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ABSTRACT 

 
Persistent aerial video surveillance from small UAV (SUAV) platforms requires accurate and robust target tracking 
capabilities. However, video tracks can break due to excessive camera motion, target resolution, low signal-to noise 
ratio, video frame dropout, and frame-to-frame registration errors. Connecting broken tracks (video track repair) is thus 
essential for maintaining high quality target tracks. In this paper we present an approach to track repair based on multi-
hypothesis sequential probability ratio tests (MHSPRT) that is suitable for real-time video tracking applications. To 
reduce computational complexity, the approach uses a target dynamics model whose state estimation covariance matrix 
has an analytic eigendecomposition. Chi-square gating is used to form feasible track-to-track associations, and a set of 
local hypothesis tests is defined for associating new tracks with coasted tracks. Evidence is accumulated across video 
frames by propagating posterior probabilities associated with each track repair hypothesis in the MHSPRT framework. 
Global maximum likelihood and maximum a posteriori estimation techniques resolve conflicts between local track 
association hypotheses. The approach also supports fusion of appearance-based features to augment statistical 
distributions of the track state and enhance performance during periods of kinematic ambiguity. First, an overview of the 
video tracker technology is presented. Next the track repair algorithm is described. Finally, numerical results are 
reported demonstrating performance on real video data acquired from an SUAV. 
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1. INTRODUCTION 
 
Modern video camera systems are proliferating on small UAV (SUAV) platforms due to low cost, high image quality, 
and ease of data interpretation by human operators. Often in these surveillance systems, human operators visually 
nominate and track targets-of-interest. However, continual manual visual target tracking by an operator can reduce 
operator efficiency and distract from other critical activities. Automated video tracking systems can reduce operator 
workload by maintaining track on targets-of-interest.  
 
The effectiveness of airborne video surveillance system depends on the quality and duration of these video tracks. A 
persistent problem with automated video trackers is that tracks may experience brief breaks due to excessive camera 
motion, short occlusions, field-of-view issues, and signal-to-noise ratio and resolution effects. Local video track repair 
(also called track stitching) is the operation of connecting broken tracks across these brief track drops. Local video 
track repair can extend mean track duration thus facilitating surveillance activities. 



 
Video tracks may be presented directly to the operator for evaluation. Alternatively, video tracks can serve as inputs to 
higher level trackers such as Multi-Hypothesis Trackers (MHT) [13], as in [5,6]. MHT trackers provide long term 
tracking, tracking in environments with high motion clutter, and tracking across extended occlusions. Local video track 
repair provides an MHT tracker with higher quality, coherent track data input thus leading to overall tracker performance 
improvement. 
  
Simple track stitching approaches may be adequate for tracking in low target density environments. However, in 
complex tracking scenarios, multiple targets may gate with dropped track states, including false-alarm tracks resulting 
from clutter or noise detections. In these tracking environments, track stitching accuracy performance may benefit from 
a multi-frame approach in which track association evidence is collected across frames. Evidence accrual across video 
frames provides a more consistent measure of state dynamics similarity. This improved matching consistency can reduce 
stitching errors associated with coincidental track state alignment which may occur during a single frame. Such 
coincidental state alignment can occur, for example, when measurement noise obscures the separation of track states in 
state space. Collecting data across frames also provides the opportunity for false alarm tracks to drop, or for their state 
dynamics to diverge significantly from target tracks. Furthermore, processing across frames also mitigates stitching 
errors arising from variable track confirmation times which can cause staggered track initiation times. 
 
For the track stitching problem, evidence accrual across frames can be cast as a sequential probability ratio test (SPRT) 
problem. For binary hypothesis testing problems, the SPRT has been shown to be optimal [14] in terms of providing the 
minimum expected number of sequential steps needed to make a decision, subject to pre-specified risk constraints. For 
binary hypothesis testing problems, the SPRT consists of a sequential test on the likelihood ratio. Given pre-specified 
risk tolerances, low and high likelihood ratio thresholds are defined, and data is collected sequentially. After each data 
collection step, the likelihood ratio is tested against each threshold. The null or alternative hypothesis is chosen at the 
first time that the likelihood ratio falls below the low threshold or rises above the high threshold, respectively. 
 
