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Abstract

We prove that some multivariate linear tensor product problems
are tractable in the worst case setting if they are defined as ten-
sor products of univariate problems with logarithmically increasing
smoothness. This is demonstrated for the approximation problem de-
fined over Korobov spaces and for the approximation problem of cer-
tain diagonal operators. For these two problems we show necessary
and sufficient conditions on the smoothness parameters of the univari-
ate problems to obtain strong polynomial tractability. We prove that
polynomial tractability is equivalent to strong polynomial tractability,
and that weak tractability always holds for these problems. Under a
mild assumption, the Korobov space consists of periodic functions.
Periodicity is crucial since the approximation problem defined over
Sobolev spaces of non-periodic functions with a special choice of the
norm is not polynomially tractable for all smoothness parameters no
matter how fast they go to infinity. Furthermore, depending on the
choice of the norm we can even lose weak tractability.

Keywords: Multivariate problems, tractability

1 Introduction

Many multivariate problems defined over unweighted spaces are intractable
and suffer from the curse of dimensionality. For unweighted spaces of func-
tions of d variables, all variables and groups of variables are equally impor-
tant. Weighted spaces were introduced as a way to vanquish the curse of
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dimensionality. For weighted spaces, the roles of all variables and groups
of variables may be different. A typical result in the worst case setting is
that for sufficiently quickly decaying weights the curse of dimensionality is
not present and we may have weak, polynomial or even strong polynomial
tractability. This means that we can approximate d-variate multivariate
problems to within ε using a number of information operations that is not
an exponential function of d and ε−1 (weak tractability) or a polynomial
function of d and ε−1 (strong polynomial and polynomial tractability). The
information operations are given by function values, or more generally by ar-
bitrary linear functionals. In the case of strong polynomial tractability, the
number of information operations does not depend on d and is polynomial in
ε−1. The minimal exponent of ε−1 is called the strong tractability exponent.
The reader is referred to a recent monograph [2] for a survey of tractability
results.

In this paper, we propose a different approach to obtaining tractability for
multivariate problems. We still study unweighted spaces in the worst case
setting, but we assume different smoothness of functions with respect to
successive variables. Our goal is to find necessary and sufficient conditions on
the smoothness parameters for which weak, polynomial or strong polynomial
tractability holds.

Tractability of linear multivariate problems that are defined for the d-variate
case by the tensor products of d copies of a single univariate problem has
been studied in many papers, see again [2]. Assuming that this univariate
problem is not a linear functional, it is known that polynomial tractability
does not hold, no matter how smooth the univariate problem is, whereas
weak tractability holds under weak assumptions on the smoothness of the
univariate problem, see [2, Thm. 5.5]. We want to verify whether we can
regain polynomial tractability for linear multivariate problems that are tensor
products of different univariate problems with increasing smoothness.

In this paper we mostly study arbitrary linear functionals as information
operations. Then tractability is determined from the singular values of the
multivariate problem. In principle, the singular values depend on the smooth-
nesses of the individual univariate problems. This dependence is linked to
the choice of the spaces and their norms, and is the deciding factor about
the effect of increased smoothness on tractability. For some multivariate
problems, we prove that when the smoothness increases logarithmically with
the dimension d then the multivariate problem is polynomially tractable. In
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fact, such a problem is polynomially tractable iff it is strongly polynomially
tractable. In particular, this holds if the largest singular values for all uni-
variate problems are equal to one, as long as the remaining singular values
decay sufficiently quickly with d. Note that this cannot happen if all the
univariate problems are the same, which is the case that has been studied
previously, because the univariate problem smoothness (although may be
arbitrarily high) is independent of d.

These results hold for the approximation problem defined on a tensor product
of Korobov spaces with increasing smoothness, and for the approximation of
certain diagonal operators. We show:

• a necessary and sufficient condition for polynomial tractability,

• and that strong polynomial and polynomial tractability are equivalent.

We now explain our results in a more technical way. For the approximation
problem defined on Korobov spaces, let r = {rj} be a sequence of real num-
bers such that 0 < r1 ≤ r2 ≤ · · · ≤ rj ≤ . . . and for d = 1, 2, . . . , define the
spaces

Hd,r := H1,r1 ⊗H1,r2 ⊗ · · · ⊗H1,rd ,

where H1,rj is the Korobov space of univariate complex valued functions
defined on [0, 1].

The real parameter rj measures the decay of Fourier coefficients. We have
H1,rj+1

⊆ H1,rj , and the unit ball of H1,rj+1
is a subset of the unit ball of H1,rj .

