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Abstract— In this paper we present an online algorithm for
robustly tracking surgical tools in dynamic environments that
can assist a surgeon during in-vivo robotic surgery procedures.
The next generation of in-vivo robotic surgical devices includes
integrated imaging and effector platforms that need to be
controlled through real-time visual feedback. Our tracking
algorithm learns the appearance of the tool online to account for
appearance and perspective changes. In addition, the tracker
uses multiple features working together to model the object and
discover new areas of the tool as it moves quickly, exits and
re-enters the scene, or becomes occluded and requires recovery.
The algorithm can persist through changes in lighting and pose
by using a memory database, which is built online, using a
series of features working together to exploit different aspects
of the object being tracked. We present results using real in-vivo
imaging data from a human partial nephrectomy.

I. INTRODUCTION

Minimally invasive surgery (MIS) has become a standard

operating choice for surgeons in recent years due to its low

risks and high rewards. Patients and doctors alike prefer

fewer scars and smaller incisions with quicker healing times.

Currently, MIS requires multiple incisions and multiple peo-

ple in the operating room, all trying to work together, but

with much effort.

While most laparoscopic procedures require multiple inci-

sions, two important new and emerging surgical paradigms

are Single Port Access surgery (SPA) and Natural Orifice

Translumenal Endoscopic Surgery (NOTES) [1]. In these

methods, only a single incision or a natural body orifice

is used to introduce surgical imaging and tooling devices

into the body. To support these new methods, a whole new

class of robotically controlled surgical instrumentation [2] is

required. We have recently designed and fabricated such an

in-vivo robotic surgery platform we call the IREP: Insertable

Robotic Effector Platform for SPA surgery. The IREP (see

figure 1) is a 15mm diameter package that contains stereo

cameras and 2 snake-like robotic arms that can be deployed

inside the body to perform surgical procedures. Details of

the IREP can be found in [3].

This paper describes our initial efforts in building com-

puter vision tools that can assist the surgeon during a robotic

procedure. As the surgeon is mostly focused on using the

tooling and effectors, our goal is to provide salient 2-D and

3-D information from the vision module to the surgeon in

real-time.
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Fig. 1. (Top) IREP robot design in working configuration. (Bottom)
IREP Robot stereo vision module with actuation and one 7-DOF snake
arm extended.

A common problem in the operating room (OR) during

an MIS procedure is the interaction between the surgeon

and the camera operator, as it is often difficult to anticipate

the motions of the surgeon. Therefore, in order to make

these robotic devices equipped for the OR, there must be an

automated method of controlling the camera to follow the

surgeon’s movements in real-time to alleviate this issue. The

tracking algorithm presented in this paper is a step forward in

providing a robust tracker that can persist in a dynamically-

changing environment with quick movements and frequent

tool recoveries in order to keep the camera centered where

the surgeon desires.

II. PREVIOUS WORK

There has been much progress in the field of tracking

surgical instruments. In the medical vision field, typically

either color or texture is used, and in cases where information

about the tool is known a priori, a shape model can be used

to confine the search space [4] [5] [6].

A common method is to design a custom marker, as

in [7] [8], to assist in tool tracking. The authors design a color

marker by studying the HSV color space to determine which

color components aren’t prevalent in typical surgery imagery.

A training step creates a kernel to distinguish tool pixels

from background pixels. Similarly, the authors in [9] design

a marker with 3 stripes that traverse the known diameter of

the tool.

Color may be exploited without custom markers, as

in [10], in which the authors train on color signatures from

organs and instruments to classify pixels from a large sample
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Fig. 2. Feature-Flow tracker diagram showing the individual components of the tracker and how they feed into each other. Each module is labeled with
a letter, which is referenced in the text to more easily visualize each step of the procedure. See text for more details.

of pixels from endoscopic sequences. A Bayesian classifier

is used to distinguish organ from instrument. Sometimes,

simple assumptions can be made about the scene, such as

determining ”grey” regions and labeling them as the instru-

mentation [11] [4]. The authors contribute a new definition

of color purity and extract boundaries of nearly uniformly

grey regions to develop the idea that saturation is the most

discriminate attribute for grey region segmentation.

