of (k, ε)-extractor, for every k
and for every constant ε, that has seed length d = O(log(n)), and extracts almost
all the randomness from the weak source; That is, m = (1−α)k, for any constant
α > 0. The error can be reduced to any ε′ (for example, ε′ that is inverse-super-
polynomial in n) using the technique of [RRV02]. Using this technique, additional
O(log(1/ε′)+ log(m)) truly random bits are used, in order to reduce the bias to ε′.
That is, additional O(log2(n)) truly random bits in the seed guarantees the output
to be quasi-random.

There are several surveys and texts on extractors, such as [Nis96, NTS99] and a
recent survey by Shaltiel [Sha02].

Extractors with the additional property that the output is almost independent from
the seed are called strong extractors; For a strong extractor SE, the distribution
of (SE(X,U), U) is ε-close to the distribution of (Um, U), when U has uniform
distribution over {0, 1}d.
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1.3 Our Contribution

It is commonly known that the extraction algorithm presented by Vazirani [Vaz87b],
that works for SV-sources, also applies to the more general PRB sources. How-
ever, we have failed to find references that describe extraction of many quasi-
random bits from two PRB sources. As far as we know, this is the first time
where this algorithm is described in detail. In section 4.5 we show how to extract
Ω(bX + bY − n) bits, with bias of 2−Ω(bX+bY −n), from two independent sources
X,Y , that are bX and bY -flat, respectively.

In section 5, we show how to go beyond these results, and extract bX + Ω(bX +
bY − n) bits from such sources, with bias of 2−Ω(bX+bY −n), when bX + bY − n =
Ω(polylog(n)). This is the first explicit construction of a function that extracts
Ω(n) quasi-random bits even when bX + bY − n = o(n).

Our construction uses two steps; We first show that the bits extracted in section
4.5 are independent of X . That is, the bits look random even to someone who
has access to X . We then use an extractor to extract the randomness from X , and
note that even for the extractor, the random seed can be replaced by the bits we
extracted in the first step.

Proving that the bits extracted in the first step are independent of X was first
shown by Dodis and Oliveira [DO], and communicated to us by them. Using
probabilistic arguments, Dodis and Oliveira show that for inputs X,Y , which are
bX and bY -flat, respectively, it is possible to extract m = bY − 2 log(1

ε
) bits that

are at most ε-biased (independent of X), when bX , bY ≥ log(n)+2 log( 1
ε
)+O(1).

They also give an explicit construction that extracts Ω(bX + bY − n) bits.

In our work, we give two explicit constructions of functions that extract Ω(bX +
bY − n) quasi-random bits, which are independent of X (and are different from
the construction used at [DO]). Our proof works only when bX + bY − n =
Ω(polylog(n)), and the extracted bits have bias of 2−Ω(bX+bY −n).

We then show how to use an extractor that extracts all the randomness from X
(for example, the extractor in [RRV02]) to get bX + Ω(bX + bY − n) bits.

8



2 Definitions

Let [n] denote the set {1, 2, . . . , n}. A set S ⊂ [n] is also represented as a vector
S ∈ {0, 1}n, with Si = 1 ⇐⇒ i ∈ S. A vector S is also a function S : [n] →
{0, 1}, with S(i) = Si. A vector S can also carry an integer value of

∑n
i=1 2i−1Si

(that is, S is an index between 0 and 2n − 1).

When a variable is used mostly as a set, we will denote it by a capital letter such
as S or T . When a variable is used mostly as an index we use x, i, j, etc. When
we want to emphasize the vector meaning of an element v ∈ {0, 1}n we denote it
with an arrow, ~v. We denote random variables by capital letters such as X,Y .

When f is a function on S × T and i ∈ S, we denote by fi the function f where

the first argument is set to i. That is, fi(j)
def
= f(i, j) for every j ∈ T .

Let X be a random variable getting values in S. Without loss of generality, as-
sume |S| = 2n, for n integer, and furthermore that S = {0, 1}n. The probability
function of X is the function PX : S → R such that PX(j) is the probability that
X gets the value j (for every j ∈ S).

It is useful to think of PX as a vector in R2n
, where the j-th index (PX)j is equal

to PX(j).

Recall that the L1-norm of a vector ~v = (v1, . . . , vn) ∈ Rn (denoted ||~v||1) is
defined as

||~v||1 def
=

n∑

i=1

|vi|

Note that the L1-norm of the vector PX is 1.

We also recall that the L2 norm of the vector ~v (denoted ||~v||2) is defined as

||~v||2 def
=

√√√√
n∑

i=1

(vi)2

For two vectors ~v, ~u ∈ Rn, we denote by 〈~v, ~u〉 their inner product, i.e.

〈~v, ~u〉 def
=

n∑

i=1

vi · ui

9



For two vectors ~v, ~u ∈ GF (2)n, we denote their inner product (mod 2) by 〈~v, ~u〉2 ,
i.e.

〈~v, ~u〉2

def
=

n∑

i=1

vi · ui (mod 2)

Let ~v = (v1, . . . , vn) be a vector in {0, 1}n. For every S ⊂ [n], denote by ~vS the
xor of {vi}i∈S , i.e.

~vS
def
=

⊕

i∈S

vi

For a random variable X getting values in the set T , we denote bt X the set of
elements in T that have non-zero probability; That is, X = {x ∈ T : PX(x) > 0}
If X is a random variable over T and f is a function from T to W , then f(X) is a
random variable getting values in W , such that

Pr[f(X) = w] =
∑

t : f(t)=w

Pr[X = t]

Definition 1 (Min Entropy). Min-Entropy of a random variable X is denoted
H

∞
(X), and is defined as

H
∞

(X) = − log2

(
max

x

{
Pr[X = x]

})

If the most probable event happens with probability 2−k, then the min-entropy of
X is k.

