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Abstract We study algorithms simulating a system evolving with Hamiltonian
H =

Pm
j=1Hj , where each of the Hj , j = 1, . . . ,m, can be simulated efficiently.

We are interested in the cost for approximating e−iHt, t ∈ R, with error ε. We
consider algorithms based on high order splitting formulas that play an important
role in quantum Hamiltonian simulation. These formulas approximate e−iHt by
a product of exponentials involving the Hj , j = 1, . . . ,m. We obtain an upper
bound for the number of required exponentials. Moreover, we derive the order of
the optimal splitting method that minimizes our upper bound. We show significant
speedups relative to previously known results.
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1 Introduction

Simulating quantum systems using classical computers appears to be a very dif-
ficult problem. The number of parameters describing the quantum states grows
exponentially with the system size and so does the computational cost of the
best classical deterministic algorithms known. In some cases classical randomized
algorithms have been used to overcome these difficulties, however, randomized
algorithms also have limitations. As an alternative to simulation with a classical
computer Feynman proposed simulation with a quantum computer. He conjectured
that quantum computers might be able to carry the simulation more efficiently
than classical computers. For an overview of quantum simulation see, e.g., [1–4].

In the Hamiltonian simulation problem one is given a Hamiltonian H, t ∈ R
and an accuracy demand ε and the goal is to derive an algorithm approximating
the unitary operator e−iHt with error at most ε. The size of the quantum circuit
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realizing the algorithm is its cost. Assuming that H is a matrix of size 2q × 2q the
algorithm is efficient if its cost is a polynomial in q, t and ε−1.

Lloyd [2] showed that local Hamiltonians can be simulated efficiently on a
quantum computer. About the same time, Zalka [18,19] showed that many-particle
systems can be simulated efficiently on a quantum computer. Later, Aharonov
and Ta-Shma [6] generalized Lloyd’s results to sparse Hamiltonians. We note that
Hamiltonian simulations is also related to adiabatic evolution and quantum walks
[7–11].

Berry et al. [5] extended the complexity results of [6] for sparse Hamiltonians.
They assume that the Hamiltonian H is given by an “oracle”(a “black-box”) and
that H can be decomposed efficiently by a quantum algorithm using oracle calls
into a sum of Hamiltonians Hj , j = 1, . . . ,m, that individually can be simulated ef-

ficiently. They approximate e−Ht with error ε by a sequence of N unitary operators
of the form e−iHj` tj` , ` = 1, . . . , N . The cost of the simulation is the total number
of oracle calls. All the unitary operators in the sequence have to be considered in
the simulation, the one after the other. The algorithm has to make oracle calls to
each Hamiltonian appearing in the sequence and to simulate it. Each oracle call
to any Hj is simulated by making oracle calls to H; see [5, Sec. 5] for details. Thus
the total number of oracle calls is proportional to N , although it is not equivalent
since there can be overhead in implementing each e−iHj` tj` , ` = 1, . . . , N .

In particular, let H =
Pm
j=1Hj , where e−iHjt, t ∈ R, can be implemented

efficiently, and the Hj do not commute, j = 1, . . . ,m. Consider algorithms approx-

imating e−iHt, t ∈ R, that are obtained from products of exponentials having the
form

NY
l=1

e−iHjl tjl , (1)

for suitable tjl ∈ R, where jl ∈ {1, . . . ,m}. The cost of the simulation of H is
proportional to number of exponentials, N , so that‚‚‚‚‚e−iHt −

NY
l=1

e−iHjl tjl

‚‚‚‚‚ ≤ ε.
Berry et al. [5] use Suzuki’s [13,14] high order splitting formulas to derive (1).
They obtain an upper bound for N , which among other factors depends on ε and
the order of the splitting formula. They obtain the order of the splitting method
minimizing their upper bound.

Recall that splitting formulas such as the Lie-Trotter formula

lim
n→∞

“
e−iH1t/ne−iH2t/n

”n
= e−i(H1+H2)t,

have been extensively used in quantum simulation. From this we have a second
order approximation

e−i(H1+H2)∆t = e−iH1∆te−iH2∆t +O(|∆t|2).

A third order approximation is given by the Strang splitting formula

e−i(H1+H2)∆t = e−iH1∆t/2e−iH2∆te−iH1∆t/2 +O(|∆t|3).

Suzuki [13,14] uses recursive modifications of this approximation to derive formulas
of order 2k + 1, for k = 1, 2, . . . .

We also use Suzuki’s formulas, improve the upper bound of N shown in [5]
and obtain the order of the splitting method that minimizes our upper bound.
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2 Overview of the results

In approximating e−iHt by a product of the form (1), where H =
Pm
j=1Hj , the

relative magnitudes of the norms of the Hj are important. The approximation error
depends on them and since we want accuracy ε this affects the number N = N(ε)
of required exponentials in the product. (Note that we have assumed the Hj do
not commute.)

The estimates of N that we will be presenting hold for Hermitian matrices or
bounded Hermitian operators so that ‖Hj‖ < ∞, j = 1, . . . ,m. (The norm ‖ · ‖ is
a matrix or operator norm induced by the norm of the underlying Hilbert space.)