The SPRT has been extended to the multihypothesis case thereby creating a multihypothesis sequential probability ratio 
test (MHSPRT). Discussion of MHSPRT development work is presented in [1]. As noted in [2], work on multiple 
hypothesis sequential testing has generally proceeded in two general directions. First, efforts have been made to 
determine optimal tests, usually under simplifying assumptions. For example work in [2] presents an optimal test under a 
Bayesian framework using a dynamic programming argument. Simplifying assumptions include  independent and 
identically distributed (i.i.d.) random variables, constant cost per time step, and a zero-one cost function on the decision 
rule. However, even with simplifying assumptions, the optimal test can be complicated and difficult to implement in 
practice. In fact, the optimal solution to the general MHSPRT problem may not exist, or may be very difficult to 
determine and implement. Therefore much of the work in MHSPRT has focused on developing  implementable, sub-
optimal solutions, some of which have been shown to be asymptotically optimal as the risk approaches zero [1,2].  
 
Further complications in applying MHSPRT to the track repair problem result from the variability of track stitching 
hypotheses across time. Probability density functions describing state dynamics evolve in time due to state prediction 
and covariance propagation. Assumptions such as i.i.d. measurements across time no longer necessarily apply. 
Furthermore, across frames new tracks may arise and current tracks may drop, thereby potentially changing the number 
of track stitching hypotheses. 
 
In this paper, we adapt and apply the asymptotically optimal MHSPRT described in [1] to develop a local video track 
repair algorithm (VTR). Techniques are developed to compensate for variable hypothesis number and evolving track 
state probability density functions. We evaluate VTR performance on track data generated by a previously-developed 
video tracker operating on real video data acquired from an SUAV platform [3]. Because reducing computational 
complexity is critical for realtime video tracking, a kinematic-based approach using simple target dynamics is used. 
However, the framework supports the use of features such as target size, shape, color, and point, line, intensity, and edge 
features (e.g., [4,15,16,17,18]). 
 
The rest of this paper is organized as follows. Section 2 presents the individual components of the track stitching 
algorithm. Section 3 integrates the components presented in section 2 with the MHSPRT to formulate the VTR. Section 



4 presents numerical track repair performance results. Section 5 contains concluding remarks. Details of the SUAV 
video tracking system used to generate data in this report can be found in [3]. 
 
Throughout this report we use the terminology coasted track to refer to any track that has been terminated, but which 
may still correspond to a trackable object. Track states of coasted tracks are predicted forward in time using a target state 
dynamics model. The term active track refers to any track currently maintained by the tracker which represents tracking 
information on an object. A stitching hypothesis corresponds to a hypothesized stitching association between an active 
track and a dropped track and is denoted by the ordered pair . A stitching solution represents a stitching 
association in which the two tracks are stitched. For compactness in the above terminology, the term “stitching” 
will often be dropped where it is understood.  
 
For the MHSPRT formulation in [1], we assume use of the Lebesgue product measure as the dominating measure so that 
the Radon-Nikodym derivatives become ordinary probability density functions. 

2. TRACK STITCHING COMPONENTS 
 

2.1. Track State Prediction 
 
Target state dynamics are modeled using a constant velocity (CV) model, defined by a partially decoupled, four-state 
system. Define states , , , and where ,  represent the target , -direction 

positions, and ,  represent the target velocity component in the , -directions respectively, in image coordinates. 

Let  denote the process noise and denote the state vector. The system model is given by  where  

, , . 