Since
∑

x∈X Pr[X = x] = 1, any random variable with min-entropy k has at least
2k different values with non-zero probability (that is, |X| ≥ 2k).

Min-entropy can serve as a measure of the information present in a sample from
the random variable. We can compare the min-entropy to the (Shanon) entropy:
in some sense, min-entropy “measures” the information in the worst case, that
is, when the value sampled is the most probable value, as opposed to Shanon’s
entropy, which measures the information in the average case.

X is called flat on S if for every α, β ∈ S, Pr[X = α] = Pr[X = β] and for every
α /∈ S, Pr[X = α] = 0.

As mentioned in the introduction, it is not always possible to extract truly random
bits. The “quality” of the extracted bits is measured by their statistical distance
(bias) from truly random bits.

10



Definition 2 (Statistical Distance). Let PX , PY be two probability functions on
{0, 1}n. The statistical distance ∆(PX , PY ) is defined as

∆(PX , PY ) =
1

2

∑

i∈{0,1}n

∣∣∣PX(i) − PY (i)
∣∣∣

The statistical distance ∆(X,Y ) of two random variables X,Y , is the statistical
distance ∆(PX , PY ) of their probability functions, PX , PY .

Two probability functions (random variables) that have statistical distance at most
ε are called ε-close.

The Bias of X is the statistical distance of X from Un.

We also define the bias of a matrix over {±1}. Let C be an n × m matrix over
{±1}, then

Bias(C)
def
=

1

2
·

∣∣∣
∑n

i=1

∑m
j=1 ci,j

∣∣∣
n · m

We call the term
∣∣∣
∑n

i=1

∑m
j=1 ci,j

∣∣∣ the elements sum of C. Matrices with zero

elements sum are called balanced matrices or unbiased matrices.

The bias of a row (respectively, column) of C is the bias of the submatrix of C
that consists of this row (resp., column).

C is at most ε-biased if Bias(C) ≤ ε, and at least ε-biased if Bias(C) ≥ ε.

11



3 Preliminaries

3.1 Flat Distributions

It is relatively easy to deal with flat distributions, as we shall see in Section 4.4.
Also, the ”worst behavior” of extraction functions occurs on flat distributions, as
the following lemma shows

Claim 1 ( [CG88], Lemma 5). For every function f : {0, 1}n×{0, 1}n → {0, 1}k

and every α ∈ {0, 1}k

sup

H
∞

(X)=bX

H
∞

(Y )=bY

X,Y are independent

{Pr[f(X,Y ) = α]} = max
H

∞
(X)=bX , and X is flat

H
∞

(Y )=bY , and Y is flat

X,Y are independent

{Pr[f(X,Y ) = α]}

and

inf
H

∞
(X)=bX

H
∞

(Y )=bY

X,Y are independent

{Pr[f(X,Y ) = α]} = min
H

∞
(X)=bX , and X is flat

H
∞

(Y )=bY , and Y is flat

X,Y are independent

{Pr[f(X,Y ) = α]}

Thus, when extracting randomness from two PRB sources over {0, 1}n, we can
assume these sources are flat.

3.2 Fourier Transform

We will use some properties of the Fourier representation of a function. Consider
an arbitrary function g : {0, 1}n → R. It will be convenient to view g as a vector
in R2n

, with the x-th coordinate being the value of g(x) (for every 1 ≤ x ≤ 2n).
This mapping of functions to vectors is 1-to-1. The Fourier base is an orthonormal
base for R2n

, and the (discrete) Fourier transform is the transformation from a
representation of a vector in the standard base, into a representation of this vector
in the Fourier base.

The Fourier representation and the Fourier transform for functions are implicitly
defined by the Fourier representation and the Fourier transform for vectors.

12



Let K (after the Kronecker delta functions) be the standard base for R2n
:

K = {1x}x∈{0,1}n

where 1x =

length 2n

︷ ︸︸ ︷
(0, . . . , 0, 1, 0, . . . , 0) has a single 1 in the location x+1 (here we take

x ∈ {0, 1}n as an index 0 ≤ x ≤ 2n − 1).

As a function, 1x(y) = 1 iff y = x. We write the function g as

g(y) =
∑

x∈{0,1}n

gx · 1x(y)

where
gx = 〈g, 1x〉 =

∑

z∈{0,1}n

g(z) · 1x(z) = g(x)

Let χ be the Fourier base for R2n
:

χ = {χS}S⊂[n]

where for every T ⊂ [n], χS(T ) = 2−n/2 · (−1)|S∩T | (Here we take the indices S
and T as subsets of [n], although they can also be treated as elements of {0, 1}n)

As a function, χS(T ) =

{
2−

n
2 when |S ∩ T | is even

−2−
n
2 when |S ∩ T | is odd

The representation of g in Fourier base is

g(T ) =
∑

S⊂[n]

ĝS · χS(T )

for every T ⊂ [n], where the coefficients ĝS are

ĝS = 〈g, χS〉 =
∑

T⊂[n]

g(T ) · χS(T ) = 2−
n
2


 ∑

T :|T∩S| even

g(T ) −
∑

T :|T∩S| odd

g(T )


 (1)

It is easy to verify that both bases are indeed orthonormal, and that both represen-
tations of g give the same vector (i.e., compute the same function).