Consider the Hamiltonians indexed with respect to the magnitude of their
norms ‖H1‖ ≥ ‖H2‖ ≥ · · · ≥ ‖Hm‖. Then the number of necessary exponentials
N generally depends on H1, but it must also depend explicitly on H2 since only
one exponential should suffice for the simulation if ‖H2‖ → 0. This observation is
particularly important for the simulation of systems in physics and chemistry. To
see this, suppose m = 2 and that H1 is a discretization of the negative Laplacian
−∆, while H2 is a discretization of a uniformly bounded potential. Then e−iH1t1

and e−iH2t2 can be implemented efficiently for any t1, t2, and ‖H2‖ � ‖H1‖. We
will see that, not only in this case but in general, the number of exponentials is
proportional to both ‖H1‖ and ‖H2‖, i.e., the Hamiltonian of the second largest
norm plays an important role.

Let ε be sufficiently small. The previously known bound for the number of
exponentials, according to [5] (see Lemma 1 and Theorem 1 in that paper), is

N ≤ Nprev := m52k(m‖H1‖t)1+
1
2k ε−1/(2k), (2)

where the splitting formula is of order 2k+1. This bound does not properly reflect
the dependence on H2. A similar estimate follows from [15] that deals with a
more general Hamiltonian simulation problem. Modulo constants, it improves the
dependence on k of the number of exponentials by replacing 52k with (25/3)k

in the bound above. However, the important role of H2 is not reflected by the
approach of [15] either.

Performing a more detailed analysis of the approximation error by high order
splitting formulas, it is possible to improve the bounds for N . The new estimates
lead to splitting methods of significantly lower order which greatly reduces the
cost of the algorithms. Our estimates improve those of [5,15]. We compare our
results to those of [5] which also deals with the determination of the optimal k
that minimizes the bound for N .

We now summarize our results. Recall that the Hj can be implemented effi-
ciently but do not commute and ‖H1‖ ≥ ‖H2‖ ≥ · · · ‖Hm‖. We show the following:

1. A new bound for the number of exponentials N , given by

N ≤ Nnew := 2(2m− 1) 5k−1‖H1‖t
„

4emt‖H2‖
ε

«1/(2k)
4me

3

„
5

3

«k−1

.

2. A speedup factor of

Nnew

Nprev
≤ 2

3k

„
4e‖H2‖
‖H1‖

«1/2k

.

3. We show that the optimal k∗new that minimizes Nnew is

k∗new := round

 r
1

2
log25/3

4emt‖H2‖
ε

!
.
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On the other hand, from [5] the bound for Nprev is minimized for

k∗prev = round

 
1

2

r
log5

m‖H1‖t
ε

+ 1

!
.

4. For k∗new the value of Nnew satisfies

N∗new ≤
8

3
(2m− 1) emt ‖H1‖ e2

q
1
2 ln 25

3 ln
4emt‖H2‖

ε .

For k∗prev the value of Nprev is

N∗prev = 2m2‖H1‖t · e2
√

ln 5 ln(m‖H1‖t/ε).

Hence

N∗new

N∗prev
≤ 8 e

3
e
2

„q
1
2 ln 25

3 ln
4emt‖H2‖

ε −
q

ln 5 ln
m‖H1‖t

ε

«
.

Finally, we illustrate our results using the example we mentioned earlier involv-
ing the simulation of H = −∆+ V , where ∆ is the Laplacian and V is a bounded
potential. Suppose this problem is discretized on a grid with mesh size h. The
resulting matrix is Hh = −∆h + Vh, where ∆h and Vh denote the discretizations
of the Laplacian and the potential, respectively. Then ‖∆h‖ is proportional to h−2

while ‖Vh‖ is uniformly bounded. For a fine discretization ‖Vh‖ � ‖∆h‖.
Observe that k∗new depends on ‖Vh‖, which is uniformly bounded, and not on

‖∆h‖. The value of k∗new is independent of h. Hence, the splitting formula does not
change with h.

On the other hand, k∗prev depends on ‖∆h‖ and therefore on h−2. It will increase
if h is to become smaller. Thus, the corresponding splitting formula changes with
h, a costly and unnecessary consequence.

If k is to be kept fixed, then the ratio Nnew/Nprev is proportional to h−1/k.
(The same is true for our estimate relative to the one that follows from [15].) This
speedup can be significant in practice. Consider, for instance, h = 10−8 and a small
value of k. For the simulation of e−iHht using a product of exponentials obtained
by multiple applications of the Strang splitting formula, where k = 1 and it has
order 3, our results lead to a speedup proportional to 108. Similarly, for a method
of order 5, i.e., k = 2, the speedup is proportional to 104.

3 Splitting methods for simulating the sum of two Hamiltonians

We begin this section by discussing the simulation of

e−i(H1+H2)t,

where H1, H2 are given Hamiltonians. Restricting the analysis to m = 2 will allow
us to illustrate the main idea in our approach while avoiding the rather complicated
notation needed in the general case, for m ≥ 2. The simulation of the Schrödinger
equation of a p-particle system, where H1 is obtained from the Laplacian operator
and H2 is the potential, requires one to consider an evolution operator that has
the form above; see [3].

