
The Sturm-Liouville eigenvalue problem
and NP-complete problems

in the quantum setting with queries

A. Papageorgiou1 and H. Woźniakowski2

1,2Department of Computer Science, Columbia University, New York, USA
2Institute of Applied Mathematics and Mechanics, University of Warsaw, Poland

May 16, 2006

Abstract

We show how a number of NP-complete as well as NP-hard problems can be reduced
to the Sturm-Liouville eigenvalue problem in the quantum setting with queries. We
consider power queries which are derived from the propagator of a system evolving
with a Hamiltonian obtained from the discretization of the Sturm-Liouville operator.
We use results of our earlier paper concering the complexity of the Sturm-Liouville
eigenvalue problem. We show that the number of power queries as well the number of
qubits needed to solve the problems studied in this paper is a low degree polynomial.
The implementation of power queries by a polynomial number of elementary quantum
gates is an open issue. If this problem is solved positively for the power queries used
for the Sturm-Liouville eigenvalue problem then a quantum computer would be a very
powerful computation device allowing us to solve NP-complete problems in polynomial
time.

PACS numbers: 03.67.Lx, 02.60.-x
Keywords: Complexity, quantum algorithms, appoximation, NP complete problems

1 Introduction

An important question in quantum computing is whether NP-complete problems can be
solved in polynomial time, see [3, 4] and papers cited there. We address this question by
studying the quantum setting with queries. This paper is based on results in our previous
paper [20], where we studied the classical and quantum complexity of the Sturm-Liouville
eigenvalue problem. We consider two types of queries: bit and power queries, see [17] for
general information about queries and quantum computation. Here we only mention that
bit queries are used in Grover’s search algorithm [9]. They allow us to obtain the values
of Boolean functions [3], and the approximate values of real functions [10]. Moreover, we
know that bit queries cannot be used to solve NP-complete problems in polynomial time [3].

1

Power queries are used in the well-known phase estimation algorithm, see [17], which plays a
central role in Shor’s factorization algorithm [21]. In a recent paper [20] we dealt with power
queries in the study of the quantum complexity of the Sturm-Liouville eigenvalue problem.

In this paper, we show how to reduce NP-complete problems to the Sturm-Liouville
eigenvalue problem whose complexity in the classical and quantum settings has been studied
in [20]. Obviously, it would be enough to show this reduction for one NP-complete problem.
We choose to present this reduction for several problems to show how the number of power
queries and qubits depends on the particular NP-complete problem. In particular, that is
why we consider satisfiability and the traveling salesman problem, as well as their NP-hard
versions. The reductions presented in this paper can be summarized in the following diagram.

SAT =⇒ BOOL =⇒ INT =⇒ SLE

TSP =⇒ MIN =⇒ BOOL =⇒ INT =⇒ SLE

GRO =⇒ BOOL =⇒ INT =⇒ SLE

Here, SAT stands for the satisfiability problem, TSP for the traveling salesman problem,
MIN for the minimization problem of choosing the smallest number out of N real numbers,
GRO for Grover’s problem, BOOL for the Boolean mean problem, INT for the integration
problem, and finally SLE for the Sturm-Liouville eigenvalue problem.

These reductions mean, in particular, that the satisfiability problem is reduced to the
Boolean mean problem for a specific Boolean function which is reduced to the integration
problem for a specific integrand, which in turn is reduced to the Sturm-Liouville eigen-
value problem for a specific function, and finally the last problem is solved by the quantum
algorithm using power queries.

The Sturm-Liouville problem is defined in the next section. For the moment we mention
that we want to approximate the smallest eigenvalue of a specific differential operator, and
this smallest eigenvalue is given in a variational form as the minimum of specific integrals.
We use a formula relating the Sturm-Liouville eigenvalue problem to a weighted integration
problem, see [20]. Many computational problems including the discrete problems mentioned
above can be recasted as this weighted integration problem. Thus, we can solve them using
the algorithms of [20] for solving the Sturm-Liouville eigenvalue problem. These algorithms
use of order ε−1/3 bit queries or log ε−1 power queries and compute an ε-approximation of
the smallest eigenvalue with probability 3

4
. The bounds on bit and power queries are sharp

up to multiplicative constants, see [5, 20]. Hence, exponentially fewer power queries than
bit queries are needed to solve the Sturm-Liouville eigenvalue problem. As we shall see, the
same is true for the problems studied in this paper.