Because , the state transition matrix  is given by . The state extrapolation for the 
discretization of the system model is , and thus the state extrapolation equations are 
 

,       (1) 

 
Model the process noise vector as zero mean, Gaussian white noise,  and model the initial state 
covariance as uncorrelated. The process noise covariance and initial state covariance are given respectively, by 
 

,       

The extrapolation of the error covariance is given by 
.      (2) 

Dropped track states are extrapolated forward in time using (1), and state error covariance is propagated using (2). 
Dropped track states probability distributions are modeled as Gaussian distributions centered on the extrapolated state 
values and with covariance from (2). It is easily proven that the covariance matrix takes the special form 



      (3) 

where 
,     

,   for initial conditions  

      . 

2.2. Stale Track Pruning 
 
Dropped tracks may persist for a significant time period without being stitched. Tracks that are not stitched may belong 
to targets that have ceased motion, traveled into occlusion zones, left the surveillance area, or are the result of a stitching 
error. Unstitched dropped tracks persisting for a significant time period will experience continual growth in error 
covariance. After sufficient time has passed without stitching, the error covariance may become prohibitively large 
resulting in a stale track. In this case, the dropped track should be eliminated from stitching consideration. The criterion 
used for testing track staleness consists of a thresholding test on the size of the eigenvalues of the covariance matrix 
using a variance threshold .  To calculate the eigenvalues of the covariance matrix in (3), solve the 
determinant equation 

 

 
to get two eigenvalues of multiplicity 2 
 

, . 

Prune dropped tracks by thresholding the eigenvalues , using the decision rule: 

. 

2.3. Homography Compensation 
 
For video tracking applications, state information is produced relative to the coordinate system of the corresponding 
video frame. Before any inter-frame comparison calculations are performed, the state data must be transformed to a 
common coordinate system.  For each dropped track, the common coordinate system to use will be the coordinate frame 
associated to the dropped track, immediately prior to track drop. That is, for a given dropped track  use the coordinate 
system associated to the most recent set of state data measurements, prior to track drop. The motivation for using this 



coordinate system is to preserve the form of the covariance matrix in (3). Use of the homography, which performs the 
inter-frame coordinate transformation, may destroy the form of the covariance matrix thus precluding use of the closed 
form  eigenvalue expressions (25) and (26). 
 
Let denote the homography representing the coordinate transform from frame  to frame , i.e. 

 for time iteration . The homography expresses the coordinates of a pixel in the previous 
frame’s coordinate system, in terms of coordinates of the pixel in the current frame’s coordinate system. Homography 
compensation proceeds as follows. Let denote the coordinate system for dropped track for frame number . For 

each dropped track , extrapolate all dropped track data using states expressed in coordinate system . Propagate 

the dropped track error covariance based on state data expressed in coordinate system . For track gating and 

stitching, transform the active track state data from the current frame to . 

2.4. Track Gating 
 
Standard -square gating [19] is used to identify feasible stitching associations. An active track gates with a dropped 
track if the active track states reside within a chosen hyper-ellipsoid in state space centered at the dropped track states. In 

-dimensional Euclidean space, for a multivariable Gaussian distribution with mean and covariance matrix , the 

equation for the state error hyper-ellipsoids is . Substituting in the eigen-decomposition 

expression for the inverse of the covariance matrix, , gives   where . 
Expanding this out gives: 

 .       (4) 

where  denotes a component of the vector . Each is Gaussian distributed with zero mean and variance , so in 

(4), is distributed with degrees of freedom. Therefore, the probability of the states residing within a hyper-

ellipsoid is given by  for threshold . These values may be determined from statistical tables [10]. 

2.5. Global Hypothesis Resolution 
 
Let denote the set of coasted tracks. Let denote the set of active tracks. Let  denote the set of all 

feasible stitching associations . A stitching association is feasible 
provided three conditions are met: 1)  must not be stale, 2) the track start time for must be later than the track 
termination time for , 3) track  must gate with track . Let represent a real-valued gain function defined on 

subsets of . The optimal approach to solution of the track stitching problem consists of determining the subset 

 of specific stitching solutions that maximizes ; 
 
    . 