In the next section we deal with the more general simulation problem involving
a sum of m Hamiltonians, H1, . . . , Hm, as Berry et al. [5] did, and we will show
how to improve their complexity results.
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Suzuki proposed methods for decomposing exponential operators in a number
of papers [13,14]. For sufficiently small ∆t, starting from the formula

S2(H1, H2,∆t) = e−iH1∆t/2e−iH2∆te−iH1∆t/2,

and proceeding recursively, Suzuki defines

S2k(H1, H2,∆t)

=[S2k−2(H1, H2, pk∆t)]
2S2k−2(H1, H2, (1− 4pk)∆t)[S2k−2(H1, H2, pk∆t)]

2,

for k = 2, 3, · · · , where pk = (4− 41/(2k−1))−1, and then proves that‚‚e−i(H1+H2)∆t − S2k(H1, H2,∆t)
‚‚ = O(|∆t|2k+1). (3)

Suzuki was particularly interested in the order of his method, which is 2k+ 1, and
did not address the size of the implied asymptotic factors in the big-O notation.
However, these factors depend on the norms of H1 and H2 and can be very large,
when H1 and H2 do not commute. For example, recall that when H1 is obtained
from the discretization of the Laplacian operator with mesh size h, ‖H1‖ grows as
h−2. For h = ε, we get ‖H1‖ = O( 1

ε2 ). Hence, for fine discretizations ‖H1‖ is huge,
and severely affects the error bound above.

Suppose ‖H1‖ ≥ ‖H2‖. Since

e−i(H1+H2)t = e−i(H1+H2)‖H1‖t,

where Hj = Hj/‖H1‖, for j = 1, 2, we can consider the simulation problem for
H1 +H2 with an evolution time τ = ‖H1‖t.

Unwinding the recurrence in Suzuki’s construction yields

S2k(H1,H2,∆t) =
KY
`=1

S2(H1,H2, z`∆t) =
KY
`=1

h
e−iH1z`∆t/2e−iH2z`∆te−iH1z`∆t/2

i
,

(4)

where K = 5k−1 and each z` is defined according to the recursive scheme, ` =

1, . . . ,K. In particular, z1 = zK =
Qk
r=2 pr, and for the intermediate values of ` the

z` is a product of k−1 factors and has the form z` =
Q
r∈I0 pr

Q
r∈I1(1−4pr), where

the products are over the index sets I0, I1 defined by traversing the corresponding
to ` path of the recursion tree.

Let qr = max{pr, 4pr−1}, r ≥ 2. Then {qr} is a decreasing sequence of positive
numbers and from [15, p. 18] we have that

3

3k
≤

kY
r=2

qr ≤
4k

3k
.

Thus

|z`| ≤
4k

3k
for all ` = 1, . . . ,K. (5)

Equation (4) can be expressed in the more compact form which we use to
simplify the notation. Namely,

S2k(H1,H2,∆t) = e−iH1s0∆te−iH2z1∆te−iH1s1∆t · · · e−iH2zK∆te−iH1sK∆t, (6)

where s0 = z1/2, sj = (zj + zj+1)/2, j = 1, . . . ,K − 1, and sK = zK/2. Observe

that
PK
j=0 sj = 1,

PK
j=1 zj = 1.
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We need to bound σk =
PK
j=0 |sj |+

PK
j=1 |zj | from above. From (5) we have

KX
j=1

|zj | ≤
4k5k−1

3k
,

and also
KX
j=0

|sj | ≤
4k5k−1

3k
.

Thus

σk ≤
8

3
k

„
5

3

«k−1

=: ck for k ≥ 1. (7)

(The above trivially holds for k = 1.)
Expanding each exponential in (6) we obtain

S2k(H1,H2,∆t)

=(I +H1s0(−i∆t) +
1

2
H2

1s
2
0(−i∆t)2 + · · ·+ 1

k!
Hk1sk0(−i∆t)k + · · · )

· (I +H2z1(−i∆t) +
1

2
H2

2z
2
1(−i∆t)2 + · · ·+ 1

k!
Hk2zk1 (−i∆t)k + · · · )

· (I +H1s1(−i∆t) +
1

2
H2

1s
2
1(−i∆t)2 + · · ·+ 1

k!
Hk1sk1(−i∆t)k + · · · )

· · ·

· (I +H2zK(−i∆t) +
1

2
H2

2z
2
K(−i∆t)2 + · · ·+ 1

k!
Hk2zkK(−i∆t)k + · · · )

· (I +H1sK(−i∆t) +
1

2
H2

1s
2
K(−i∆t)2 + · · ·+ 1

k!
Hk1skK(−i∆t)k + · · · ).

(8)

After carrying out the multiplications we see that S2k is a sum of terms that has
the form

sα0
0 sα1

1 · · · s
αK
K zβ1

1 · · · z
βK
K

α0!α1! · · ·αK !β1! · · ·βK !
Hα0

1 H
β1
2 H

α1
1 · · ·H

βK
2 H

αK
1 (−i∆t)

PK
i=0 αi+

PK
j=1 βj , (9)

where the α0, α1, · · · , αK and the β1, · · · , βK are obtained by multiplying the de-
nominators in the expansion of the exponentials.