Furthermore, it is a proper subset if rj < rj+1. For rj >
1
2

such functions are
1-periodic, and for integer rj such functions have rj−1 derivatives absolutely
continuous, and rj derivatives belonging to L2([0, 1]).

The multivariate approximation problem APP = {APPd} is defined as

APPd : Hd,r → L2([0, 1]d) with APPd f = f.

We show that APP is strongly polynomially tractable iff

R = lim sup
d→∞

ln d

rd
<∞.

Here and in the rest of the paper, ln denotes the natural logarithm. The
strong tractability exponent is

pwor−str = max

(
1

r1
,
R

ln 2π

)
.
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Moreover, APP is weakly tractable for all such sequences r.

We get similar results for the approximation of diagonal operators. Namely,
for a sequence r = {rj} of real numbers such that 0 < r1 ≤ r2 ≤ · · · ≤ rj ≤
. . . , we define the problem S = {Sd}, where each Sd is a tensor product of
d diagonal operators mapping a separable Hilbert space into itself. Suppose
the squares of the singular values of Sd, i.e., the eigenvalues of S∗dSd, are
given by

d∏
k=1

j−rkk , [j1, . . . jd] ∈ Nd.

Then S is strongly polynomially tractable iff

R = lim sup
d→∞

ln d

rd
<∞,

and the strong tractability exponent is

pwor−str = max

(
1

r1
,

2R

ln 2

)
.

Moreover, S is weakly tractable for all such sequences r.

We briefly comment on the case when only function values can be used. We
return to the approximation problem on Korobov spaces. From [1] we know
that strong tractability is preserved if we assume that pwor−str < 2, that is,
when

R < 2 ln 2π.

If the last inequality holds then the exponent of strong tractability is at most
pwor−str(1 + pwor−str/2). The exact value of this exponent is unknown. It is
also unknown what happens when R ≥ 2 ln 2π.

For the approximation of diagonal operators, function values may be not well-
defined. Function values are well-defined iff the Hilbert space H, which is
both the source and target space of the univariate problems, is a reproducing
kernel Hilbert space. Again the results from [1] yield that strong tractability
is preserved if r1 > 1/2 and R < ln 2 which guarantees that pwor−str < 2. If
so, then the exponent when we use function values is at most pwor−str(1 +
pwor−str/2). Again the exponent’s exact value is unknown and it is not known
what happens if one of the last two inequalities does not hold.
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The choice of Korobov spaces for the approximation problem is crucial. We
also study the approximation problem defined over Sobolev spaces of non-
periodic functions. In this case, we again take Hd,r as the tensor product of
spaces H1,rj of smooth univariate functions. We consider two Sobolev norms
for H1,rj and obtain quite different results than those for Korobov spaces.
For both choices of the norm, the approximation problem is polynomially in-
tractable, no matter how the sequence r = {rj} is defined. In particular, this
negative result is independent of how fast rj goes to infinity. Furthermore,
for one choice of the norm we have the curse of dimensionality for all r for
which the rj’s are not identically equal to 1, and for the other choice of the
norm weak tractability always holds.

The reason for this counter-intuitive result is that for large rj we allow low
degree polynomials into the unit ball of the Sobolev space for one choice of
the norm. As opposed to the Korobov space, increasing smoothness does not
constrict the unit ball but expands it. This makes the problem harder and
causes the curse of dimensionality.

We conclude by saying that the increased smoothness of successive variables
may indeed imply tractability of multivariate problems; however, for the
approximation problem, this depends on the choice of spaces and norms.
It would be interesting to characterise spaces and their norms for which
increasing smoothness yields or does not yield polynomial tractability of the
approximation problem. The results of this paper show that these two classes
are nonempty and contain quite natural examples of spaces and norms.

Hence, we may have two options for obtaining tractability: either by using
decaying weights or by increased smoothness. Depending on particular ap-
plication, one of these two approaches may be used. The case of decaying
weights means that our functions, although not necessarily very smooth, de-
pend on groups of variables in a decaying way controlled by weights. The case
of increased smoothness means that the smoothness of our functions with re-
spect to successive variables grows, and for Korobov spaces it is enough to
have a logarithmic growth. The increased smoothness may be viewed as a
special form of introducing decaying importance of successive variables. This
holds since it is easier to approximate functions with respect to variables cor-
responding to increased smoothness. However, this case cannot be modelled
by the weights studied so far.
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2 Linear Tensor Product Problems

Our definition of linear tensor product problems extends that of [2, Ch. 5.2].
The main difference is that we define a linear tensor product problem in
terms of the tensor product of different univariate linear problems, rather
than the tensor product of a single univariate linear problem. Here we focus
on the differences between the two definitions and refer the reader to [2, Ch.
5.2] for more details.

