Automatic Detection and Classification of Social Events

Apoorv Agarwal Owen Rambow Columbia University

October 10, 2010

900

Overall Goal

Extract a social network from text where nodes are people and links are *social events*

Overall Goal

Extract a social network from text where nodes are people and links are *social events*

A. Agarwal, Columbia University

イロト イロト イヨト イヨト

Social Events

<u>Social Event:</u>(Agarwal et. al. 2010) An event between two people or group of people where at least one party is aware of the other party and aware of the event. Types:

- Interaction event (INR): both parties mutually aware
- Cognition event (COG): only one party aware of the other

Figure: Interaction (INR) and Cognition (COG) social events respectively

イロト イポト イヨト イヨト

Data

- We annotated social events for part of Automatic Content Extraction (ACE) data
- ACE already has annotations for entities, relations and events but:
 - Our definition of social event is conceptually different from ACE since we require reasoning about cognitive states of people
 - [Toujan Faisal], 54, {said} [she] was {informed} of the refusal by an [Interior Ministry committee] overseeing election preparations

Convolution Kernels with SVMs

- Sequence and Tree kernels on dependency and phrase structure trees (Alessandro Moschitti and his research group)
- SqGRW: Toujan_Faisal nsubj T1-Individual said ccomp informed prep by T2-Group pobj committee

Experimental Set-up:

- 138 ACE documents: 172 INR, 174 COG, 1291 No relation classes
- SVM with kernels: 5-fold cross-validation

Kernel	Event Detection (% F1)				Classification
	Baseline	Under	Over	Over+	% Acc
PET_GR	38.9	48.5	60.6	54.7	76.3
PET_GR_SqGRW	38.0	48.5	61.1	55.7	78.7
GR_SqGRW	36.2	47.3	54.5	54.0	75.6
GRW_SqGRW	25.0	47.1	54.1	55.3	76.9
GR_GRW_SqGRW	32.6	46.8	56.5	55.7	77.3

- Event detection is harder than event classification
- Combination of structures derived from phrase structure trees and dependency trees work best
- SqGRW plays a role in both best performing system