The terms that do not contain H2 are those for which β1 = β2 = · · · = βK = 0,
and their sum isX
α0,α1,··· ,αK

sα0
0 sα1

1 · · · s
αK
K

α0!α1! · · ·αK !
H
PK
j=0 αj

1 (−i∆t)
PK
j=0 αj

=
X
α0

1

α0!
Hα0

1 (−is0∆t)α0 ·
X
α1

1

α1!
Hα1

1 (−is1∆t)α1 · · · · ·
X
αK

1

αK !
HαK1 (−isK∆t)αK

=
KY
j=0

e−iH1sj∆t = exp(−i
KX
j=0

H1sj∆t) = exp(−iH1∆t).

(10)

On the other hand, consider

e−i(H1+H2)∆t = I + (−i(H1 +H2)∆t) + · · ·+ 1

k!
(−i(H1 +H2)∆t)k + · · · . (11)
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The terms that do not contain H2 sum to

∞X
k=0

1

k!
Hk1(−i∆t)k = e−iH1∆t. (12)

Let us now consider the bound in (3). Subtracting (8) from (11) the terms that

do not contain H2 cancel out. Therefore, the error is proportional to ‖H2‖|∆t|2k+1,
i.e. it depends on the ratio ‖H2‖/‖H1‖ of the norms of the original Hamiltonians.
This fact will be used to improve the error and complexity results of Berry et al.
[5]

Lemma 1 For k ∈ N, ck|∆t| ≤ k + 1 (see, Eq. 7) and ‖H2‖ ≤ ‖H1‖ = 1 we have

‖ exp(−i(H1 +H2)∆t)− S2k(H1,H2,∆t)‖ ≤
4‖H2‖

(2k + 1)!
(ck|∆t|)2k+1. (13)

Proof For notational convenience we use S2k(∆t) to denote S2k(H1,H2,∆t). Con-
sider

exp(−i(H1 +H2)∆t)− S2k(∆t) =
∞X

l=2k+1

ˆ
Rl(∆t)− Tl(∆t)

˜
, (14)

where Rl(∆t) is the sum of all terms in exp(−i(H1 +H2)∆t) corresponding to ∆tl

and Tl(∆t) is the sum of all terms in S2k(∆t) corresponding to ∆tl. Moreover, we
know that the terms with only H1 cancel out. Hence, we can ignore the terms in
Tl(∆t) and Rl(∆t) that contain only H1 (and not H2) as a factor. It follows that

Rl(∆t) =
1

l!
(H1 +H2)l(−i∆t)l − 1

l!
Hl1(−i∆t)l. (15)

Then

‖Rl(∆t)‖ ≤
1

l!
2l‖H2‖|∆t|l, (16)

since there are 2l − 1 terms, and they are bounded by 1
l!‖H2‖|∆t|l.

Now consider the terms in Tl(∆t). From (8,9)

Tl(∆t) =
X sα0

0 sα1
1 · · · s

αK
K zβ1

1 · · · z
βK
K

α0!α1! · · ·αK !β1! · · ·βK !
Hα0

1 H
β1
2 H

α1
1 · · ·H

βK
2 H

αK
1 (−i∆t)l, (17)

where the summation is over the set of tuples (α0, α1, · · · , αK) and (β1, · · · , βK)

that satisfy
PK
i=0 αi +

PK
i=1 βi = l and

PK
i=1 βi 6= 0; the latter condition excludes

terms containing H1 alone. Since the norm of Hα0
1 H

β1
2 H

α1
1 · · ·H

βK
2 H

αK
1 is at most

‖H2‖, we have

‖Tl(∆t)‖ ≤
X

PK
i=0 αi+

PK
i=1 βi=l

|sα0
0 sα1

1 · · · s
αK
K zβ1

1 · · · z
βK
K |

α0!α1! · · ·αK !β1! · · ·βK !
‖H2‖|∆t|l. (18)

Note that we relaxed the condition
PK
i=1 βi 6= 0 since it does not affect the in-

equality.
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To calculate the sum
P |sα0

0 s
α1
1 ···s

αK
K z

β1
1 ···z

βK
K |

α0!α1!···αK !β1!···βK ! , where
PK
i=0 αi +

PK
i=1 βi = l,

we first consider the following equation

exp(|s0∆t|) exp(|z1∆t|) exp(|s1∆t|) · · · exp(|zK∆t|) exp(|sK∆t|)

=

0@ ∞X
α0=0

1

α0!
|s0∆t|α0

1A ·
0@ ∞X
β1=0

1

β1!
|z1∆t|β0

1A ·
0@ ∞X
α1=0

1

α1!
|s1∆t|α0

1A · · ·
· · · ·

0@ ∞X
βK=0

1

βK !
|zK∆t|βK

1A ·
0@ ∞X
αK=0

1

αK !
|sK∆t|αK

1A
=
∞X
p=0

X
P
αj+

P
βj=p

|sα0
0 sα1

1 · · · s
αK
K zβ1

1 · · · z
βK
K |

α0!α1! · · ·αK !β1! · · ·βK !
|∆t|p.