For j = 1, 2, . . . , let Hj be a separable Hilbert space of real or complex valued
univariate functions with inner product denoted by 〈·, ·〉Hj , and let Gj be an
arbitrary Hilbert space. Assume that Sj : Hj → Gj is a compact linear
operator. The operator

Wj := S∗jSj : Hj → Hj

is non-negative, self-adjoint and compact. We denote the ordered eigenvalues
of Wj by {λ(j)

i }, where λ
(j)
1 ≥ λ

(j)
2 ≥ · · · ≥ λ

(j)
i ≥ . . . . These eigenvalues

are the squares of the singular values of Sj. Without loss of generality, we
assume that all Hj are infinite-dimensional. We denote the eigenpairs of Wj

by {(λ(j)
i , e

(j)
i )}i∈N.

For d ≥ 1, define Hd =
⊗d

j=1Hj to be the tensor product of the spaces
H1, . . . , Hd. This is a space of real or complex valued functions of d variables.
Similarly, let Gd =

⊗d
j=1Gj. We define the linear tensor product problem by

considering the operator

Sd :=
d⊗
j=1

Sj : Hd → Gd.

Observe that Sd is compact and that ‖Sd‖Hd =
∏d

j=1

[
λ

(j)
1

]1/2
. The problem

S = {Sd} is called the linear tensor product problem.

Our definition of a linear tensor product problem is equivalent to that in [2,
Ch. 5.2] whenever Sj = S1, Hj = H1, Gj = G1 for all j ∈ N.

The non-negative definite, self adjoint and compact operator

Wd = S∗dSd : Hd → Hd

has eigenpairs {ed,i, λd,i}i∈Nd with λd,i =
∏d

j=1 λ
(j)
ij

, and ed,i =
⊗d

j=1 e
(j)
ij

for

all i = [i1, i2, . . . , id] ∈ Nd. Let λd,βj denote the jth largest eigenvalue among
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all λd,i and let ed,βj denote the corresponding eigenvector. Clearly, λd,β1 =

λd,1,...,1 =
∏d

j=1 λ
(j)
1 .

Suppose we can use arbitrary linear continuous functionals as information
operations. Then its is known, see e.g. [3], that the algorithm

An,d(f) =
n∑
j=1

〈
f, ed,βj

〉
Hd
Sded,βj

minimises the worst case error among all possible algorithms using at most
n information operations. The worst case error is defined as

e(An,d) = sup
f∈Hd, ‖f‖Hd≤1

‖Sdf − An,d(f)‖Gd .

It is also known that e(An,d) =
√
λd,βn+1 .

Let ε be the accuracy demand. The worst case information complexity of the
problem Sd for the absolute error criterion is defined as the minimal number
of information operations needed to guarantee that the worst case error is at
most ε, and is given by

nwor(d, ε) = |{i ∈ Nd : λd,i > ε2 }|.

Similarly, the worst case information complexity of the problem Sd for the
normalised error criterion is defined as the minimal number of information
operations needed to guarantee that the worst case error is at most ε‖Sd‖Hd ,
and is given by

nwor(d, ε) = |{i ∈ Nd : λd,i > ε2λd,1,...,1 }|.

The absolute error criterion is equivalent to the normalised error criterion
when λd,1,...,1 = 1, as it is in the applications considered in the next section.

The problem S = {Sd} is polynomially tractable in the worst case setting iff
there exist C > 0, p > 0 and q ≥ 0 such that

nwor(d, ε) ≤ C d qε−p for all d ∈ N, ε ∈ (0, 1].

The problem S = {Sd} is strongly polynomially tractable if the inequality
above holds with q = 0. In this case the infimum of p for which the inequality
holds is called the strong tractability exponent.
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Finally, the problem is weakly tractable iff

lim
ε−1+d→∞

ln nwor(ε, d)

ε−1 + d
= 0.

For more details about these notions the reader is referred to [2].

3 Korobov Spaces

We address the problem of multivariate approximation for Korobov spaces
with different smoothness rj for each variable, see e.g. Appendix A in [2]
for details on Korobov spaces. We want to verify what are necessary and
sufficient conditions on rj’s to get strong polynomial, polynomial and weak
tractability.

More precisely, let r = {rj} be a given sequence of real numbers such that

0 < r1 ≤ r2 ≤ · · · ≤ rj ≤ · · · .

For d = 1, 2, . . . , define the spaces

Hd,r = H1,r1 ⊗H1,r2 ⊗ · · · ⊗H1,rd .

