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Our Contributions

Use Dictionary of Affect in Language (DAL) to suggest a scoring
scheme to enable automatic scoring of majority content words

Propose a feature that is a combination of the 3 scores given to words in
DAL thats differentiates between high and low subjective words

Suggest new contextual features based on N-gram of polar constituents
of subjective phrases
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Challenges

Greece has great food but I fi nd the strike to be annoying

Positive phrase

Negative phrase

A sentence may have positive, negative and neutral opinions

It is difficult to accurately mark subjective phrase boundaries

Negations and connectives change prior polarity
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Dictionary of Affect in Language (DAL)

8742 English word dictionary to measure emotional meaning of texts
Assigns 3 scores to each word on a scale of 1(low) - 3(high)

Pleasantness (ee)
Activeness (aa)
Imagery (ii)

Word ee aa ii
Affect 1.75 1.85 1.60
Affection 2.77 2.25 2.00
Slug 1.00 1.18 2.40
Energetic 2.25 3.00 3.00
Flower 2.75 1.07 3.00

3 scores are uncorrelated (Cowie et. al., 2001)

Contains different scores for inflectional forms
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Our Task... (Reminder)

CLASSIFIER

The Taj has great food but I ....

... but I found their service to be lacking
....................

Positive

Negative

Neutral
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Corpus

Multi-Perspective Question Answering (MPQA) corpus

                                       

      

DIRECT SUBJECTIVEVVVVVVEEEEEEEEEEEDDDDDDDDDDDIIIIIIIRRRR

EXPRESSIVE SUBJECTIVE                 

(Positive)
  (2779)

(Negative)
   (7993)(Neutral)

  (6471)

Gold Standard: Manual annotation tag (positive, negative, neutral) given to
subjective phrases in the corpus
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Basic Scoring Scheme
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Norm

Activation - Evaluation (AE) space score (Cowie et. al. 2001)

ee

angry

slug  ower

energetic

(0,0) AE = !(ee2 + aa2)

Subjectivity ∝ 1
Imagery

Eg: goodies vs good

norm =

√
ee2 + aa2

ii
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Contextual Features

This announcement was met with unanimous condemnation

NEG
[PP]TARGET[NP]

NEU
[VP]

NEU

Expanded to a chunk 
(our TARGET phrase) 

Subjective phrase as 
marked in the corpus

Lexical Features
........ as in previous work (Wilson et. al., 2005)
Syntactic Features

N-grams over polar chunks, e.g. bigram: [VP]NEU[PP]TARGET
NEG

Minimum and maximum ee scores of chunks in the target phrase

Count of syntactic categories of chunks associated with their prior
polarity to the left and right of target phrase and in the target phrase
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Experimental Set-up

MPQA corpus
# of positive phrases: 2779
# of negative phrases: 6471
# of neutral phrases: 7993

Random down sampling to get a balanced data-set

Logistic classifier, 10-fold cross validation

Baseline: Word N-gram
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3-way Classifier

Positive vs. Negative vs. Neutral
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2-way Classifier

Positive vs. Negative

Legend
Word 
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Conclusion

Introduce completely automated system for scoring subjective phrases
using DAL and WordNet

Introduce new contextual features based on N-grams of constituents

Don’t need accurate phrase boundary

Limitation: do not handle polysemy
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Future Work

Study if there’s a correlation between subjectivity and polarity

Use same framework for subjectivity and intensity analysis by tagging
chunks with the imagery and activeness score respectively
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