For orthonormal bases, it is well known that the L2 norm of a vector is invariant
of the base the vector is represented in. This is known as the Parseval equality:

∑

x∈{0,1}n

(gx)
2 =

∑

S⊂[n]

(ĝS)2 (2)

13



3.3 The xor-lemma

Let X = (X1, . . . , Xn) be a random variable getting values in {0, 1}n and let
P = PX be the probability function of X .

For every S ⊂ [n], denote by XS the xor of {Xi}i∈S , i.e.

XS
def
=

⊕

i∈S

Xi

There is an equivalence between the following two conditions (see also [NN90])

1. X is uniformly distributed on {0, 1}n.

2. For every non empty S ⊂ [n], XS is unbiased.

When the values {XS}S 6=∅ are slightly biased, X is still close to uniform. Vazi-
rani’s xor-lemma relates the bias of X to the maximal bias of XS , when S ⊂ [n].

Lemma 2 (xor-lemma ). For X as above

Bias(X) ≤
√ ∑

∅6=S⊂[n]

(Bias(XS))2 ≤ 2n/2 · max
∅6=S⊂[n]

{Bias(XS)}

The proof is immediate from the following two claims:

Claim 3. For X,P as above,

2 · Bias(X) =
∑

x∈{0,1}n

∣∣∣P (x) − 1

2n

∣∣∣ ≤ 2n/2

√ ∑

∅6=S⊂[n]

(P̂S)2

Proof. By definition,

Bias(X) =
1

2
·

∑

x∈{0,1}n

∣∣∣ Pr[X = x] − 1

2n

∣∣∣

Denote g(x)
def
= P (x) − 1

2n , and note that we can write

∑

x∈{0,1}n

|g(x)| =
∑

x∈{0,1}n

|g(x)| · 1

14



We use the Cauchy-Schwartz inequality: for two vectors u, v ∈ Rn, 〈u, v〉 ≤
||u||2 · ||v||2.

We get ∑

x∈{0,1}n

∣∣∣ Pr[X = x] − 1

2n

∣∣∣ ≤ 2n/2

√ ∑

x∈{0,1}n

(g(x))2

Using Parseval equality, this is equal to

2n/2

√ ∑

S⊂[n]

(ĝS)2

Note that ĝS =

{
P̂S S 6= ∅
0 S = ∅

Therefore we can write

2 · Bias(X) =
∑

x∈{0,1}n

∣∣∣P (x) − 1

2n

∣∣∣ ≤ 2n/2

√ ∑

∅6=S⊂[n]

(P̂S)2

Claim 4. For X,P as above, |P̂S| = 2
2n/2 · Bias(XS).

Proof. From equation 1 (page 13), we know

P̂S = 2−n/2


 ∑

T :|S∩T | even

P (T ) −
∑

T :|S∩T | odd

P (T )




But
XS = 0 when |X ∩ S| is even, and XS = 1 otherwise.

therefore

|P̂S| =
1

2n/2
·
∣∣∣ Pr[XS = 0] − Pr[XS = 1]

∣∣∣ =
2

2n/2
· Bias(XS)

15



4 Previous work

In section 4 we describe the works of Vazirani [Vaz87b] and Chor and Goldreich
[CG88], on extracting quasi-random bits from weak random sources. In section
4.4 we bring the proof of [CG88] that the given two weak random sources, the
inner product modulo 2 of them can give a quasi-random bit; Denote the random
sources by X,Y , and assume that X is bX-distributed and Y is bY -distributed. If
bX + bY − n = Ω(polylog(n)) then 〈X,Y 〉2 is a quasi-random variable.

Vazirani showed how to extract Ω(nδ2) quasi-random bits from two δ-SV-sources,
by taking Ω(nδ2)-bits from a convolution between the two sources. It is consider
common knowledge that his technique also applies to PRB-sources, but we did
not find references that describe explicit constructions of functions that extract
more than one bit from two PRB-sources. In section 4.5 we present two explicit
constructions of functions that extract Ω(bX +bY −n) quasi-random bits from two
such PRB-sources, when bX + bY −n = Ω(polylog(n)). One of these functions is
the one used in [Vaz87b]. We use the xor-lemma to show that the extracted bits are
quasi-random; we show that the xor of every subset of the extracted bits has small
bias, since it is the inner product of two random variables that have “high-enough”
min-entropy.

4.1 Impossibility Results

As noted in the introduction, every extraction function designed to extract even a
single unbiased bit, from a k-source, for k ≤ n−1, will fail to extract randomness
for some distributions. It is easy to see that, using the following argument of
[CG88]:

Let f : {0, 1}n → {0, 1} be an arbitrary Boolean function, then there exists a
σ ∈ {0, 1} such that f outputs σ for at least half the inputs x ∈ {0, 1}n. Let S
be a set of size 2k ≤ 2n−1 on which f outputs σ, and let X be a random variable
uniformly distributed on S. Then X is a k-source, and f(X) is identically σ.

The situation improves if we use several independent sources.

16



4.2 Extracting from Two Independent Sources

Given two strings x, y ∈ {0, 1}n, let CS(x, y) be the convolution of x, y, i.e. a
string z ∈ {0, 1}n, such that zi is the inner product (mod 2) of x and Πi−1y, where
Πi−1y is the cyclic shift of y by i−1 positions to the right.

Vazirani [Vaz87b] showed that if X,Y are independent δ-SV-sources, then k =
O(nδ2) bits taken from CS(X,Y ) are quasi-random (for example, the first k bits
of CS(X,Y ) are quasi-random).

We use the same method when X,Y are PRB sources.

Notation: From now on, we will assume X is a bX-source and Y is a bY -source,
both over {0, 1}n, and we assume bX ≥ bY . We write for short H

∞
(X) +

H
∞

(Y ) = bX + bY .