Here H1,rj is the Korobov space of univariate complex valued functions f
defined on [0, 1] such that

‖f‖2H1,rj
:= |f̂(0)|2 + (2π)2rj

∑
h∈Z,h6=0

|h|2rj |f̂(h)|2 <∞,

with Fourier coefficients

f̂(h) =

∫ 1

0

exp(−2π ihx)f(x) dx for all h ∈ Z,

and i =
√
−1. Obviously, this is a Hilbert space with the inner product

〈f, g〉Hrj = f̂(0)ĝ(0) + (2π)2rj
∑

h∈Z,h 6=0

|h|2rj f̂(h)ĝ(h) for all f, g ∈ Hrj .
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If rj >
1
2

then Hrj consists of 1-periodic functions. If rj is an integer then Hrj

consists of 1-periodic functions f such that f (rj−1) is absolutely continuous,
and f (rj) belongs to L2([0, 1]). In this case,

‖f‖2H1,rj
=

∣∣∣∣ ∫ 1

0

f(x) dx

∣∣∣∣2 +

∫ 1

0

|f (rj)(x)|2 dx. (1)

For d ≥ 2 and real rj’s, the space Hd,r is a Hilbert space with the inner
product

〈f, g〉Hd,t =
∑
h∈Zd

ρd,r(h)f̂(h)ĝ(h),

where

ρd,r(h) =
d∏
j=1

(
δ0,hj + (2π)2rj(1− δ0,hj)|hj|2rj

)
,

with Fourier coefficients,

f̂(h) =

∫
[0,1]d

exp(−2πih · x) f(x) dx for all h ∈ Zd,

and h · x = h1x1 + h2x2 + · · ·hdxd.
If r1 >

1
2
, then Hd,r consists of periodic functions in each variable with period

1. If all rj are integers then Hd,r is is a reproducing kernel Hilbert space of
1-periodic functions defined on [0, 1]d, whose reproducing kernel is

Kd(x, y) =
d∏
j=1

(
1 + (−1)rj+1B2rj({xj − yj})

(2rj)!

)
for all x, y ∈ [0, 1]d,

where B2rj is the Bernoulli polynomial of degree 2rj and {xj − yj} denotes
the fractional part of xj − yj with xj and yj being the jth components of x
and y. Since

B2rj(t) =
2(−1)rj+1(2rj)!

(2π)2rj

∞∑
h=1

cos(2πht)

h2rj
for all t ∈ [0, 1],

we can rewrite Kd as

Kd(x, y) =
d∏
j=1

(
1 +

2

(2π)2rj

∞∑
h=1

cos(2πh(xj − yj))
h2rj

)
for all x, y ∈ [0, 1]d.
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For integers rj, the inner product of Hd,r can be expressed in terms of deriva-
tives. Let [d] := {1, 2, . . . , d} and consider a subset u of [d]. Define the
differentiation operator

Du,r f =
∂

P
j∈u rj∏

j∈u ∂x
rj
j

f for all f ∈ Hd,r.

For u = ∅, we have D∅,rf = f . We also define the integration operator

I−uf(x) =

∫
[0,1]d−|u|

f(x) dx−u for all f ∈ Hd,r,

where we integrate over variables not in the subset u, and variables in u are
intact. For u = [d] we have I−[d]f = f . Finally, we define

Vu,rf = Du,rI−uf,

where we differentiate rj times with respect to variables in u, and integrate
with respect to variables not in u. Then

〈f, g〉Hd,r =
∑
u⊆[d]

∫
[0,1]d

Vu,rf(x)Vu,rg(x) dx.

The multivariate approximation problem APP = {APPd} is defined as

APPd : Hd,r → L2([0, 1]d) with APPd f = f.

It is easy to see that
‖APPd ‖Hd,r = 1.

So the multivariate approximation problem is well normalised for all d. Clearly,

H1,rj+1
⊆ H1,rj and ‖f‖H1,rj+1

≤ ‖f‖H1,rj
for all f ∈ H1,rj+1

.

The unit ball of H1,rj+1
is a subset of the unit ball of H1,rj , and it is a proper

subset if rj < rj+1. Hence, the approximation problem APPd+1 is not harder
than APPd.

Comparing to the notation of the previous section we have Hj = H1,rj ,
Gj = L2([0, 1]) and Sj(f) = f . Then Hd = Hd,r, Gd = L2([0, 1]d) and
Sd = APPd. Since ‖Sd‖Hd = 1, the absolute and normalised error criteria
are the same.
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Theorem 1. Consider the approximation problem APP = {APPd} defined
over the Korobov spaces with r = {rj} for real numbers rj such that

0 < r1 ≤ r2 ≤ · · · ≤ rj ≤ · · ·

in the worst case setting, where all continuous linear functionals are allowed
as information operations.