In the quantum setting with bit queries, we do not obtain surprising results. The poly-
nomial number of bit queries, ε−1/3, implies that the solution of NP-complete problems
by modifications of the algorithm for the Sturm-Liouville eigenvalue problem will require
exponentially many queries in terms of the NP problem size.

The situation is quite different if we consider power queries. The logarithmic number of
power queries, log ε−1, implies that NP-complete problems can be solved by modifications of
the algorithm for the Sturm-Liouville eigenvalue problem and the number of power queries
is polynomial in the problem size.

2

More specifically, the satisfiability problem for Boolean functions with n variables can be
solved with probability 1− δ using of order n log δ−1 power queries and n qubits. Further-
more, a truth assignment to a non-zero Boolean function with n variables can be computed
with probability 1− δ using of order n2(log δ−1 + log n) power queries and n qubits.

The traveling salesman problem with m cities can be solved with probability 1− δ using
of order

m log m(log δ−1 + log m + log dmax)(log m + log dmax)

power queries and m log m qubits, where dmax denotes the maximal distance between cities.
Furthermore, an optimal route for the traveling salesman problem can be computed with
probability 1− δ using of order

m2 log2 m(log δ−1 + log m) + m log m(log δ−1 + log m + log dmax)(log m + log dmax)

power queries and m log m qubits.
Finally, Grover’s problem for Boolean functions with n variables can be solved with

probability 1− δ using of order n log δ−1 power queries and n qubits. It is well known that
Grover’s problem requires of order 2n/2 bit queries. Therefore, it is evident that exponentially
fewer power than bit queries are required for this problem.

We stress that we only show how many power queries are needed to solve a particular
problem. We use power queries which are of the form controlled- W pj for a k × k unitary
matrix W and some exponents pj. In our case, the matrix W is given by

W = exp
(

1
2
i Mq

)
with i =

√
−1. (1)

Here, the matrix Mq has a particularly simple form since it is a k × k real symmetric
tridiagonal matrix,

Mq = (k + 1)2

2 −1
−1 2 −1

.

−1 2 −1
−1 2

 +

q(1

k+1
)

q(2
k+1

)
. . .

q(k−1
k+1

)

q(k
k+1

)

 ,

with a function q : [0, 1] → [0, 1] that is two times continuously differentiable and bounded
by one up to the second derivative. This matrix corresponds to a classical approximation of
the Sturm-Liouville operator.

Contrary to the situation in Shor’s algorithm where powers of a unitary operator can
be implemented efficiently, the quantum implementation of the power queries for the k × k
matrix W of the form (1) by a number of known elementary quantum gates which is polylog
in k is an open issue. If it turns out that the implementation cost of such power queries
is disproportionally large compared to that of bit queries, then the positive results on the
number of power queries are of only theoretical interest. If, on the other hand, power queries
for W of the form (1) and a function q satisfying conditions that we discuss later in this
paper, can be implemented efficiently, i.e., at cost which is polylog in k, then we will have a
very powerful computational device allowing us to solve NP-complete problems in polynomial
time.

3

2 Sturm-Liouville and Integration

We briefly recall the problem and some of the results from [20]. We consider the following
class of functions

Q =

{
q : [0, 1] → [0, 1]

∣∣∣∣ q ∈ C2([0, 1]) and max
i=0,1,2

‖q(i)‖∞ ≤ 1

}
,

where C2([0, 1]) stands for the class of twice continuously differentiable functions, and
‖q‖∞ = maxx∈[0,1] |q(x)|.

We studied the approximate computation of the Sturm-Liouville smallest eigenvalue λ(q)
which is defined in the variational form by

λ(q) = min
0 6=u∈H1

0

∫ 1

0
[(u′(x))2 + q(x)u2(x)] dx∫ 1

0
u2(x) dx

, (2)

where H1
0 is the Sobolev space of absolutely continuous functions for which u′ ∈ L2([0, 1])

and u(0) = u(1) = 0, see [2, 7, 22]. Combining results from from [7, 15, 23] we have the
formula that relates the Sturm-Liouville smallest eigenvalue problem to integration,∫ 1

0

(
q(x)− 1

2

)
sin2(πx) dx = 1

2

(
λ(q)− π2 − 1

2

)
+ O

(
‖q − 1

2
‖2
∞

)
. (3)

We analyzed the quantum setting with bit and power queries in [20]. For bit queries, we
showed that λ(q) can be computed with error η and probability 3

4
using Θ(η−1/3) bit queries,

and this bound is sharp modulo a multiplicative constant. It is easy to check that from this
result follows that NP-complete problems of size n can be solved with an exponential in n
number of bit queries. Therefore, from now on, we restrict ourselves to the quantum setting
with power queries for matrices W of the form (1).