Using Vazirani’s extraction function, we show that we can extract k = Ω(bX +

bY − n) bits with bias 2−
bX+bY −n−k−1

2 from X,Y .

We also consider a similar function, that extracts bits at a slightly slower rate.
Define RS(x, y) = ~z, where zi = 〈x, Π̃i−1y〉2 , and Π̃i−1y is the (non-cyclic) right
shift of y by i−1 positions. With this function, we extract k ′ = Ω(bX +bY −n) bits

with bias 2−
bX+bY −n−2k′+2

2 . That is, for the same bias, we can extract k bits using
CS(X,Y ) or k′ = (k + 3)/2 bits using RS(X,Y ). Note that for the purpose of
using the extracted bits as a seed for an extractor, a constant factor in the number
of bits does not make a significant difference. However the proof that CS is a
good extraction function involves a non-trivial argument and is limited to values
of n that are primes with 2 as a primitive root modulo n. Thus we prefer to think
of RS as the building block we use for the next step of our algorithm.

A main part of the proof (for both functions RS and CS), is a claim from [CG88],
saying that the inner product (mod 2) of X,Y (i.e., 〈X,Y 〉2) is a random bit with

bias of 2−
bX+bY −n

2
−1 (see section 4.4).

The analysis of the extraction functions that we study, shows that for for every
subset of the extracted bits, the parity of these bits corresponds to an inner product
of X and Y ′, where X,Y are the inputs and Y ′ has min-entropy that is almost the
min-entropy of Y . Therefor if Y has high min-entropy, we have small bias for the
parity of every subset of bits in the output, and we use the xor-lemma to bound
the bias of the output bits.
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Figure 1: A Matrix F describing the function f(x, y) = 〈x, y〉2

4.3 Describing a Boolean Function by a {±1} Matrix

For every Boolean function f : {0, 1}n × {0, 1}n → {0, 1}, let F = (Fx,y) be a
2n × 2n table with entries in {±1}, such that Fx,y = (−1)f(x,y) (for an example,
see figure 1). We call F the matrix describing f .

When X and Y are flat, the probability of f(X,Y ) = b (for b ∈ {0, 1}) is the
probability of (−1)b in the submatrix X × Y of F .

Consequently,

Bias(f(X,Y )) =
1

2
·
∣∣∣ Pr

(x,y)∈X×Y

[Fx,y = 1] − Pr
(x,y)∈X×Y

[Fx,y = −1]
∣∣∣

=
1

2
·
∣∣ ∑

(x,y)∈X×Y
Fx,y

∣∣
|X| · |Y| (3)

the last term is the bias of the submatrix (X × Y) of C.

4.4 Extracting a Single Bit

A special class of almost balanced matrices is the Hadamard matrices. Hadamard
matrices are square matrices with entries in {±1}, where every two distinct rows
(respectively, columns) are orthogonal.

When f is the inner-product (mod 2) function, Fi,j = (−1)〈i,j〉2 . For every i 6= j,
rows i and j (resp., columns i and j) of F are orthogonal. That is, F is a 2n × 2n

Hadamard matrix.

A submatrix of size r × s of a 2n × 2n Hadamard matrix is at most 1
2

√
2n

rs
-biased.

18



Claim 5 ([CG88], Lemma 8 ). Let H = (hi,j) be a t× t Hadamard matrix. Then
the sum of elements in every r × s submatrix of H is at most

√
s · r · t.

Proof. Let ~hi be row i of H . Assume wlog that the submatrix consists of the first

r rows and s columns of H , and let ~I = (

s ones︷ ︸︸ ︷
1, . . . , 1,

t−s zeros︷ ︸︸ ︷
0, . . . , 0). The inner-product of

~hi and ~I is the sum

〈~hi, ~I〉 =
t∑

j=1

(~hi)j · Ij =
∑

j:Ij=1

(~hi)j

The sum of elements in the r × s submatrix of H is

∣∣∣
r∑

i=1

s∑

j=1

hi,j

∣∣∣ =
∣∣∣

r∑

i=1

〈~hi, ~I〉
∣∣∣ =

∣∣∣〈
r∑

i=1

~hi, ~I〉
∣∣∣

(using Cauchy Schwartz inequality) ≤ ||
r∑

i=1

~hi||2 · ||~I||2

=

√√√√〈
r∑

i=1

~hi,
r∑

i=1

~hi〉 ·
√

s

=

√√√√
r∑

i=1

r∑

j=1

〈~hi,~hj〉 ·
√

s

(by orthogonality of the rows) =
√

r · t · s

Corollary 6. If F is a 2n × 2n matrix that describes the inner-product function

(mod 2), then every submatrix of size r × s of F has bias at most 1
2

√
2n

rs
.

Proof. Let X be an arbitrary set of r rows of F and let Y be an arbitrary set of s
columns of F .

By equation 3,

Bias(subset X × Y of F ) =
1

2

|∑x,y∈X×Y
Fx,y|

rs
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and by claim 5 ∣∣ ∑

x,y∈X×Y

Fx,y

∣∣ ≤
√

2nrs

Therefore

Bias(submatrix (X × Y) of F ) ≤ 1

2

√
2n

rs

Note that the results of claim 5 and of corollary 6 depend on the product r · s,
rather than on r and s separately. When we use these results in the context of flat
random variables, we require that the sum of the min-entropies of X and of Y is
high, rather than that both X and Y have high min-entropy.