• APP is strongly polynomially tractable iff

R = lim sup
d→∞

ln d

rd
<∞.

If so, then the exponent of strong polynomial tractability is

pwor−str = max

(
1

r1
,

R

ln 2π

)
.

• APP is polynomially tractable iff APP is strongly polynomially tractable.

• APP is weakly tractable for all such sequences r = {rj}.

Proof. The eigenvalues of the operators Wd = APP∗d APPd : Hd,r → Hd,r are
known, see [2, p. 184]. They are given as follows. For j = [j1, j2, . . . , jd] ∈ Nd,
we have λd,j =

∏d
k=1 βk,jk with

βk,jk ∈
{

1,
1

(2π)2rk
,

1

(2π)2rk
, . . . ,

1

j2rk(2π)2rk
,

1

j2rk(2π)2rk
, . . .

}
That is, the largest eigenvalue βk,jk is 1 and the rest of them have multiplicity
two and are equal to (2πj)−2rk for j = 1, 2, . . . . As already explained, we
have

nwor(ε, d) = |{ j | λd,j > ε2 }|.

Due to Theorem 5.2 of [2], APP is polynomially tractable iff there exist
C, q ≥ 0 and τ > 0 such that

sup
d∈N

(∑
j∈Nd

λτd,j

)1/τ

d−q ≤ C. (2)
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Furthermore, APP is strongly polynomially tractable if q = 0 in (2), and then
the exponent of strong polynomial tractability is the infimum of 2τ where τ
satisfies (2) with q = 0. We have

∑
j∈Nd

λτd,j =
d∏

k=1

[
1 +

2ζ(2rkτ)

(2π)2rkτ

]
, (3)

where ζ is the Riemann zeta function, ζ(x) =
∑∞

j=1 j
−x for x > 1. Note that

ζ is a decreasing function and clearly ζ(x) > 1. Hence, the last sum/product
in (3) is finite iff 2r1τ > 1, i.e. 2τ > 1/r1. Therefore

1 < ζ(2rkτ) ≤ ζ(2r1τ).

Note also that for a positive α we have

x

1 + α
≤ ln(1 + x) ≤ x for all x ∈ [0, α].

Let a := 2ζ(2r1τ) and b := 2/(1 + 2/(2π)2r1τ ). Then

b
d∑

k=1

1

(2π)2rkτ
≤ ln

d∏
k=1

[
1 +

2ζ(2rkτ)

(2π)2rkτ

]
≤ a

d∑
k=1

1

(2π)2rkτ
.

Note that for k ≥ 2, we have (2π)2rkτ = k(2τ ln 2π) rk/ ln k. Hence, (2) holds iff
there exist C, q ≥ 0 and τ > 1/(2r1) such that

d∑
k=2

k−(2τ ln 2π) rk/ ln k ≤ C + qτ ln d for all d ∈ N. (4)

We stress that we have polynomial tractability iff (4) holds with q ≥ 0, and
strong polynomial tractability iff (4) holds with q = 0.

We now show that (4) holds independently of whether q > 0 or q = 0 iff

R = lim sup
d→∞

ln d

rd
<∞.

Indeed, assume that we have (4) and R =∞. Then there exists a sequence of
integers dj such that limj→∞ rj/ ln dj = 0. Let β = 2τ ln 2π. Take δ ∈ (0, 1

2
).

Then there exists j∗ = j∗(δ) such that

rdj
ln dj

≤ δ

β
for all j ≥ j∗.
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Since rj ≤ rj+1 for all j, we have for k ∈ [
√
dj, dj] and j ≥ j∗,

rk
ln k

≤
rdj
ln k

=
ln dj
ln k

rdj
ln dj

≤ 2
rdj

ln dj
≤ 2δ

β
.

Therefore,

dj∑
k=d
√
dje

k−2δ ≤
dj∑
k=2

k−β rk/ ln k ≤ C + qτ ln dj for all j ≥ j∗. (5)

On the other hand, for large dj we have

dj∑
k=d
√
dje

k−2δ = (1 + o(1))

∫ dj

√
dj

x−2δ dx =
1 + o(1)

1− 2δ
d 1−2δ
j ,

which contradicts (5).

Assume now that R < ∞. Then for any positive δ there exists j∗ = j∗(δ)
such that

rj
ln j
≥ 1

R + δ
for all j ≥ j∗.