(19)

Hence
PP

αj+
P
βj=l

|sα0
0 s

α1
1 ···s

αK
K z

β1
1 ···z

βK
K |

α0!α1!···αK !β1!···βK ! is the coefficient of |∆t|l in the equation

above. Similarly,

exp(|s0∆t|) exp(|z1∆t|) exp(|s1∆t|) · · · exp(|zK∆t|) exp(|sK∆t|)

= exp((
KX
i=0

|si|+
KX
i=1

|zi|)|∆t|) = exp(σk|∆t|)

=
∞X
p=0

1

p!
σpk|∆t|

p,

(20)

Recall that the bound for σk given in Eq. (7). Thus the coefficient of |∆t|l is

bounded from above by 1
l!c
l
k. Therefore, we have

‖Tl(∆t)‖ ≤
clk
l!
‖H2‖|∆t|l. (21)

We combine Eq. (16), (21), to obtain

‖ exp((H1 +H2)∆t)− S2k(∆t)‖

≤
∞X

l=2k+1

‖Rl(∆t)− Tl(∆t)‖

≤
∞X

l=2k+1

‖Rl(∆t)‖+ ‖Tl(∆t)‖

≤2
∞X

l=2k+1

clk
l!
‖H2‖|∆t|l

≤ 2

(2k + 1)!
‖H2‖|ck∆t|2k+1

„
1− ck|∆t|

2k + 2

«−1

≤ 4

(2k + 1)!
‖H2‖|ck∆t|2k+1,

(22)

where the last two inequalities follow from the assumption ck|∆t| ≤ k + 1. and an
estimate of the tail of the Poisson distribution; see, e.g., [16, Thm 1]. ut
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Theorem 1 Let 1 ≥ ε > 0 be such that 8et‖H2‖ ≥ ε. The number N of exponentials

for the simulation of e−i(H1+H2)t with accuracy ε is bounded as follows

N ≤ 3 5k−1

&
‖H1‖t

„
8et‖H2‖

ε

«1/(2k)
8e

3

„
5

3

«k−1
’
,

for any k ∈ N, where ‖H2‖ ≤ ‖H1‖.

Proof Let M = |∆t|−1. Then using Lemma 1 and Hj = Hj/‖H1‖, j = 1, 2, we
obtain‚‚e−i(H1+H2)t − SM‖H1‖t

2k (H1,H2, 1/M)
‚‚ ≤M‖H1‖t

4

(2k + 1)!
‖H2‖

“ ck
M

”2k+1

= 4t‖H2‖
c2k+1
k

(2k + 1)!

1

M2k
.

(23)

Recall that ck is defined in (7) and is used in Lemma 1. For accuracy ε we obtain

M ≥

 
4t‖H2‖c2k+1

k

ε(2k + 1)!

!1/(2k)

.

We use Stirling’s formula [17, p. 257] for the factorial function

(2k + 1)! =
√

2π(2k + 1)(2k+1)+1/2e−(2k+1)+θ/(12(2k+1)), 0 < θ < 1,

which yields

[(2k + 1)!]−1/(2k) ≤ e1+1/(2k)/(2k + 1). (24)

It is easy to check that

c
1/(2k)
k ≤ 21+1/(2k).

Thus it suffices to take

M ≥
„

8et‖H2‖
ε

«1/(2k)
2 e ck
2k + 1

.

So we define M to be lower bound of the expression above, i.e.,

M :=

„
8et‖H2‖

ε

«1/(2k)
2e ck

2k + 1
.

It is easy to check that
2e

2k + 1
(k + 1) ≥ e,

which along with the condition 8et‖H2‖ ≥ ε yields M(k + 1) ≥ ck. This shows the
assumptions of Lemma 1 are satisfied with this value of M .

From the recurrence relation the number of required exponentials to implement
S2k in one subinterval is no more than 3 · 5k−1. We need to consider two cases
concerning M‖H1‖t. If M‖H1‖t ≥ 1, then the number of subintervals is dM‖H1‖te,
i.e., we partition the entire time interval into an integer number of subintervals,
each of length at most M−1. The total number of required exponentials is bounded
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by 3 · 5k−1dM‖H1‖te. Substituting the values of M and ck we obtain the bound
for N . In particular,

N ≤ 3 · 5k−1

&
‖H1‖t

„
8et‖H2‖

ε

«1/(2k)
8e

3

„
5

3

«k−1
’
. (25)

If M‖H1‖t < 1, then Lemma 1 can be used with ∆t = ‖H1‖t, since ‖H1‖t ≤
M−1 and we have already seen that M is such that the assumptions of Lemma 1
are satisfied. Thus‚‚e−i(H1+H2)t − S2k(H1,H2, ‖H1‖t)

‚‚ ≤ 4

(2k + 1)!
‖H2‖ (ck‖H1‖t)2k+1

= 4t‖H2‖
c2k+1
k

(2k + 1)!
(‖H1‖t)2k ≤ 4t‖H2‖

c2k+1
k

(2k + 1)!
(M)−2k ≤ ε,

where the last inequality holds by definition of M . In this case the total number
of exponentials is simply

N ≤ 3 · 5k−1. (26)

Combining (25) and (26) we obtain

N ≤ 3 · 5k−1

&
‖H1‖t

„
8et‖H2‖

ε

«1/(2k)
8e

3

„
5

3

«k−1
’
.

This completes the proof. ut

Remark 1 Lemma 1 and Theorem 1 indicate that when ‖H2‖t � ε then the number
of exponentials N can be further improved. In this case it can be shown that high order
splitting methods may lose their advantage. We do not pursue this direction in this
paper since we assume that the Hj , j = 1, . . . ,m, are fixed and study N as ε→ 0.