Another technique to aid in tracking is to affix assistive

devices to the imaging instrument. In [12], a laser-pointing

instrument is used to project laser spots into the imaging

scene. Prior information of the surgical tools may be used

to confine the search space for the instrument [5]. Here,

the authors perform a calibration step to define the 3-D

insertion point of the instrument into the abdominal cavity.

This gives shape considerations to confine the search space

for the instrument and helps achieve real-time processing.

Offline learning has been used to combine multiple fea-

tures together into a strong feature framework [6], wherein

the authors extract color and texture features and train offline.

Online learning has been used in [13] for feature tracking

which learns the representation for corner features for soft

tissue tracking.

III. OVERVIEW

Our work seeks to combine these two ideas of using

multiple features with an online approach to both disciminate

the object from the scene as well as account for changes in

the object’s appearance over time. Unlike the work in [6],

we adjust feature representations online which allow us to

discover new parts of the object as it moves and turns

in a dynamically-changing environment. The basis of our

algorithm lies in the following 3 assumptions:

1) One feature alone will not suffice for long-term, robust

tracking

2) Features working together (synergy) are better than

features working alone. In this sense, features will flow
into one another (rather than work independently and

force their combination in the final step). We call this

idea Feature Flow.

3) Learning feature representations online is important for

long-term, robust tracking

We keep a database of track states over time, storing

gradient-based features (i.e., corners) of the object being

tracked. We use these feature locations to estimate the

position of the object in the current frame, and then compute

a likelihood map using a combination of other synergistic

features (i.e., color, texture). The likelihood map, defined

as an image specifying the probability of a pixel being part

of the tracked object, assists the tracker in identifying new

regions of the object. We use the feature locations as ”seed

points” in a region-growing algorithm, within the likelihood

map to flow into new parts of the object, and then store

this new information in our database. In the following two

sections, we will describe our method for achieving each

of these ideas and layout the framework for our tracking

algorithm.

IV. FEATURE FLOW

Figure 2 shows the full Feature-Flow tracker in diagram

form; each module will be referenced in the text below

by its corresponding letter in this diagram, for the reader’s

reference. We seek to keep a list of track states (J) to serve

as a memory for the tracking system, which are separated in

time, keeping a representative set of samples of the object as

it moves, and this is constantly updated as time progresses. A
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Fig. 3. (Left) Without likelihood discovery, the tracker gets locked-on to
the same part of the object without the ability to discover new regions. As
the tool turns significantly, we aren’t able to pick up other regions of the
same object. (Right) With likelihood discovery, we can capture new parts
of the object.

track state consists of: (1) the image frame corresponding to

the time at which the track state was added to the database;

(2) the region-of-interest representing the track location and

size as it was detected in the image frame; and (3) the set of

features representing the track state, which we use to match

on each new frame. The tracker begins with a manual user

nomination (A) consisting of an image patch for the target

we wish to track (i.e., a surgical tool). We extract a set of

FAST corners [14] within this track region only (B), and add

an initial state to our track database.

The algorithm works as follows: on each frame, we take

the previous track region and construct a slightly expanded

search region-of-interest (ROI) in the current frame (C), in

which we extract features (D). We want to find the best track

state match (E) in the database to the current frame, and so

for each track state we:

• Perform feature matching using normalized cross-

correlation (NCC) of small image patches centered at

each corner feature against the features stored in the

track state.

• Estimate an alignment between the potential feature

matches, eliminating outliers using M-SAC [15].

• Evaluate the alignment by warping the track state image

patch (that part of the image represented by the track)

using the estimated transform computed above, and

computing the NCC as a similarity score. We use an

affine model here.

• Take the track state with the highest alignment similarity

score as the best match to the current frame.

In essence, we could stop here and track frame-to-frame

using this technique. This would, and did, perform decently

well if the view of the object doesn’t change over time.