For d ≥ j∗ take τ such that s := (2τ ln 2π)/(R + δ) > 1. Then

d∑
k=2

k−(2τ ln 2π) rk/ ln k ≤
j∗∑
k=2

k−(2τ ln 2π) rk/ ln k +
d∑

k=j∗+1

k−(2τ ln 2π) rk/ ln k

< j∗ +
∞∑

k=j∗+1

k−s <∞.

Hence (4) holds with q = 0 and we have strong polynomial tractability.
To estimate the exponent of strong tractability, note that we obtain strong
tractability for 2τ > 1/r1 and 2τ > (R + δ)/ ln 2π. On the other hand, for
δ < R and large j∗, we also have rj/ ln j ≤ 1/(R − δ) for all j ≥ j∗. Hence,
if 2τ ≤ 1/r1 or 2τ ≤ (R − δ)/ ln 2π then the series

∑
j∈Nd λ

τ
d,j =∞. Since δ

can be arbitrarily small, this proves the formula for the exponent of strong
polynomial tractability, and completes the proof of the first two points of the
theorem.
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We turn to weak tractability. Note that APP is no harder than the problem
with all rj replaced by r1. But even in this case we have weak tractability
due to [2, Thm. 5.6]. Indeed, for rj = r1 the space Hd,r is the tensor product
of d copies of H1,r1 and the eigenvalues of W1 are λ1 = 1, λ2 = (2π)−2r1 < 1
and λj = Θ(j−2r1). This means that the assumptions of [2, Thm. 5.6] hold
and we indeed have weak tractability. This completes the proof.

We now comment on Theorem 1. The essence of this theorem is that we
always have weak tractability and that polynomial tractability is equivalent
to strong polynomial tractability. Furthermore, we obtain strong polynomial
tractability iff the smoothness parameters rd go to infinity at least as fast as
ln d.

Note that if {rj} is asymptotically strictly increasing by some positive num-
ber a, that is, if rj + a ≤ rj+1 for j ≥ j∗ for some j∗, then R = 0 and the
exponent of strong polynomial tractability achieves the minimal value 1/r1,
exactly as in the univariate case. If {rj} is not asymptotically strictly increas-
ing, then we still can have strong polynomial tractability but the exponent
may be larger than 1/r1. Indeed, for m > 1 and k ∈ N, define

rj = sk for j = mk−1,mk−1 + 1, . . . ,mk − 1

for some integers 1 ≤ s1 ≤ s2 ≤ · · · . Then

R = ln(m) lim sup
k→∞

k

sk
.

Hence, we get strong polynomial tractability iff sk goes to infinity at least as
fast as k. For sk = k we have R = ln m and

pwor−str = max

(
1

s1

,
ln m

ln 2π

)
which goes to infinity with m.

The essence of the strong polynomial tractability result is that the smooth-
ness with respect to successive variables can be repeated at most exponen-
tially many times. More precisely, consider integers rj and define

Mj = |{ k : rk = j}|
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as the cardinality of indices rk equal to j. Proceeding similarly as in the
proof of Theorem 1, we can then check that APP is strongly polynomially
tractable iff

all Mj are finite and M := lim sup
j→∞

ln max(1,Mj)

j
<∞.

Furthermore, all Mj are finite iff limj rj = ∞. Hence Mj can grow at most

like eMj if we want to guarantee strong polynomial tractability. If Mj = 2j
β

with β > 1 then M =∞ and strong polynomial and polynomial tractability
do not hold.

Remark 1. We verify whether tractability is sensitive with respect to the
choice of the norm in H1,rj . We now redefine the norm (1) by taking

‖f‖2H1,rj
=

∣∣∣∣ ∫ 1

0

f(x) dx

∣∣∣∣2 + aj

∫ 1

0

|f (rj)(x)|2 dx

for some positive aj. For simplicity we take aj = a2rj with a > 0, but it is
also possible to analyze general aj.

The eigenvalues of Wd are now λd,j =
∏d

k=1 βk,jk with

βk,jk ∈
{

1,
1

(2π a)2rk
,

1

(2π a)2rk
, . . . ,

1

j2rk(2π a)2rk
,

1

j2rk(2π a)2rk
, . . .

}
,

see again [2, p. 184]. So the only change is that 2π is now replaced by 2π a.
We consider two cases of a.

• a ≤ 1/(2π). Then the largest eigenvalue of Wd is (2π a)2
Pd
k=1 rk ≥ 1,

and what is more important, it has multiplicity 2d if a < 1/(2π) and it
has multiplicity 3d is a = 1/(2π). This implies that for both the absolute
and normalized error criteria we have

nwor(d, ε) ≥ 2 d − 1 for all ε ∈ (0, 1).