Corollary 7 ([CG88], Theorem 9). Let X,Y be flat random variables over {0, 1}n,
such that H

∞
(X) + H

∞
(Y ) = bX + bY , then

Bias(〈X,Y 〉2) ≤ 2−
bX+bY −n

2
−1

4.5 Extracting Ω(bX + bY − n) Bits

Consider a function f : {0, 1}n × {0, 1}n → {0, 1}k that is given by

f(x, y)
def
=

(
〈x,A0y〉2 , 〈x,A1y〉2 , . . . , 〈x,Ak−1y〉2

)

for every x, y ∈ {0, 1}n, where A is an n × n matrix over GF (2).

We use the xor-lemma to bound the bias of f(X,Y ). We first must bound the bias
of f(X,Y )S (for every non-empty set S ⊂ [k]). We note that

f(X,Y )S =
⊕

i∈S

〈X,Ai−1Y 〉2 = 〈X,

Ã(S)︷ ︸︸ ︷∑

i∈S

Ai−1 Y 〉2

If A were a matrix such that Ã(S) is regular for every non-empty S, then the
min-entropy of Ã(S)Y would be the same as the min-entropy of Y , and the bias
of f(X,Y )S would be the same as the bias of 〈X,Y 〉2 . The bias of 〈X,Y 〉2 is
guaranteed to be small if X,Y have enough min-entropy.
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Following this motivation, we note that if A is such that Ã(S) has high rank, then
the min-entropy of Ã(S)Y is close to the min-entropy of Y . Therefore, we can
expect that if X,Y have enough min-entropy, then f(X,Y )S has bias that is only
slightly bigger than the bias of 〈X,Y 〉2 .

We study two such linear transformations A; One is the cyclic right-shift and the
other is the non-cyclic right-shift.

4.5.1 An Extraction Function based on Right-Shift

Let A ∈ {0, 1}n×n be the matrix of right-shift by 1; For every ~b = (b1, . . . , bn) ∈
{0, 1}n A~b = (0, b1, . . . , bn−1).
Aj is the matrix of right shift by j, for j ≥ 0 integer. Let S be a non-empty subset

of [k], and let Ã = Ã(S)
def
=

∑
i∈S Ai−1. Ã is a matrix whose upper-right triangle

is all zeros, and has |S| diagonals, all in a band of width k in the lower-left triangle
(see figure 2).

Every non-zero row of Ã is independent of the other rows of Ã (and the same holds
for columns of Ã). For proving this, it is enough to look at the maximal non-zero
coordinate of row i, vs. the maximal non-zero coordinates of rows 1, . . . , i − 1.

Let r = mini{i ∈ S} ≤ k. It is easy to see that there are n− r + 1 non-zero rows
(resp., columns) in Ã. Therefore,

rank(Ã) = n − r + 1 ≥ n − k + 1

hence Ã is a 2r−1-to-1 mapping over GF (2)n. We conclude that H
∞

(ÃY ) ≥
H

∞
(Y ) − k + 1 for every random variable Y over {0, 1}n.

Formally, we define the extraction function RSk : {0, 1}n ×{0, 1}n → {0, 1}k by

RSk(x, y)
def
=

(
〈x,A0y〉2 , 〈x,A1y〉2 , . . . , 〈x,Ak−1y〉2

)

where A is the right-shift matrix.
If H

∞
(X)+H

∞
(Y ) = bX +bY , then H

∞
(X)+H

∞
(
∑

i∈S Ai−1Y ) ≥ bX +bY −k
for every S. By corollary 7

Bias(RSk(X,Y )S) ≤ 2−
bX+bY −n−k

2
−1

We now use the xor-lemma to get the following corollary:

Corollary 8. If H
∞

(X) + H
∞

(Y ) = bX + bY , then the bias of RSk(X,Y ) is at

most 2−
bX+bY −n−2k

2
−1.
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Figure 2: A general structure of a matrix Ã = Ã(S) =
∑

i∈S Ai−1, for S a non-
empty subset of [k], where A is the (non-cyclic) right-shift matrix (left), and when
A is the cyclic-right-shift matrix (right).

4.5.2 An Extraction Function based on Cyclic Right-Shift

The function RSk presented above allows for a sub optimal bias, since the rank of
the matrix Ã can be as low as n − k + 1.

A similar linear function, which was used in [Vaz87b], has rank(Ã) ≥ n−1. The
higher rank allows us to extract twice as many bits using this function.

Let A be the matrix of cyclic right-shift by 1. Ai is the matrix of cyclic right shift
by i. The matrix Ã = Ã(S) =

∑
i∈S Ãi−1, for non-empty S ⊂ [k], may have

|S| ≤ k diagonals (see figure 2).

Formally, we define an extraction function CS : {0, 1}n × {0, 1}n → {0, 1}k as

CS(x, y)
def
=

(
〈x,A0y〉2 , 〈x,A1y〉2 , . . . , 〈x,Ak−1y〉2

)

where A is the cyclic right shift matrix. Note that CSk(X,Y ) is the same as taking
the first k bits from the convolution of (X,Y ).

Similarly to the previous section, we show that Ã has very high rank. The proof
here is not as straight forward as the proof of 4.5.1, and it applies only when n is
prime with 2 as a primitive root modulo n.

Claim 9 ([Vaz87b]). Let n be a prime with 2 a primitive root modulo n (i.e. 2 is
a generator of Z∗

n). Let ~u ∈ {0, 1}n \ {0n, 1n} be a vector which is not the all 0’s
or the all 1’s vector. Let B be an n × n matrix over GF (2), such that the rows of
B are the n right-cyclic-shifts of ~u. Then rank(B) ≥ n − 1.
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Proof. Let f
def
= 1+ · · ·+xn−1. It can be shown that f is irreducible in GF (2)[x].