However, a common problem related to in-vivo environments

occurs when the tool moves too much, frequently showing

different views, and the current method will guarantee you

to only be able to lock-on to that part of the object you were

originally supplied with in the initialization stage. The result

is that we eventually lose the track because the information

stored in the database is no longer present in the image

frames, and the tracker has nothing else to go on to identify

the object. See figure 3 for an example.

To be able to deal with this issue, we chose to combine

multiple additional features together into a single likelihood

map, so that we could discover new regions of the object that

are similar to what we are currently tracking. The alignment

estimation step yields a set of inlier feature locations that

are presumed to be part of the object to be tracked. The

inliers are used as seed points in the likelihood map in a

region-growing algorithm, so that we can flow [hence the

term Feature-Flow; we flow from one feature (corners) into

others (those that form the likelihood)] into new parts of the

object. This provides us with an object mask, which we can

then use to retrieve the features associated with this image

region as a new addition to the track state database.

It’s important to note here that the features we retrieve

from the object mask will yield new locations that weren’t

possible to identify with only the feature matching/alignment

routines above. They are features that aren’t in any of the

track states in the database, but are probabilistically-likely to

be a part of the object, and so we wish to keep them. This

is how we learn the object online.

A. Constructing the Likelihood Map

In the likelihood construction stage (F), we wish to define

areas of the image which are likely to contain the object we

are tracking (foreground) with high values and everything

else (background) with low values. The input to this routine

is the list of inlier features that come out of the best track

state alignment along with the initial estimated track ROI.

We want the likelihood to simultaneously represent dif-

ferent aspects of the object to increase our chances of

discriminability. Each of k features will construct its own

individual, probability map, Pk, and the overall likelihood,

Pi, is constructed as a weighted-sum of the individual

probability maps:

Pi =
∑

k

wkPk (1)

where wk, for each of the k features, represents the corre-

sponding weight on that likelihood feature map, and the k
weights sum to 1. For this paper, k = 3; (1) a Gaussian prior

representing our initial estimate of the track location from the

corner feature alignment, (2) a large-scale texture analysis,

and (3) a color analysis. Each feature is weighted equally.

Also, other features can be used here to compute likelihood

maps, with the tradeoff of computational processing.

1) Gaussian Prior: We use a prior on the likelihood

map using the current track estimate. We define a 2D

elliptical Gaussian in the region where we believe the track

is currently located, from the track state alignment stage

(E). The Gaussian is parameterized so that it is centered

at this estimated pixel location and is shaped based on the

rectangular dimensions of the track match. Therefore, the

mean of the Gaussian is the estimated 2D center of the track

patch ROI, and the standard deviation is half the dimensions

of the track patch.

2) Correlation Surface: Next, using the best-matched

track state and the corresponding affine transform to the

current frame, we create a warped track image (the track

image region warped to the current frame) and compute a

correlation surface against the current frame. Warping the
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track ROI is useful because typical NCC surfaces are created

with the template as last seen. This could be from much

earlier, and the overall structure of the object might have

changed markedly. The strength here is that we have an

estimate of how that track image might look like in the

current frame (i.e., how it has warped), and this produces

a much more accurate correlation surface.

3) Color Features: Finally, we wish to exploit color

features using [16] to compute a set of ”tuned” features

from a collection of seed features on the current frame.

Linear combinations of the RGB color space are used to

compute local image window histograms forming the initial

seed features. To create the tuned features, we normalize

the histograms of each feature descriptor by the number

of elements in it, thereby forming a probability distribution

function (PDF) on each feature. This is done for all candidate

features, in both the foreground and background separately,

to achieve class-conditional PDFs. Foreground pixels are

collected within the proposed object window and background

pixels are collected within a slightly expanded window

border around the object box, sampled locally outside the

target area. The tuned feature is formed from a log-likelihood

ratio of the PDFs:

L(i) = log
max{p(i), δ}
max{q(i), δ} (2)

where p is the object probability, q is the background

probability, and δ prevents taking a log of or dividing by

zero. Feature discriminability is evaluated using a two-class

variance ratio, where variance for the foreground class p is

defined as:

var(L; p) = E[L2(i)]− (E[L(i)])2 (3)

and similarly for the background class q. The variance ratio

of the log likelihood function is then:

V R(L; p, q) =
var(L; (p + q)/2)

var(L; p) + var(L; q)
(4)

and all color features are sorted based on variance ratio and

the top one chosen to exploit the current frame, which allows

us to obtain the most discriminate feature.