In [20] we presented a quantum algorithm φ based on phase estimation applied to the
discretized matrix of the Sturm-Liouville problem. The initial state was an approximate
eigenvector, as proposed by Abrams and Lloyd [1], and computed by the algorithm of the
Jaksch and Papageorgiou [14]. The algorithm φ computes λ(q, η) such that

|λ(q)− λ(q, η)| ≤ η with probability 3
4

∀ q ∈ Q

using of order log η−1 power queries, log2 η−1 additional quantum operations, O(1) function
values of q and classical operations, as well as log η−1 qubits.

It is well known that we can increase the probability of success to, say, 1− δ by repeating
the algorithm φ of order log δ−1 times and then taking the median as the final approximation.
The algorithm φ with repetitions computes λ(q, η, δ) which is an η-approximation of λ(q)
with probability 1− δ, i.e.,

|λ(q)− λ(q, η, δ)| ≤ η with probability 1− δ ∀ q ∈ Q. (4)

The resulting algorithm with repetitions φ uses of order

4

• log δ−1 log η−1 power queries,

• log δ−1 log2 η−1 additional quantum operations,

• O(1) function values of q and classical operations, and

• log η−1 qubits.

In the next sections we show how to modify the algorithm φ to solve a number of con-
tinuous and discrete problems. In what follows, we restrict ourselves and mention only the
number of power queries and the number of qubits of these modifications because they are
the most important characteristic of the cost of a quantum algorithm. The rest of the cost
characteristics can be easily derived from the corresponding components of the cost of the
algorithm φ with repetitions.

We start with integration. Knowing how to approximate λ(q) we can approximate the
integral in (3) modulo the second term which is of order ‖q − 1

2
‖2
∞. We provide the details

in the next section.

3 Integration

Consider the (weighted) integration problem

I(f) :=

∫ 1

0

f(x) sin2(πx) dx

for functions f from the class

FM =
{
f ∈ C2([0, 1]) : max

i=0,1,2
‖f (i)‖∞ ≤ M

}
.

Here M is a positive number. We want to compute an ε-approximation of I(f) with proba-
bility 1 − δ on a quantum computer with power queries. Since |I(f)| ≤ M we assume that
ε < M since otherwise 0 is an ε-approximation, and the problem is trivial. Without loss of
generality, we also assume that ε < 1.

Observe that f ∈ FM implies that the function

qf,c(x) = 1
2

+ cf(x) ∀x ∈ [0, 1],

belongs to Q, defined in the previous section, for c ∈ (0, (2M)−1]. In this case, the formula
(3) states

I(f) =
1

2c

(
λ(qf,c)− π2 − 1

2

)
+ O(cM2) ∀ f ∈ FM .

Define

c =
ε

M2 log ε−1
and η = c ε =

ε2

M2 log ε−1
.

5

Let λ(qf,c, η, δ) be an η-approximation of λ(qf,c) with probability 1 − δ computed by the
algorithm φ with repetitions of the previous section. Knowing λ(qf,c, η, δ) we compute on a
classical computer

AInt(f, ε, δ) =
1

2c

(
λ(qf,c, η, δ)− π2 − 1

2

)
.

Then

|I(f)− AInt(f, ε, δ)| ≤ 1

2c
η + O(cM2) = 1

2
ε(1 + o(1)) with probability 1− δ.

Hence, for small ε, AInt(f, ε, δ) is an ε-approximation of I(f) with probability 1 − δ. In
this way we can solve the integration problem and we summarize this result in the following
theorem.

Theorem 3.1. We compute an ε-approximation with probability 1 − δ for the integration
problem for the class FM by the quantum algorithm AInt using of order

• log δ−1 (log M + log ε−1) power queries and

• log M + log ε−1 qubits.

4 Preliminaries

We now present some preliminaries that will be used as technical tools to translate the inte-
gration problem of the previous section to the NP-complete and NP-hard problems discussed
in this paper.