Let K be the field GF (2)[x]/f . We represent each element v ∈ K by a poly-
nomial of degree at most n − 2 over GF (2) (and also as a vector of coefficients
~v ∈ GF (2)n−1 ). |K| = 2n−1, thus K is isomorphic to GF (2n−1).

Let g
def
= f ·(x−1) = xn−1, and let R be the ring GF (2)[x]/g. We represent each

element v ∈ R by a polynomial of degree at most n − 1 over GF (2) (and also
as a vector of coefficients ~v ∈ GF (2)n). Note that xn =R 1; In R, multiplication
by x causes a cyclic shift in the coefficients. That is, for every v ∈ R, the vector
(−−→x · v) = Π(~v), where Π is the right-cyclic-shift.

Also, since g = f ·(x−1) we get that GF (2)[x]/g ≡ GF (2)[x]/f×GF (2)[x]/(x−
1), i.e. R = K × GF (2).

Consider the isomorphism α : R → K, given by α(v)
def
= v (mod f) ∈ K for

every v ∈ R. Note that α is a 2-to-1 mapping, with α(v) = α(f − v) for every
v ∈ R.

Let u−1 =
∑n−2

i=0 aix
i ∈ K be the inverse of u in K, i.e. u−1 · u =K 1.

Denote by ~bi the ith row of B. Then ~b1 = ~u, and for every i ∈ {2, . . . , n},
~bi = Πi−1~u; That is, the rows of B are the elements {u , x·u , x2 ·u , . . . , xn−1 ·u}
of R.

We say that xt ∈ K lies in the span of the rows of B, if there exist S ⊂ [n] s.t.
α(

∑
i∈S

~bi) = xt. We note that 1 lies in the span of the rows of B, since

α(
∑

i : ai=1

~bi+1) = α(
n−2∑

i=0

aix
i · u) = α(u−1 · u) = 1 ∈ K

Similarly, x, x2, . . . , xn−2 all lie in the span of the rows of B. Therefore, we can
say that K is in the span of the rows of B.

Assume, for the sake of contradiction, that rank(B) = r′ ≤ n − 2, then the rows
of B can be expressed as the linear combinations of r′ vectors in GF (2), and thus
the span of the rows of B would be of size at most 2r′ ≤ 2n−2.

Corollary 10. Let A be the cyclic right shift matrix. The linear transform given
by the matrix Ã =

∑
i∈S Ai−1 (for S 6= [n], ∅) is either an injective map or a

2-to-1 map, where for every y ∈ {0, 1}n, both y and (1n−y) are mapped to the
same element.
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Note that since S ⊂ [k], for k < n we get S $ [n].

Similar to corollary 8, we get

Corollary 11. If H
∞

(X) + H
∞

(Y ) = bX + bY , the bias of CSk(X,Y ) is at most

2−
bX+bY −n−k−1

2

4.6 Summary

The two functions RSk and CSk, presented above, allow for the extraction of
Ω(bX + bY − n) bits with bias of 2−Ω(bX+bY −n). The parameters of CSk are better
than the parameters of RSk by a constant factor: With CSk, we can extract twice
as much bits with the same bias.

Note that both functions are far from extracting all the randomness that is present
in the sources; While the sum of min-entropies of the sources is bX + bY , we
extract at most bX + bY − n random bits.

To extract all the randomness from X , we use the bits extracted so far as a seed for
an extractor. The seed length for an extractor must be polylogarithmic (in n), and
an improvement by a constant factor in the seed length does not make a significant
difference.

Also, the proof technique we use for proving the properties of CSk works only
when n is a prime with 2 as a primitive root modulo n. The proof for RSk is
simpler and works for every n.

To summarize, both functions have the properties we seek, and RSk is more gen-
eral than CSk. In out two-steps algorithm for extracting all the randomness from
X , we use RSk in the first step.
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5 Extracting Bits that are independent of X

We show that with very high probability (on X), f(X,Y ) is quasi-random even
to someone who sees X .

Let fx(y)
def
= f(x, y). We show that fx(Y ) has small bias for almost every x, and

conclude that f(X,Y ) has small bias even given X . 3

5.1 Extracting a Single Bit

We extract a single bit from X,Y by taking the inner product modulo 2. We then
show that if X,Y are flat, for almost all the values x of X the bias of 〈x, Y 〉2 is
small; Thus, the bias of 〈x, Y 〉2 is almost independent of X .

Claim 12. If X,Y are flat, and H
∞

(X)+H
∞

(Y ) = bX +bY , then for every ξ > 0

Pr
X

[
Bias

(
〈x, Y 〉2

)
≥ ξ

]
≤ 2−(bX+bY −n)

4ξ2

Proof. Let F be the {±1} matrix describing the inner product function, i.e. Fx,y =
(−1)〈x,y〉2 for every x, y ∈ {0, 1}n. Denote by F ′ the the submatrix (X × Y) of
F . When X,Y are flat, the bias of F ′ is the bias of 〈X,Y 〉2 .

When looking at F ′, we claim that the probability of any row of F ′ to have bias
of ξ or more, is at most 2−(bX+bY −n)

4ξ2 .

We use the following claim on Hadamard matrices:

Claim 13. Let H be a 2n×2n Hadamard matrix, and let ~hy denote the y-th column
of H . Let Y ⊂ 2n be a subset of the columns of H , |Y| = r. Let H̃ be the 2n × r

submatrix of H achieved by taking only the columns {~hy}y∈Y.

Then the number of rows of H̃ that have (as submatrices) bias greater than ξ is at
most 2n

4rξ2 .