4 Splitting methods for simulating the sum of many Hamiltonians

In this section we deal with the simulation of

e−i
Pm
j=1Hjt,

where Hj , j = 1, . . . ,m, m ≥ 2, are given non-commuting Hamiltonians. The
analysis and the conclusions are similar to those of the previous section where
m = 2, but the proofs are much more complicated. This is the problem that Berry
et al. [5] considered.

We use Suzuki’s recursive construction once more [14]. In particular, for

S2(H1, . . . , Hm,∆t) =
mY
j=1

e−iHj∆t/2
1Y

j=m

e−iHj∆t/2,

and

S2k(H1, . . . , Hm,∆t) = [S2k−2(pk∆t)]
2S2k−2((1− 4pk)∆t)[S2k−2(pk∆t)]

2,

for k = 2, 3, . . . , where for notational convenience we have used S2k−2(∆t) to

denote S2k−2(H1, · · · , Hm,∆t), and pk = (4− 41/(2k−1))−1, we have that‚‚e−iPm
j=1Hj∆t − S2k(H1, . . . , Hm,∆t)

‚‚ = O(|∆t|2k+1). (27)



On the Efficiency of Quantum Algorithms for Hamiltonian Simulation 11

Assuming again that ‖H1‖ ≥ ‖H2‖ ≥ · · · ≥ ‖Hm‖ we normalize the Hamiltoni-
ans by setting Hj = Hj/‖H1‖, j = 1, . . . ,m, and consider the equivalent simulation
problem

e−i
Pm
j=1Hjτ ,

where τ = ‖H1‖t. Proceeding in a way similar to that for m = 2 of the previous
section we derive the following lemma, whose proof can be found in the Appendix.

Lemma 2 For k ∈ N, dk|∆t| ≤ k + 1, dk = m(4/3)k(5/3)k−1, m ≥ 2, and ‖Hm‖ ≤
· · · ≤ ‖H2‖ ≤ ‖H1‖ = 1 we have

‖ exp(−i
mX
j=1

Hj∆t)− S2k(H1, . . . ,Hm,∆t)‖ ≤
4‖H2‖

(2k + 1)!
(dk|∆t|)2k+1. (28)

From Lemma 2, we have the following theorem.

Theorem 2 Let 1 ≥ ε > 0 be such that 4emt‖H2‖ ≥ ε, m ≥ 2. The number N of

exponentials for the simulation of e−i(H1+···+Hm)t with accuracy ε is bounded by

N ≤ (2m− 1) 5k−1

&
‖H1‖t

„
4emt‖H2‖

ε

«1/(2k)
4me

3

„
5

3

«k−1
’
,

for any k ∈ N, where ‖Hm‖ ≤ · · · ≤ ‖H2‖ ≤ ‖H1‖.

Proof The proof is similar to that of Theorem 1. Let M = |∆t|−1. Then using
Lemma 2 and Hj = Hj/‖H1‖, j = 1, . . . ,m, we obtain‚‚e−i(H1+···+Hm)t − SM‖H1‖t

2k (H1, . . . ,Hm, 1/M)
‚‚

≤M‖H1‖t
4

(2k + 1)!
‖H2‖

„
dk
M

«2k+1

=4t‖H2‖
d2k+1
k

(2k + 1)!

1

M2k
.

(29)

Recall that dk is defined in Lemma 2. For accuracy ε we obtain

M ≥

 
4t‖H2‖d2k+1

k

ε(2k + 1)!

!1/(2k)

.

We use the estimate (24). It is easy to check that

d
1/(2k)
k ≤ 2m1/(2k).

Thus it suffices to take

M ≥
„

4emt‖H2‖
ε

«1/(2k)
2e dk
2k + 1

.

So we define M to be the lower bound of the expression above, i.e.,

M :=

„
4emt‖H2‖

ε

«1/(2k)
2e dk
2k + 1

.
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As in the proof of Theorem 1, it is straightforward to verify that M(k + 1) ≥ dk.
Therefore, the assumptions of Lemma 2 are satisfied for this value of M .

From the recurrence relation, we see that the number of required exponentials
to implement S2k in one subinterval is no more than (2m − 1) · 5k−1. Again we
distinguish two cases for M‖H1‖t. We deal with the case M‖H1‖t < 1 in the same
way we did in the proof of Theorem 1, to conclude

N ≤ (2m− 1) · 5k−1.

If M‖H1‖t ≥ 1, then the total number of required exponentials is

N ≤ (2m− 1) · 5k−1dM‖H1‖te.

Substituting the values of M and dk we obtain

N ≤ (2m− 1) · 5k−1

&
‖H1‖t

„
4emt‖H2‖

ε

«1/(2k)
4me

3

„
5

3

«k−1
’
.

This completes the proof. ut

The reader may wish to recall Remark 1 that applies in the case too.

Corollary 1 If in addition to the assumptions of Theorem 2 either of the following
two conditions holds:

• 4emt‖H1‖ ≥ 3
• ε is sufficiently small such that„

ln
4emt‖H1‖

5

«2

− 2 ln
5

3
ln

4emt‖H2‖
ε

< 0

then the number of exponentials, N , for the simulation of e−i(H1+···+Hm)t with accu-
racy ε is bounded by

N ≤ 2 (2m− 1) 5k−1‖H1‖t
„

4emt‖H2‖
ε

«1/(2k)
4me

3

„
5

3

«k−1

,

for any k ∈ N.