Take a function h ∈ C2([0, 1]) with h(i)(0) = h(i)(1) = 0 for i = 0, 1, 2, and for which the

integral
∫ 1

0
h(x) dx is positive. Examples of such functions include h(x) = (x(1− x))α with

α > 2 or h(x) = x3(1− x)3g(x) for a positive g ∈ C2([0, 1]). We extend the domain of h by
defining H(x) = h(x) for x ∈ [0, 1] and H(x) = 0 otherwise. Due to the boundary conditions
imposed on h, we have H ∈ C2(R).

For a positive (large) integer N , we subdivide the interval [1
4
, 3

4
] by introducing the points

xj =
1

4
+

1

2

j

N
for j = 0, 1, . . . , N.

For j = 0, 1, . . . , N − 1, we define the functions

hj(x) =
1

4N2
H (2N(x− xj)) for x ∈ [0, 1].

Observe that hj vanishes outside the open interval (xj, xj+1), and ‖hj‖∞ = ‖h‖∞/(4N2),
‖h′j‖∞ = ‖h′‖∞/(2N), and ‖h′′j‖∞ = ‖h′′‖∞. Hence, if we set

M := max

(
‖h‖∞
4N2

,
‖h′‖∞
2N

, ‖h′′‖∞
)

,

6

which is equal to ‖h′′‖∞ for large N , then

hj ∈ FM for j = 0, 1, . . . , N − 1.

Observe finally that∫ 1

0

hj(x) dx =

∫ xj+1

xj

hj(x) dx =
1

8N3
Int(h) for j = 0, 1, . . . , N − 1, (5)

where

Int(h) :=

∫ 1

0

h(x) dx.

5 Boolean mean

Consider the class Bn of all Boolean functions of n variables mapping {0, 1}n into {0, 1}. We
can equivalently assume that the domain of such Boolean functions is {0, 1, . . . , N − 1} with
N = 2n. Hence, B ∈ Bn means that

B : {0, 1, . . . , N − 1} → {0, 1}.

We want to approximate the mean

SN(B) =
1

N

N−1∑
j=0

B(j)

by a quantum algorithm with power queries.
We now show how this problem can be reduced to the integration problem of Section 3.

Using the notation of Section 4, we define the function fB : [0, 1] → R by

fB(x) =

{
hj(x) B(j)

(
2 sin2(πx)

)−1
if x ∈ [xj, xj+1] with j = 0, 1, . . . , N − 1,

0 if x ∈ [0, 1
4
] ∪ [3

4
, 1].

Observe that due to the fact that hj vanishes up to the second derivatives at xj and xj+1,
and the fact that 2 sin2(πx) ≥ 1 for x ∈ [1

4
, 3

4
], we conclude that fB ∈ C2([0, 1]). Furthermore

‖fB‖∞ ≤ ‖h‖∞/(4N2),

‖f ′B‖∞ ≤ ‖h′‖∞/(2N)(1 + O(N−1)), and

‖f ′′B‖∞ ≤ ‖h′′‖∞(1 + O(N−1)).

Hence, if we set M = ‖h′′‖∞(1 + O(N−1)) then fB ∈ FM . Observe that, due to (5), the
integration problem for fB takes now the form

I(fB) =
N−1∑
j=0

1
2
B(j)

∫ xj+1

xj

hj(x) dx =
Int(h)

16N2

1

N

N−1∑
j=0

B(j) =
Int(h)

16N2
SN(B).

7

Let η = Int(h)ε/(16N2). We now use the quantum algorithm AInt(fB, η, δ) from Section 3
which, for small ε or large N , computes an η-approximation of I(fB) with probability 1− δ.
Knowing A(fB, η, δ) we compute on a classical computer

ABool
n (B, ε, δ) =

16N2

Int(h)
AInt(fB, η, δ).

Then

|SN(B)− ABool
n (B, ε, δ)| =

16N2

Int(h)
|I(fB)− AInt(fB, η, δ)| ≤ 16N2

Int(h)
η = ε,

and this holds with probability 1− δ. We summarize this result in the following theorem.

Theorem 5.1. We compute an ε-approximation with probability 1− δ for the Boolean mean
problem for the class Bn by the quantum algorithm ABool

n using of order

• log δ−1 (log ε−1 + n) power queries and

• log ε−1 + n qubits.