 
Approaches to determining the optimal solution have been developed in [11]. However, determining the optimal solution 
can be significantly computationally expensive. Because computation time is critical in realtime video tracking 
applications, the VTR uses a faster suboptimal approach. The suboptimal approach consists of a two-step greedy 



algorithm. First, local hypothesis testing problems are defined and solved. Next, local hypothesis conflicts are resolved 
using global hypothesis resolution. The procedure is described as follows. 
 
Assume is an active track, for which there are dropped tracks that may be feasibly stitched to , 

where . Define the local hypothesis testing problem associated to :  

.  

Each hypothesis corresponds to a local stitching association . The set of hypotheses  

represents a set of local hypotheses for stitching dropped tracks to the active track , as illustrated in Figure 1. The sets 
of local hypotheses for all active tracks under consideration can be aggregated to form a set of global hypotheses, 

 that may require conflict resolution. Solving each local hypothesis testing problem associated to active 

tracks produces a stitching association set . For any pair 

 each will be unique by construction. However, it may happen that  is repeated among association 
pairs. Local hypotheses conflict when a given dropped track associates with more than one active track, (Figure 2).  

 
Figure 1:  Local Stitching Hypothesis Set; An Active Track Gates With Multiple Coasted Tracks  

 

 
Figure 2:  Global Stitching Hypothesis Set; (a) Single Coasted Track Gates with Multiple Active Tracks; (b) Single Coasted 

Track Associates with Multiple Active Tracks 
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When local hypotheses conflict, the conflict must be resolved by choosing one active track from the set of multiple 
active tracks associated with the given dropped track. This resolution is achieved by defining a global hypothesis testing 
problem. Let denote a dropped track which has been associated with active tracks through solution of 
the local hypothesis testing problems. Define the global hypothesis testing problem: 

 

 
Solving each global hypothesis testing problem results in a set of de-conflicted stitching associations. 

2.6. Posterior Probability Propagation 
 
For active track , assume there are dropped tracks  feasibly stitchable to . Consider the local 
hypothesis testing problem 

. 

 
At time frame , let  denote the probability density function of the track states for 

active track . For dropped track  at time frame , let  denote the probability density 

function of the track states. Hypothesis  may be interpreted as . 

Therefore the probability density function of the track states for  under hypothesis is  

    . 
 
At time frame , measurements of the track states for active track are obtained from the video tracker and denoted 

by . At frame define posterior probabilities  where 

represents the hypothesis choice, . The hypothesis choice is a discrete random variable so 

the posterior probabilities are probabilities in the probability mass function . In the probability expressions, denote 

the event   by  to simplify notation. For a mixed discrete and continuous random variable, use Bayesian 
update to propagate the posterior probabilities across frames: 
 

.  (5) 

The initial conditions on the prior probabilities are taken as:  (equal priors assumption) . The probability 

density function  represents the value of the probability density function of dropped track 

 at time , evaluated at the latest measurement of the active track states. The conditional prior probability 

represents the posterior probability  calculated from the previous iteration. Note that  



     

because the track states for dropped track are propagated independently of the measurements of the active track state. 

In fact, the probability density function  depends only on the initial state conditions, the time , 

and the assumptions in the state dynamics model. Thus .  

3. TRACK STITCHING ALGORITHM 
 
The VTR performs the following steps: 
 

1) Initiate stitching processing on occurrence of a trigger event; 
2) Determine the set of feasible track pairs for stitching (sets of local hypotheses); 
3) Perform local hypothesis resolution by running an MHSPRT across video frames for each local hypothesis 

testing problem to choose a stopping time and hypothesis; 
4) Given the resolved local hypotheses, perform global hypothesis resolution. 

 
Track stitching is initiated whenever two conditions are satisfied: a new confirmed track is initiated, and there exists 
coasted tracks. Other processing triggers are also possible. If feature-aided tracking is used for example, stitching could 
be initiated when new features are generated.  
 