Proof From the assumption of Theorem 2 we have 4emt‖H2‖/ε ≥ 1. Consider the
argument of the ceiling function in the bound of Theorem 2. It is greater than or
equal to 1, if 4emt‖H1‖ ≥ 3. Otherwise, we take its logarithm and multiply the
resulting expression by k. This gives the quadratic polynomial

2k2 ln
5

3
+ 2k ln

4emt‖H1‖
5

+ ln
4emt‖H2‖

ε
.

When ε is sufficiently small and the discriminant is negative, i.e., when„
ln

4emt‖H1‖
5

«2

− 2 ln
5

3
ln

4emt‖H2‖
ε

< 0,

the polynomial is positive for all k. Hence, that argument of the ceiling function
in the bound of Theorem 2 is greater than 1, for all k ≥ 1.

In either case, we use dxe ≤ 2x, for x ≥ 1, to estimate N from above. ut
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5 Speedup

Let us now deal with the cost for simulating the evolution e−i(
Pm
j=1Hj)t. Berry et

al. [5] show upper bounds for the number of required exponentials. We improve
their estimates.

We are interested in the number of exponentials required by the splitting for-
mula that approximates the evolution with accuracy ε. Recall that

Nnew := 2 (2m− 1) 5k−1‖H1‖t
„

4emt‖H2‖
ε

«1/(2k)
4me

3

„
5

3

«k−1

(30)

exponentials suffice for error ε. The above estimate holds for ε sufficiently small as
Theorem 2 and Corollary 1 indicate. The corresponding previously known estimate
[5] is

Nprev = m 52k (m‖H1‖t)1+
1
2k

„
1

ε

« 1
2k

,

where H =
Pl
j=1Hj .

The ratio of the two estimates is

Nnew

Nprev
≤ 2

3k

„
4e‖H2‖
‖H1‖

«1/2k

. (31)

Thus, if ‖H2‖ � ‖H1‖ we have an improvement in the estimate of the cost the
algorithm for all k. This is particularly significant when k is small. For instance,
k = 1 for the Strang splitting S2, which is frequently used in the literature.

Let us now consider the optimal k, i.e., the one minimizing Nnew, for a given
accuracy ε. It is obtained from the solution of the equation

2k2 ln
25

3
− ln

4emt‖H2‖
ε

= 0.

Since we seek a positive integer k∗new minimizing Nnew, we set

k∗new := max

(
round

 r
1

2
log25/3

4emt‖H2‖
ε

!
, 1

)
,

where round(x) = bx + 1/2c, x ≥ 0. We can avoid using the max function in the
expression above by considering ε ≤ mt‖H2‖. Then the number of exponentials
Nnew satisfies

N∗new ≤
8

3
(2m− 1) emt ‖H1‖ e2

q
1
2 ln 25

3 ln
4emt‖H2‖

ε .

Berry et al. [5] find

k∗prev = round

 
1

2

r
log5

m‖H1‖t
ε

+ 1

!
, (32)

which minimizes Npre. For k∗prev the number of exponentials Nprev becomes

N∗prev = 2m2‖H1‖t e2
q

ln 5 ln
m‖H1‖t

ε . (33)
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As a final comparison with Nprev we have

N∗new

N∗prev
≤ 8 e

3
e
2

„q
1
2 ln 25

3 ln
4emt‖H2‖

ε −
q

ln 5 ln
m‖H1‖t

ε

«
.

Hence, there is an important difference between the previously derived optimal k
and the one derived in the present paper. In [5], the optimal k depends on ‖H1‖.
More precisely, we show that the optimal k depends on ‖H2‖, the second largest
norm of the Hamiltonians comprising H, which can be considerably smaller than
‖H1‖.
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7 Appendix

Proof (Proof of Lemma 2) Unwinding the recurrence for S2k we see that

S2k(H1, . . . ,Hm,∆t) =
KY
`=1

S2((H1, . . . ,Hm, z`∆t)

=
KY
`=1

24 mY
j=1

e−iHjz`∆t/2
1Y

j=m

e−iHjz`∆t/2

35 ,
where K = 5k−1 and each z` is defined according to the recursive scheme, ` =
1, . . . ,K. For the details, see the part of the text that follows (4). The bound (5),
namely,

|z`| ≤
4k

3k
for all ` = 1, . . . ,K,

holds independently of m, because it depends on the k−1st levels of the recursion
tree and not on the leaf, S2((H1, . . . ,Hm, z`∆t), at which, the corresponding to `,
path ends.

In the expression of S2((H1, . . . ,Hm, z`∆t) the sum of the magnitudes of the
factors multiplying the Hamiltonians in the exponents is m|z`| · |∆t|, for all ` =
1, . . . ,K. Thus in the expression of S2k above, the sum of the magnitudes of all
factors multiplying the Hamiltonians in the exponents is

KX
`=1

(m|z`| · |∆t|) ≤ 5k−1m
4k

3k
|∆t|.

