Automatic Detection and Classification of Social Events Apoorv Agarwal, Owen Rambow

Center of Computational Learning Systems, Columbia University

Overall Goal

Extract a social network from text where nodes are people and links are *social events*

Figure: Social structure of *Alice in Wonderland*

Task Definition

- Social Event Detection: Identifying if a pair of entities participate in some social event
- ► Social Event Classification: Given there is an event between two entities, Identifying weather it is an INR or COG event

Discrete Structures and Convolution Kernels

Social Events (NEW)

Social Event: (Agarwal et. al. 2010) An event between two people or group of people where at least one party is aware of the other party and aware of the event. Types:

- Interaction event (INR): both parties mutually aware
- ► Cognition event (COG): only one party aware of the other

Figure: Interaction (INR) and Cognition (COG) social events respectively

Data

► We annotated social events for part of Automatic Content Extraction (ACE) data

- ► Tree structures:
 - ▷ Phrase Structure Tree (PET)
 - ▷ Dependency Word Tree (DW)
 - ▷ Dependency Grammatical Relation Tree (GR)
 - Dependency Grammatical Relation Word Tree (GRW)
- Sequence structures:
 - ▷ SK1: *T1-Individual Toujan_Faisal 54 said Individual she* was informed of the refusal by an T2-Group Interior Ministry committee
- ▷ SqGRW (NEW): Toujan_Faisal nsubj T1-Individual said ccomp informed prep by T2-Group pobj committee
- ► Kernels:
 - ▷ Subset Tree (SST): used for PET ▷ Partial Tree (PT): used for all other structures

Except SqGRW, all the above structures and PT are due to work by Alessandro Moschitti and Vien Nguyen

- ACE already has annotations for entities, relations and events but:
 - ▷ Our definition of social event is conceptually differenct from ACE since we require reasoning about coginitive states of people
- [Toujan Faisal], 54, {said} [she] was {informed} of the refusal by an [Interior Ministry committee] overseeing election preperations

Data Sampling

Under-sampling: Randomly eliminate examples of majority class until number of majority class examples equal number

Experiments and Results

Experimental Set-up:

- ► 138 ACE documents: 172 INR, 174 COG, 1291 No relation classes
- ► SVM with kernels: 5-fold cross-validation

Kernel	Event Detection (% F1)				Classification
	Baseline	Under	Over	Over+	% Acc
PET	32.4	41.9	53.6	47.3	76.8
GR	25.5	47.4	52.6	51.3	71.0
GRW	14.8	43.6	53.3	53.5	76.2
SqGRW	10.4	48.6	53.5	53.2	75.8
PET_GR	38.9	48.5	60.6	54.7	76.3
PET_GR_SqGRW	38.0	48.5	61.1	55.7	78.7
GR_SqGRW	36.2	47.3	54.5	54.0	75.6
GRW_SqGRW	25.0	47.1	54.1	55.3	76.9
GR_GRW_SqGRW	32.6	46.8	56.5	55.7	77.3

Over-sampling performs best

- SqGRW plays role in both the best performing systems
- Combination of PST and DT works best
- Negative result: oversampling using transformations

of minority class examples

- Over-sampling: Randomly duplicate minority class examples until number of minority class examples equal number of majority class examples
- Over-sampling with transformations: Generate synthetic minority class examples by "perturbing" the training data. Transformation used: (1) move the second target to its grandmother node, attaching it on the left, and recalculating the path-enclosed tree (2) repeate iteratively, so that a sentence with a deeply embedded second target yeilds a large number of synthesized examples

performed worse than oevrsampling

Conclusion and Future Work

- Introduced a new kernel (SqGRW)
- System pretty good at a seemingly difficult task of differentiating b/w INR and COG
- ► In future, incorporate semantic resources like VerbNet
- ► Try new linguistically motivated transformations

http://www.cs.columbia.edu/~apoorv http://www.cs.columbia.edu/~rambow

apoorv@cs.columbia.edu, rambow@ccls.columbia.edu