At the stitching trigger time , assume the set of feasible stitching pairs  consists of active tracks,   

with dropped tracks feasibly stitchable to active track . To simplify notation, drop the superscript 

and represent by where it is understood that each dropped track set corresponds to an active 

track. Further assume that for each active track , there exists a unique  such that the 

stitching solution is the correct stitching solution.  The significance of this last assumption is that the stitcher 
assumes that gating implies the existence of a solution; the only problem becomes determining which solution is correct 
if multiple tracks gate. Track gates can be tightened (reduced in size) to reduce stitching errors. With small track gates, 
gated tracks have states with small state space deviation from the gate center. This small state space deviation makes the 
gated track more likely to correspond to the true track, so stitching errors are reduced. However, small track gates imply 
fewer gated tracks. Hence the stitcher performs stitching less frequently, but with higher probability of correct decisions. 
 
For each , define the local hypothesis testing problem  

. 

 
If , proceed in time across video frames collecting track state measurement data for active tracks and predicting 
dropped track states. Across video frames, propagate the posterior probabilities using the Bayesian update in (5). During 
data collection across frames, new active tracks may arise, current active tracks may drop (giving rise to new dropped 
tracks), or dropped tracks may be eliminated, e.g. due to staleness. In the first case, each new active track requires 
definition and solution of an associated local hypothesis testing problem. Also, associations resulting from solution of 
new local hypothesis testing problems must be considered during global hypothesis resolution. In the second case, let  

denote a newly dropped active track and let denote a dropped track with . If is a true stitching 

solution, then it is desirable to maintain the option to stitch the two dropped tracks , . Because has been dropped, 



then measurements for the track states of  are not available. Therefore, use the coasted  track states as 
measurements in the Bayesian update. In the third case, assume dropped track is removed due to staleness. For each 

such that , the hypothesis must be removed from the local hypothesis testing problem 

associated to . If , then there are no remaining dropped tracks feasible for stitching to . Therefore, remove 

 from stitching consideration, via . This third case is somewhat problematic for posterior 
probability propagation. The problem becomes one of determining the proper way to modify probabilities for current 
hypotheses, to account for eliminated hypotheses. The ad hoc approach we take is posterior probability renormalization; 
simply renormalize the posteriors so that they sum to one.  
 
For each local hypothesis testing problem, the stopping time is given by 
 

 

where  represents a posterior probability threshold, and the decision rule is   

. 

The stopping time represents the earliest time at which the maximum posterior probability surpasses the threshold. The 
decision corresponds to the hypothesis associated with the maximum posterior probability. When the maximum posterior 
probability has passed the threshold, then it is assumed that enough samples have been taken for a decision to be 
rendered in the local hypothesis testing problem.  The stopping times for each local hypothesis testing problem may be 
different. Stitching processing terminates when all local hypothesis testing problems have been resolved. The solution to 
each local hypothesis testing problem produces a set of local stitching associations . For any pair 

 each will be unique by construction. However, it may happen that  is repeated among association 
pairs. Global hypothesis resolution must be performed to resolve the conflicting associations for repeated .  

4. NUMERICAL RESULTS 
 
This section presents three examples of local video track repair. The video clip in this first example contains a vehicle 
traveling on a road, shaded by trees (Figure 3). The vehicle is tracked prior to entering the shadow occlusions. In the 
shadows, track is dropped. Upon exit, a new track arises. This example represents a single-target tracking case. The  

 
Figure 3:  (a) Vehicle Tracking Prior to Entering Shadow; (b) Track Dropped in Shadow; (c) Track Initiated Upon Exit 

 
local hypothesis testing problems in the VTR contain single hypotheses. Therefore track repair is performed simply by 
state extrapolation followed by track gating. Figure 4 contains track metric data resulting from performing track repair 
over the entire twenty two second clip, as a function of the initial state value standard deviation . The value of , 
together with the track staleness threshold and process noise, controls the size of the track gate. Tight gates result in 