3 A weaker claim appears in the work of Chor and Goldreich ([CG88], lemma 27) and applies
for every function f : {0, 1}n ×{0, 1}n → {0, 1}. If Bias(f(X,Y ) ≤ ε), when H

∞
(X) = n− 1

and H
∞

(Y ) = b, then only a
√

ε-fraction of the x’s have Bias(fx(Y )) ≥ 4
√

ε.
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Proof. Let
−→
D sum all the columns in H̃ , i.e.

−→
D

def
=

∑
y∈Y

~hy. For every x ∈
{0, 1}n, ~Dx equals the sum

∑
y∈Y

Hx,y; That is, ~Dx is the sum of elements in row

x of H̃ . If row x of H̃ has bias ξ or more, then | ~Dx| ≥ 2rξ, and ~D2
x ≥ 4r2ξ2.

The square of the L2-norm of
−→
D is

2n∑

x=1

~D2
x = ||−→D ||22 = 〈−→DT ,

−→
D〉 = 〈(

∑

y∈Y

~hy)
T ,

∑

y∈Y

~hy〉 = r · 2n

Since every ξ-biased row of H̃ contributes at least 4r2ξ2 to the left-hand term, at
most 2n

4rξ2 such rows exist.

Since F is an Hadamard matrix, there are at most 2n

4|Y|ξ2 rows in F ′ that are ξ-
biased. It follows that the probability of hitting a ξ-biased row, when selecting a
row uniformly at random from the rows of F ′, is at most

2n

4|Y|ξ2

|X| =
2(n−bX−bY )

4ξ2

5.2 Extracting Ω(bX + bY − n) Bits

We next show that RSk (defined in 4.5), produce output that has small bias for
almost all the values of X , and we show that this means the output is independent
of X .

Lemma 14 (main lemma). Let f be the function RSk : {0, 1}n × {0, 1}n → {0, 1}k,

defined in section 4.5.1. Define the function fx, s.t. fx(y)
def
= f(x, y), for every

x, y ∈ {0, 1}n. If X,Y are flat and H
∞

(X) + H
∞

(Y ) = bX + bY , then for every
0 < β < 1,

Pr
X

[Bias(fx(Y )) ≥ β] ≤ 2−(bX+bY −n−3k)

4β2

Proof. By the xor-lemma ,

Bias(fx(Y )) ≤
√ ∑

∅6=S⊂[k]

Bias2(fx(Y )S) ≤ 2k/2 · max
S

{
Bias(fx(Y )S)

}
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where fx(Y )S is the xor of the S bits of fx(Y ).

We say that x ∈ {0, 1}n is “good” if for every non-empty S ⊂ [k],

Bias(f(x, Y )S) ≤ ξ

That is, for every “good” x, the bias of f(x, Y ) is at most 2k/2 · ξ.

For every non-empty S, we know that Ã(S) is a 2r-to-1 mapping, for some r <
k. Therefore, the min-entropy of Ã(S)Y is at least H

∞
(Y ) − k. Recall that

f(x, Y )S = 〈x, Ã(S)Y 〉2 .

From section 5.1 we know that

Pr
X

[
Bias(f(x, Y )S) ≥ ξ

]
≤ 2−(bX+(bY −k)−n)

4ξ2

We use the union bound, to get the probability of getting a “bad” x

Pr
X

[
∃S 6= ∅ s.t. Bias(f(x, Y )S) ≥ ξ

]
≤ 2k · 2

−(bX+(bY −k)−n)

4ξ2
=

2−(bX+bY −n−2k)

4ξ2

Denote β
def
= 2k/2ξ and use the xor-lemma to get

Pr
X

[Bias(fx(Y )) ≥ β] ≤ 2−(bX+bY −n−3k)

4β2

We next show that the main lemma guarantees that the distribution of RSk(X,Y )
is close to the distribution Uk, even given X .

Claim 15. Let X,Y be random variables over {0, 1}n, and let f : {0, 1}n ×
{0, 1}n → {0, 1}k be such that

Pr
X

[
fx(Y ) is β-close to Uk

]
= 1 − µ

where fx(y)
def
= f(x, y) for every x, y ∈ {0, 1}n.

Then the distribution of (X, f(X,Y )) is (β+µ)-close to the distribution of (X,U),
where U is distributed uniformly on {0, 1}k independent of X .
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Proof. Recall that the distance ∆
(
(X, f(X,Y )), (X,U)

)
can be written as

1

2
·

∑

(x,z)∈{0,1}n+k

∣∣∣∣∣ Pr
[
X = x, f(X,Y ) = z

]
− Pr

[
X = x, U = z

]
∣∣∣∣∣

=
1

2
·

∑

x∈{0,1}n,z∈{0,1}k

∣∣∣∣∣ Pr[X = x] · Pr
[
f(X,Y ) = z|X = x

]
− Pr[X = x] · 2−k

∣∣∣∣∣

=
∑

x∈{0,1}n

Pr[X = x] · 1

2

∑

z∈{0,1}k

∣∣∣ Pr
[
f(X,Y ) = z|X = x

]
− 2−k

∣∣∣

=
∑

x∈{0,1}n

Pr[X = x] · Bias(fx(Y ))

The probability of “bad” x’s is at most µ, and for every “good” x, the bias of
(f(X,Y )|X = x) is at most β. Separating for “bad” and “good” x’s, we get

∑

“bad“ x

Pr[X = x] ·Bias(f(x, Y ))+
∑

“good“ x

Pr[X = x] ·Bias(f(x, Y )) ≤ µ ·1+1 ·β

Corollary 16. If X,Y are random sources with H
∞

(X) ≥ bX , H
∞

(Y ) ≥ bY , and
bX + bY > n, then for any k < bX+bY −n

3
(i.e., k is Ω(bX + bY − n)), there are

β, µ = 2−Ω(bX+bY −n) such that RSk(X,Y ) is (β+µ)-close to Uk, even conditioned
on X .