We take the likelihood distribution of the top color feature

(i.e., a look-up table of color features to likelihood values)

to create a likelihood image of the entire frame to see how

this best color feature can rank pixels throughout the whole

image.

B. Exploiting the Likelihood Map

Next we use the inliers that came from the best track

state match alignment estimation as seed points in a region-

growing procedure (G) within the composite likelihood map

to eliminate further outliers (if they fall in probabilistically

low areas). We also can discover new areas of the object that

we haven’t seen before. The inliers help flow into new areas

of the object that we can automatically discover as being part

of the same object we are currently tracking. This results in

a binary mask of object pixels, which can then reduce the

initial set of dense, raw features extracted from the original

expanded search ROI (C), better signifying ”object features”

(H). By adding a grown region of the object, we can then

capture new corner features in these new regions and store

in our memory. The overall track ROI can then be updated

to this new region, to start again on the next frame.

V. EXPERIMENTAL RESULTS

Our tracker was tested using in-vivo imagery from a

human partial nephrectomy. We chose a challenging se-

quence to test the tracker’s abilities against changing lighting

conditions, pose and perspective changes, rapid movements

into and out of the camera’s field-of-view, and changing

backgrounds. The initial track was seeded manually by the

user providing both a position and size of an image patch

to track containing a surgical tool. In all of the following

figures, the green box represents the bounding box of the

final output of the tracker, displaying the position and size

in the current frame.

We set a maximum number of m (typically 4-5) states to

serve as a ring buffer, and we define a constant time step

δ (∼1.5-2.5secs) to serve as the update rate for adding new

states. We add new states until the memory is full, and then

replace the oldest entry. This method works well on a frame-

to-frame basis in a real-time setting, with efficient computer

memory usage.

One of the strengths of this system is the ability for it to

perform track recovery. Using the last known location of the

object, we construct a slightly expanded search region (∼1.5

times the previous dimensions) to look for the object. We also

take into account previous consecutive failures, and grow the

search region dynamically through time so that it gets larger

as we miss the object more; this becomes important for tool

recovery when the track is lost, is moving fast, or leaves the

camera’s field-of-view.

Our goal was to keep the tracker running at real-time rates,

which we tested on a standard PC running Windows XP

with a 2.3 GHz quad-core processor. The tracker runs at

approximately 12fps, depending on the size of the object

patches in the database as well as the number of states

in the database at any given time. However, we found

that the tracker was robust enough in finding the object of

interest that we could actually skip several frames between

updates; therefore, processing every third frame gave us the

same qualitative results as processing every frame, effectively

tripling the run-time speed.

In figure 4 we show the likelihoods (columns 2-4) as

well as the tracked frame (column 1). The colormap for

the likelihoods map high probabilities to red colors and

low probabilities to blue colors. This sequence also required

recovery several times as the tool exited the frame and then

returned, and each time we were able to recover due to the

dynamically-expanding search window.

We performed a study on this video sequence to show the

effects of using a synergistic feature likelihood to discover
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Fig. 4. Four screenshots of tracking a surgical tool in a video sequence from a partial nephrectomy. For each of the likelihoods, red pixels indicate high
probability values while blue pixels indicate low probability values. (Column 1) The tracked frames, with a green box drawn around the tool as final output
from the tracker. (Column 2) The color feature likelihood images. (Column 3) The correlation surfaces (the blue borders are due to padding outside the
window). (Column 4) The combined likelihoods (from weighted sums of the individual probability maps) used in the region growing procedure. We show
results through severe pose changes, changes in scale, and partial occlusions. In addition, the background is changing as a bleed occurs (bottom row), but
the track remains on target.