It is known that the amplitude amplification algorithm of Brassard, Høyer, Mosca and
Tapp [6] computes an ε-approximation of SN(B) with probability 8/π2 = 0.81 . . . using
of order min(N, ε−1) bit queries. Furthermore, this number of queries is order-minimal as
proven by Nayak and Wu [16]. We stress that the basic part of the quantum algorithm ABool

n

is the phase estimation algorithm which uses power queries. For ε ≥ N−1 this algorithm
uses of order log ε−1 power queries to compute an ε-approximation with probability 8/π2.
Hence, the nunber of queries has an exponential improvement in its the dependence on ε−1.

The amplitude amplification algorithm of [6] has been used as a basic tool for solving
many continuous problems such as real mean, multivariate integration, path integration and
multivariate approximation in the quantum setting. These problems have been defined over
many classical spaces such as Lp, Sobolev and Korobov spaces. For a number of these
continuous problems, the bit query complexity and the quantum speedups over the worst
case and randomized settings have been established based on the optimality of the quantum
summation algorithm, see [10, 11, 12, 13, 18, 19, 24]. The use of power queries yields an
exponential improvement in the number of queries. This can be achieved simply by using
the exponentially better power query bound for the Boolean mean.

6 Satisfiability

The satisfiability problem, SAT for short, is a well known NP-complete problem in the
Turing machine model of computation [8]. This means that all NP-complete problems can
be reduced to SAT in polynomial time, and if the conjecture P 6=NP is true then there are
no algorithms solving SAT in polynomial time with respect to the length of the Boolean
function expressed in conjunctive normal form. SAT can be stated as a decision or as a
computational problem and we deal with both of them in this section.

8

As in the previous section, consider the class Bn of all Boolean functions of n variables
with the domain {0, 1, . . . , N − 1}, where N = 2n. The two variants of SAT problem are
defined as

• SAT1 : for B ∈ Bn given in the conjunctive normal form, verify if there exists an index
j such that B(j) = 1.

• SAT2 : for a non-zero B ∈ Bn given in the conjunctive normal form, compute an index
j such that B(j) = 1.

We now show that either problem can be solved with probability 1−δ by using a number
of power queries which is polynomial in n and log δ−1.

We begin with SAT1 and use the notation of Section 5. Observe that for any B ∈ Bn,
the mean SN(B) is a multiple of N−1, i.e., SN(B) = k/N for some k ∈ {0, 1, . . . , N}. If we
have a real number x such that |SN(B)− x| < 1

2N
then |k −N x| < 1

2
which implies that

k =
⌊
N x + 1

2

⌋
and SN(B) =

⌊
N x + 1

2

⌋
N

.

Obviously, k > 0 iff there exists an index j for which B(j) = 1.
For η < 1

2N
, we conclude that from an η-approximation of SN(B), with probability

1 − δ, we can compute the exact value of S(B) with probability 1 − δ. We know that, for
small η, ABool(B, η, δ) computes an η-approximation of SN(B) with probability 1−δ. Letting
η = 1/(3N) we compute ABool

n (B, 1/(3N), δ), which is an 1/(3N)-approximation of SN(B).
From this we can compute the exact value of SN(B) with probability 1− δ. This means that

ASAT1
n (B, δ) =

{
YES if

⌊
N ABool(B, 1/(3N), δ) + 1

2

⌋
> 0,

NO if
⌊
N ABool(B, 1/(3N), δ) + 1

2

⌋
= 0

solves the satisfiability problem. We stress that to compute ASAT
n (B, δ) we run the quantum

algorithm ABool
n (B, 1/(3N), δ) and the rest is computed on a classical computer. Since we

know how many power queries and qubits are used by ABool
n we obtain the following theorem.

Theorem 6.1. The satisfiability problem SAT1 for the class Bn is solved with probability
1− δ by the quantum algorithm ASAT1

n which uses of order

• n log δ−1 power queries and

• n qubits.

We turn to the SAT2 problem. That is, for a non-zero B from Bn we want to compute
an index j ∈ {0, 1, . . . , N − 1} for which B(j) = 1.

We will use bisection on the domain of B. Every bisection step will shrink the cardinality
of the domain by 2. Using the quantum algorithm ASAT1

k with k = n, n − 1, . . . , 0, we will
know whether an index of the true assignment belongs to the the decreased domain. In this
way, after n steps we identify an index j for which B(j) = 1. Since ASAT1

k is a probabilistic

9

algorithm and we use it n times, we need the success probability of this algorithm to be
1− δ1, where

(1− δ1)
n = 1− δ.