Proof. For proving the corollary, it is enough to take k, β in the main lemma to
be k = c1 · (bX + bY − n), for 0 < c1 < 1/3, and β = 2−c2·(bX+bY −n), for
0 < c2 < 1−3c1

2
. The corollary follows from claim 15.

Two cases of particular interest are

• bX + bY = n + Ω(polylog(n)): in this case, we extract k = polylog(n) bits
that are (2−polylog(n))-close to Uk. That is, we extract polylog(n) bits which
are quasi-random.
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• bX + bY = n · (1 + c) for some 0 < c < 1: in this case, we extract k = Ω(n)
bits, that are (2−Ω(n))-close to Uk. Here we extract a linear number (in n) of
bits with exponentially small bias.

We should note that the parameters of corollary 16 can be improved, both by using
the function CSk (which has better parameters than RSk, as noted in section 4.6)
and by using a bound more tight than the union bound we use in the proof for the
main lemma. When f is the function CSk, and using the tighter proof, we can
write (similarly to the main lemma)

Pr
X

[Bias(fx(Y )) ≥ β] ≤ 2−(bX+bY −n−k)

4β2

using this bound, we can extract k′ = c1 · (bX + bY − n) for c1 < 1, with bias of
β′ = 2−c2·(bX+bY −n), for c2 ≤ 1−c1

2
, when bX + bY > n.

5.3 Extracting All the Randomness From X

We showed how to extract k = Ω(bX + bY − n) bits, with bias δ ≤ 2−Ω(bX+bY −n),
independent of X . Our next step is to use these bits to extract all the randomness
from X .

Claim 17 (main result). For every bX , bY such that bX +bY = n+Ω(polylog(n)),
there exists an explicit construction of a function g : {0, 1}n×{0, 1}n → {0, 1}m,
with m = bX + c · (bX + bY − n) − O(1), for any constant 0 < c < 1/3,
such that for every pair of independent random variables X,Y over {0, 1}n, with
H

∞
(X) ≥ bX and H

∞
(Y ) ≥ bY , the output of g(X,Y ) is (2−Ω(bX+bY −n))-close

to uniform.

Proof. Our main tool for this claim will be the use of extractors. 4

Definition 3 ((l, ε)-Extractor). A function E : {0, 1}n × {0, 1}k → {0, 1}m

is an (l, ε)-extractor if for every distribution X over {0, 1}n with H
∞

(X) ≥ l,
E(X,Uk) is ε-close to uniform. (Note that k,m, l, ε can be functions of n.)

An explicit construction of an (l, ε)-extractor is an algorithm that is an (l, ε)-
extractor for every input length n.

4 For a discussion on extractors, see [Sha02].
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Explicit construction of extractors has received huge attention in the last years.
Ta-Shma ([TS96]) was the first to present explicit construction of extractors with
seed length that is polylogarithmic in n. Recent constructions of explicit extrac-
tors improve over his results, with the current best parameters achieved by the
construction of [LRVW03].

[RRV02] presented an (l, ε)-extractor for any l, ε, with seed length k = polylog( n
ε
),

and m = l +k− 2 log( 1
ε
)−O(1) output bits. That is, if the input has min-entropy

of at least l, and the seed is truly random, the extractor guarantees that the m
output bits are ε-close to Um.

Let E : {0, 1}n × {0, 1}d → {0, 1}m be an (l, ε)-extractor, with bX ≥ l, and
m = bX +c·(bX +bY −n) for c < 1/3. Let X,Y be the weak random sources, and
let Z = RSk(X,Y ) be the bits extracted in the first step of our algorithm. Using
corollary 16, we get |Z| = c · (bX + bY − n) = Ω(polylog(n)) and Bias(Z) =
δ = 2−Ω(bX+bY −n), even conditioned on the distribution of X . Then E(X,Z) is
(ε + δ)-close to Um, and (ε + δ) = 2−Ω(bX+bY −n).
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6 Open Problems

When X,Y are random variables over {0, 1}n, we showed how to extract at least
half the randomness from the input sources, when H

∞
(X) + H

∞
(Y ) = n +

Ω(polylog(n)). The following open problems come to mind:

• Constructing an explicit function that extracts almost bX + bY random bits,
when H

∞
(X) + H

∞
(Y ) � n.

• Constructing an explicit function that can extract even a single random bit
when H

∞
(X) + H

∞
(Y ) < n.

• Constructing an explicit function that outputs even a single bit that is not
constant, for all X,Y such that H

∞
(X) = H

∞
(Y ) = ε · n for ε < 1

2
.

This problem is analogues to a combinatorial open problem on bipartite
Ramsey graphs; Denote N = 2n, and consider a bipartite graph G = (U, V,E),
where |U | = |V | = N , and let F be the adjacency matrix of G, i.e. Fi,j =
−1 iff (i, j) ∈ E.

Such two sources X,Y induce a submatrix of size N ε × N ε of F . F con-
tains a mono-chromatic submatrix of size N ε ×N ε iff G or it’s complement
contain a copy of KNε×Nε .

Thus this problem is equivalent to finding an explicit construction of a bipar-
tite graph G with N vertices on each side, such that both G and ~G do not con-
tain a clique of size N ε × N ε. This would imply that the (KNε×Nε , KNε×Nε)-
Ramsey number is greater than N .
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