(a) (b) (c) vehicle track  
 

vehicle track  
 



fewer track repairs, but provide high probability of correct association. Looser gates encourage more frequent stitching, 
potentially connecting more clutter tracks. The track metrics in Figure 4 consists of mean track length (only pure tracks, 
stitched and  un-stitched), maximum pure track length, and number of clutter track connections made. Track metric data 
is provided for before and after track repair. Due to noisy velocity measurements, is taken to be large in Figure 4. 

 
 
Figure 4:  Track Repair Metrics as Functions of Track Gate Size (a) Mean Track Length; (b) Maximum Pure Track Length; 

(c) Number of Clutter Track Connections 
 
Figure 4. contains pre- and post-repair results, with track state Kalman filtering turned on and off. Results in Figure 4 
indicate that track repair improves track quality by significantly increasing mean track length and maximum track length. 
The degree of benefit depends on track gate size; tighter track gates provide smaller improvements but also reduce the 
number of clutter track connections. Looser track gates provide better repair performance, at the cost of increased clutter 
track connection. Kalman filtering turned on provides better correct stitching performance for smaller clutter stitching.  
 
Example 2 displays deeper VTR functionality. In this example for demonstration purposes, the track gates are greatly 
loosened to potentially allow clutter tracks to gate with target tracks. In this example, the local hypothesis testing 
problems contain multiple hypotheses, and the VTR must accumulate evidence across frames to make a decision. 
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Figure 5:  (a) Target Track Appears; (b) Clutter Track Appears; (c) Target and Clutter Tracks Drop; (d) New Track Arises 

Figure 5 shows a sequence of frames in which target and clutter tracks arise and drop. In Figure 5 (a) a target track 
appears. In Figure 5(b) a clutter track appears. Next, the target and clutter tracks drop (Figure 5(c)) and a new clutter 
track appears. In Figure 5 (d), a new target track appears. The track repair problem consists of a local hypothesis testing 
problem with three hypotheses. These hypotheses correspond to new track association with one of three dropped tracks. 

 
Figure 6:  Propagation of Posterior Probabilities Associated to Each Repair Hypothesis  

 
Figure 6 contains plots of the posterior probabilities corresponding to each of the three association hypotheses, as a 
function of number of evidence accumulation frames. Figure 6 indicates that each hypothesis begins with an equal prior. 
As track measurements are compared against predicted track states, the posterior probabilities evolve to reflect the 
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comparison. Figure 6 shows that the hypothesis associated to the correct track repair association increases, while the less 
likely hypotheses converge to zero. After three frames, sufficient evidence has been accumulated to make a track repair 
decision. The correct hypothesis posterior surpasses the probability threshold, and the VTR makes the correct decision. 
 
Example 3 demonstrates track results for parameter choices which optimize different track metrics. Probability of track 
purity is the percentage of correctly associated track labels for non-clutter tracks. Coverage percentage is the percentage 
of all connectable labels that are actually connected. Figure 7 shows track repair results for optimizing each metric, and 
for an intermediate case. 

 
Figure 7:  Track Repair Sequence for Video Clip Similar to Example 1 (Vehicle on road, Entering/Exiting Shadows) 

In Figure 7 the numbers connected by arrows correspond to the true target track label sequence. The boxes show which 
labels are connected. Circles indicate incorrectly connected track labels. Figure 7 shows that through suitable parameter 
choice in the VTR algorithm, different track metrics may be optimized resulting in different track repair performance. 

5. CONCLUSIONS 
Performance results generated in this paper indicate that the local video track repair algorithm presented herein can 
provide improved tracking performance on real video data. Current and future work involves more closely examining the 
tradeoff between computation time and model fidelity, determining qualitative performance behavior under more general 
operating conditions, and adding feature-based track repair capability to improve performance. 
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