Define

dk := m
4

3
k

„
5

3

«k−1

k ≥ 1. (34)

Equivalently, one can view the expression for S2k above as a product of expo-

nentials of the form eHjrj,n∆t, where
PNj
n=1 rj,n = 1, j = 1, · · · ,m, and Nj is the
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number of occurrences of Hj in S2k. Recall that for m = 2 we used sn to denote
r1,n and zn to denote r2,n. With this notation and using (34) we haveX

j,n

|rj,n| ≤ dk. (35)

(Recall the derivation of (7).)
Expanding the factors of S2k in a power series individually, and then carrying

out the multiplications amongst them, we conclude that S2k is given by an infinite
sum whose terms have the formY

(j,n)

1

γj,n!
Hγj,nj [−i rj,n∆t]γj,n . (36)

The factors of these products are specified by the Hamiltonians Hj and the order
of their occurrences after unwinding the recurrence for S2k, where j = 1, . . . ,m
and γj,n = 0, 1, 2, . . . , for all n = 1, . . . , Nj .

Consider the terms that contain only H1 and, therefore, have γj,n = 0, for
n = 1, . . . , Nj and j = 2, . . . ,m. The sum of these terms is

X
γj,n=0 for j 6=1

Y
(j,n)

1

γj,n!
Hγj,nj [−i rj,n∆t]γj,n

=
∞X

γ1,1=···=γ1,N1=0

Y
(1,n)

1

γ1,n!
Hγ1,n

1 [−i r1,n∆t]γ1,n

=
N1Y
n=1

X
γ1,n

1

γ1,n!
H
γ1,n
1 [−ir1,n∆t]γ1,n =

N1Y
n=1

e−iH1r1,n∆t

= e−i
P
n r1,nH1∆t = e−iH1∆t.

(37)

On the other hand,

e−i
Pm
j=1Hj∆t = I +

0@−i mX
j=1

Hj∆t

1A+ · · ·+ 1

k!

0@−i mX
j=1

Hj∆t

1Ak + · · · , (38)

and the terms that contain only H1 have sum

∞X
k=0

1

k!
Hk1(−i∆t)k = e−iH1∆t. (39)

Let us now consider the error bound in (27). The sum of the terms with only
H1 in S2k+1 and exp(

Pm
j=1Hj∆t) is the same and cancels out when we subtract

one from the other. Moreover, in exp(−i
Pm
j=1Hj∆t)− S2k(∆t) we know that the

terms of order up to 2k also cancel out, see Eq. (27). From this we conclude that

the error is proportional to ‖H2‖|∆t|2k+1.
Consider

exp(−i(H1 + · · ·+Hm)∆t)−S2k(H1, . . . ,Hm,∆t) =
∞X

l=2k+1

ˆ
Rl(∆t)−Tl(∆t)

˜
, (40)
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where Rl(∆t) is the sum of all terms in exp(−i(H1+ · · ·+Hm)∆t) corresponding to

∆tl and Tl(∆t) is the sum of all terms in S2k corresponding to ∆tl. We can ignore
the terms in Tl(∆t) and Rl(∆t) that contain only H1 (and not H2) as a factor.

Then

‖Rl(∆t)‖ =

‚‚‚‚‚‚‚
1

l!

0@ mX
j=1

Hj∆t

1Al − 1

l!
Hl1∆tl

‚‚‚‚‚‚‚ ≤
ml

l!
‖H2‖|∆t|l, (41)

because there are ml − 1 terms in Rl and each norm is at most 1
l!‖H2‖|∆t|l.

From (36) we have

Tl(∆t) =
X

P
γj,n=l

Q
(j,n) r

γj,n
j,nQ

(j,n) γj,n!

Y
(j,n)

Hγj,nj ∆tl, (42)

where
P
n γ1,n 6= l, i.e., there is no terms containing only H1. So, ‖

Q
(j,n)H

γj,n
j ‖ ≤

‖H2‖, and

‖Tl(∆t)‖ ≤
X

P
γj,n=l

Q
j,n |rj,n|

γj,nQ
j,n γj,n!

‖H2‖|∆t|l. (43)

To calculate the coefficients of the sum, we considerY
(j,n)

exp(|rj,n∆t|) =
Y
(j,n)

∞X
γj,n=0

1

γj,n!
|rj,n∆t|γj,n

=
∞X
l=0

X
P
γj,n=l

Q
j,n |rj,n|

γj,nQ
j,n γj,n!

|∆t|l.
(44)

Hence the coefficient of |∆t|l in (43) is equal to that in (44). AlsoY
j,n

exp(|rj,n∆t|) = exp(
X
j,n

|rj,n∆t|). (45)

From (35) we obtain

‖Tl(∆t)‖ =
dlk
l!
‖H2‖|∆t|l. (46)

Therefore,

‖ exp(
mX
j=1

Hj∆t)− S2k(∆t)‖ ≤
∞X

l=2k+1

‖Rl(∆t)‖+ ‖Tl(∆t)‖

≤ 2
∞X

l=2k+1

dlk
l!
‖H2‖|∆t|l

= 2‖H2‖
∞X

l=2k+1

1

l!
|dk∆t|l

≤ 2

(2k + 1)!
‖H2‖|dk∆t|2k+1

„
1− dk|∆t|

2k + 2

«−1

≤ 4

(2k + 1)!
‖H2‖|dk∆t|2k+1,

(47)
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where the last two inequalities follow from the assumption dk|∆t| ≤ k + 1 and an
estimate of the tail of the Poisson distribution; see, e.g., [16, Thm 1]. ut
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