Hence, the problem is intractable and suffers from the curse of dimen-
sionality.

• a > 1/(2π). Then the largest eigenvalue of Wd is still 1. We can now
proceed as before, and Theorem 1 holds with the exponent of strong
polynomial tractability given by

max

(
1

r1
,

R

ln 2π a

)
.
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Note that for a tending to 1/(2π), the exponent goes to infinity. On the
other hand, if a ≥ exp(Rr1)/(2π) then the exponent takes its minimal
value 1/r1, as for the univariate case.

4 Diagonal Operators

A similar analysis as in the previous section can be also done for diagonal
operators. Let H be a separable Hilbert space and let {ηj}j∈N be its or-
thonormal basis. As before, consider a sequence r = {rj} of real numbers rj
such that

0 < r1 ≤ r2 ≤ · · · ≤ rj ≤ · · · .
For k ∈ N, define a diagonal operator Tk : H → H as a linear operator by

Tkηj = j−rk/2ηj for all j ∈ N.

For d ∈ N, let
Sd = T1 ⊗ T2 ⊗ · · · ⊗ Td.

Then Sd : Hd → Hd, where Hd is the d-folded tensor product of H. The
operator Sd is a linear compact operator and Wd = S∗dSd : Hd → Hd has the
eigenvalues

λd,j =
d∏

k=1

j−rkk for j = [j1, j2, . . . , jd] ∈ Nd.

It is easy to generalise Theorem 1 for the problem S and obtain the following
theorem.

Theorem 2. Consider the approximation problem S = {Sd} of diagonal
operators in the worst case setting with all continuous linear functionals being
allowed as information operations.

• S is strongly polynomially tractable iff

R = lim sup
d→∞

ln d

rd
<∞.

If so, then the exponent of strong polynomial tractability is

pwors−str = max

(
1

r1
,

2R

ln 2

)
.
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• S is polynomially tractable iff S is strongly polynomially tractable.

• S is weakly tractable for all sequences r = {rj} with rj+1 ≥ rj ≥ r1 > 0.

Proof. Proceeding exactly as before, we conclude that

∑
j∈Nd

λτd,j =
d∏
j=1

ζ(rjτ) =
d∏
j=1

(
1 + 2−rjτ + [ζ(rjτ)− 1− 2−rjτ ]

)
for τ > 1/r1.

For x > 1, we have

ζ(x)− 1− 2−x = 3−x +
∞∑
j=4

j−4 ≤ 3−x +

∫ ∞
3

t−x dt

= 3−x +
1

x− 1
3−x+1 = 3−x

x+ 2

x− 1
= 2−x

(
2

3

)x
x+ 2

x− 1
.

Therefore (strong) polynomial tractability of S holds iff there exist τ > 1/r1
and C, q ≥ 0 such that

d∑
k=1

1

2rkτ
≤ C + qτ ln d for all d ∈ N.

The rest of the proof is the same as before with the obvious change of (2π)2

to 2, which results in the different formula for the exponent.

5 Sobolev Spaces

In the previous sections we presented positive results showing that it is indeed
possible to get even strong polynomial tractability for properly increasing
smoothness parameters rj. In this section we show that, unfortunately, this
property does not always hold and the choice of the spaces or liner operators
is also important. That is, we now show that multivariate approximation
defined for two specific Sobolev spaces cannot be even polynomially tractable
no matter how the sequence r = {rj} is defined. Furthermore, we can also
lose weak tractability for some r with large rj.

We now take r = {rj} with ordered integers rj, 1 ≤ r1 ≤ r2 ≤ · · · , and

Hd,r = H1,r1 ⊗H1,r2 ⊗ · · · ⊗H1,rd ,
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where H1,rj is a Sobolev space of univariate functions defined on [0, 1] such

that f (rj−1) is absolutely continuous and f (rj) belongs to L2([0, 1]). We equip
the space H1,rj with one of the two norms:

‖f‖1,H1,rj
=

(∫ 1

0

f 2(t) dt +

∫ 1

0

[
f (rj)(t)

]2
dt

)1/2

,

‖f‖2,H1,rj
=

(
rj∑
j=0

∫ 1

0

[
f (j)(t)

]2
dt

)1/2

.

Note that these norms are the same iff rj = 1. For any rj, we have

‖f‖L2([0,1]) ≤ ‖f‖1,H1,rj
≤ ‖f‖2,H1,rj

.

We stress that just now we do not assume periodicity of functions.