TABLE I

PERFORMANCE COMPARISON OF DIFFERENT FEATURES

Features Continuous Tracking Time
No Likelihood Discovery 1:01

NCC (No Warp) 1:16
Color (Alone) 1:44

NCC (With Warp) 1:55
Color and NCC (With Warp) 2:17

new parts of the object on overall tracking performance. Ta-

ble I shows the overall tracking time achieved with different

choices of features, each starting from the beginning of the

video sequence and run until the track is lost or the sequence

terminates. The first row is with the corner tracker alone (i.e.,

no likelihood discovery stage). This is the case mentioned

above in figure 3, and after 61 seconds, the track was lost

completely. The second row is using the NCC as the only

likelihood feature, but without warping the track patch to the

current frame. Recall our earlier point about the improvement

of the correlation surface if the track patch is warped with

the estimated track state alignment to the current frame; here

the system tracked for 76 seconds, roughly 1/2 the total

video sequence time. Next, we show using the color features

alone to create the likelihood (third row), where the tracker

improved to 104 seconds. The fourth row is the NCC feature

using a warped track patch, and we received an improvement

to 115 seconds of tracking time. Finally, the last row shows

the full likelihood discovery with both color features and

the NCC surface produced from the warped track patch,

where we were able to succesfully track the entire sequence

of 137 seconds. Although the warped NCC was able to

produce a reasonable result, we still needed the additional

color features to track through the full sequence, thereby

showing the strength of the synergy of multiple features.

The environment was challenging due to many erratic

movements, frequent exits from the imaging field-of-view,

and occlusions due to moving organs or bleeds. We suc-

cessfully tracked a sequence for approximately 2 minutes

and 17 seconds, to show how the tracker would work in

a real enivronment. See http://www.youtube.com/
watch?v=7R6172zeNTU for a full video of this tracking

sequence. The tracking ultimately ended because the tool

was taken out of the body. Because of the estimation of an

affine transformation using image metrics that normalize the

lighting conditions for feature matching, we are both able to

capture geometric changes due to scale and rotation as well

as changes due to the illumination settings of the endoscope.

A second result, shown in figure 5, uses Feature-Flow to

track the label on the shaft-end of a pair of scissors. The

initial nomination (left-most column) is perspectively and

scale-wise different from columns 2 and 3, yet we are still

able to keep track. Column 4 (right-most) shows some rolling

of the scissor shaft, resulting in partial occlusion of the label,

but the tracker is able to avoid being lost.

As a demonstration of the tracker’s ability to adjust to size

changes, we show figure 6, tracking the same surgical tool as
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Fig. 5. Tracking the label on the scissors during the removal of part of the kidney in the partial nephrectomy sequence. We are able to capture size and
perspective changes as well as partial occlusions.

Fig. 6. Tracking the same surgical tool as in figure 4, showing the tracker’s ability to persist through significant size changes. The tool starts out (Column
1) small and slightly occluded. It then moves rapidly towards the camera and increases in size (Column 2), and then goes back to the same location at
the original size (Columns 3-5), and all of these changes are accounted for.

show in figure 4, but later on in the video sequence. The tool

starts off small and slightly occluded (column 1), and then

rapidly moves towards the camera, growing significantly in

size (column 2). It then goes back to the original location at

the original size (columns 3-5), and all of these are accounted

for through the full-scale feature matching and geometric

warping against the track database.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described a tracking algorithm frame-

work using online learning and multiple features working

together to track a surgical tool. We show our results on

real, in-vivo surgical data where the tracking environment is

inherently difficult. We stress the importance of being able

to discover new information online in order to extend the

tracker performance over time.

We are currently integrating the tracker with the camera

control system of the IREP to perform automated visual

servoing tasks [17]. Future work includes reserch into more

intelligent database schemes, possibly trying to represent

the object spatially rather then temporally. Also, we are

investigating an automated method to compute the optimal

weights on the individual feature likelihood maps for fusion.
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