For k ∈ {1, 2}, let Hk
1,rj

denote the space H1,rj equipped with the kth norm.

Although the spaces H1
1,rj

and H2
1,rj

are algebraically the same, their unit

balls are quite different if we vary rj. For {H2
1,rj
}, we have

H2
1,rj+1

⊆ H2
1,rj

and ‖f‖H2
1,rj
≤ ‖f‖H2

1,rj+1
for all f ∈ H2

1,rj+1
.

As for the Korobov spaces, the units balls of H2
1,rj

are shrinking with increas-

ing rj, and the approximation problem over H2
1,rj+1

is not harder than the

approximation problem over H2
1,rj

.

The spaces H1
1,rj

are quite different. Indeed, take a polynomial p of degree k

such that ‖p‖L2([0,1]) = 1. Let BH1
1,rj

denote the unit ball of H1
1,rj

. Then

p ∈ BH1
1,rj

iff rj > k.

This simply follows from the fact that for rj > k we have

‖p‖H1
1,rj

= ‖p‖L2([0,1]) = 1,

whereas for rj ≤ k we have

‖p‖H1
1,rj

=
(
1 + ‖p(rj)‖2L2([0,1])

)1/2
> 1.

Thus, increasing smoothness does not constrict the unit ball but expands it.
Therefore, it is not true that the approximation problem over H1

1,rj+1
is easier

than over H1
1,rj

if rj+1 > rj.
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Multivariate approximation APP = {APPd} is defined as APPd : Hd,r →
L2([0, 1]d) with APPdf = f . Note that ‖APPd‖ = 1 no matter which norm
we choose for H1,rj . We have the following result.

Theorem 3. Consider the approximation problem APP = {APPd} defined
over the Sobolev space in the worst case setting when all continuous linear
functionals are allowed as information operations.

• Take the first norm for the spaces H1,rj . Then

– APP is weakly tractable iff r = 1, i.e., rj = 1 for all j ∈ N.

– APP suffers from the curse of dimensionality iff r 6= 1.

– APP is polynomially intractable for all r.

• Take the second norm for the spaces H1,rj . Then

– APP is weakly tractable for all r.

– APP is polynomially intractable for all r.

Proof. Consider the first norm. Define

Pd,r = {polynomials of degree rj − 1 in the jth variable, j ∈ [1, d] }.

Note that

dim(Pd,r) =
d∏
j=1

rj.

Furthermore, for f ∈ Pd,r we have ‖f‖Hd,r = ‖f‖L2([0,1])d . Using the same
proof technique as in [4], this implies that

nwor(ε, d) ≥
d∏
j=1

rj for all ε < 1 and d ∈ N.

Assume that rj 6= 1, i.e., there is an integer k such that rj ≥ rk ≥ 2. Taking
d > k we then have

nwor(ε, d) ≥ 2d−k+1

and APP suffers from the curse of dimensionality. For r = 1, weak tractabil-
ity and polynomial intractability follows from general tractability results and
was established in [2] and [4].
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Consider now the second norm. Note that for f ∈ Hd,r we have

‖f‖Hd,1 ≤ ‖f‖Hd,r

and therefore the unit ball of Hd,r is a subset of the unit ball of Hd,1. This
means that the approximation problem over Hd,r is no harder than the ap-
proximation problem over Hd,1. Since the latter problem is weakly tractable
all approximation problems over Hd,r are also weakly tractable.

To establish polynomial intractability over Hd,r for all r, take the class Pd of
polynomials of of degree at most 1 in each variable. Clearly, Pd ⊂ Hd,r and

‖f‖Hd,r = ‖f‖Hd,1 for all f ∈ Pd.

The approximation problem over Hd,r is no easier than the approximation
problem over Pd. But even the latter problem is polynomially intractable.
This is because the space Pd equipped with the same norm as H1,d is a
reproducing kernel Hilbert space with the kernel

Kd(x, y) =
d∏
j=1

(
1 + 3

13
(2xj − 1)(2yj − 1)

)
for all x, y ∈ [0, 1]d

The operator Wd = APP∗dAPPd : Pd → Pd is of the form

Wdf =

∫
[0,1]d

Kd(·, y)f(y) dy for all y ∈ [0, 1]d.

For d = 1, the operator W1 has two nonzero eigenvalues λ1 = 1 and λ2 = 1
13

.
For d ≥ 1, the operator Wd has 2d nonzero eigenvalues {λj1λj2 · · ·λjd} for
ji ∈ {1, 2}. It is known that such problems are not polynomially tractable,
see e.g., [2]. This completes the proof.
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