For small δ, we obviously have δ1 = δ/n(1 + o(1)).
More precisely, let

Dk = {0, 1, . . . , 2k − 1} for k = 0, 1, . . . , n.

We set jn = 0, and perform the following steps for the Boolean function B from Bn.

For k = n− 1, n− 2, . . . , 1, 0 do:

• define fk : Dk → {0, 1} by fk(j) = B(j + jk+1) for j ∈ Dk,

• run the quantum algorithm ASAT1
k (fk, δ1) and compute on a classical computer

jk =

{
jk+1 + 2k if ASAT1

k (fk, δ1) = NO,

jk+1 if ASAT1
k (fk, δ1) = YES.

Finally we set
ASAT2

n (B, δ) = j0.

We claim that the algorithm ASAT2
n solves the satisfiability problem SAT2, i.e., for the index j0

we have B(j0) = 1.
Indeed, first note that jk ≤ 2k + 2k+1 + · · · + 2n−1 ≤ 2n − 1 = N − 1 and j + jk+1 ≤

2k − 1 + jk+1 ≤ N − 1 for j ∈ Dk. Therefore, the Boolean functions fk are well defined.
For the first step, k = n− 1, we have fn−1 ≡ B on the first half, Dn−1, of the domain Dn.

We check whether fn−1 is zero. This holds with probability 1− δ1 iff ASAT1
n−1 (fn−1, δ1) = NO.

If fn−1 ≡ 0 then B is non-zero on the complement of Dn−1 and an index j for which B(j) = 1
is at least equal to 2n−1. That is why we define jn−1 = 2n−1 in this case. If, however, fn−1

is non-zero over Dn−1 then we are looking for an index j with B(j) = 1 in the set Dn−1, and
we set jn−1 = jn = 0. In this way, after the first step we can restrict the search of an index
to the domain of cardinality 2n−1. For the second step it is enough to work with the domain
Dn−2 and use the proper shift jn−1 in the definition of the Boolean function fn−2. After n
steps we identify a proper index j = j0 for which B(j) = 1. In fact, it is easy to see that we
will find the smallest index j for which B(j) = 1

Since the quantum algorithm ASAT1
k (fk, δ1) works with probability 1− δ1 and we repeat

n times the algorithm, the probability of success is at least (1 − δ1)
n. By the definition of

δ1, this is equal to 1− δ. This proves the following theorem.

Theorem 6.2. The satisfiability problem SAT2 for the class Bn is solved with probability
1− δ by the quantum algorithm ASAT2

n which uses of order

• n2 (log δ−1 + log n) power queries and

• n qubits.

10

7 Grover’s problem

Grover’s problem can be defined as the satisfiability problem SAT2 for the class B̄n of Boolean
functions of n variables for which we know a priori that there exists exactly one index j = jB
for which B(j) = 1. Obviously, the algorithm ASAT2

n solves Grover’s problem although the a
priori knowledge about the uniqueness of the index jB is not used. We now show that using
this a priori knowledge it is possible to find a more efficient quantum algorithm than ASAT2

n .
Define the weighted Boolean mean

WN(B) =
1

N

N−1∑
j=0

j B(j) for B ∈ B̄n.

Clearly, WN(B) = jB/N . Hence, it is enough to compute the exact value of WN(B) and then
jB = N WN(B). This can be achieved by switching to the integration problem, as we did in
Section 5, for the function gB : [0, 1] → R defined by

gB(x) =

{
j hj(x) B(j)

(
2 N sin2(πx)

)−1
if x ∈ [xj, xj+1] with j = 0, 1, . . . , N − 1,

0 if x ∈ [0, 1
4
] ∪ [3

4
, 1].

As in Section 5, we conclude that gB ∈ FM for M = ‖h′′‖∞(1 + O(N−1)), and

I(gB) =
jB

2N

∫ xjB+1

xjB

hj(x) dx =
Int(h)

16N3
WN(B).

Hence,

jB =
16N4

Int(h)
I(gB).

In Section 3, we defined the algorithm AInt such that, for small ε, AInt(f, ε, δ) is an
ε-approximation of I(f) with probability 1− δ.

Let ε = Int(h)/(48N4). Define the quantum algorithm

AGrover
n (B, δ) =

⌊
16N4

Int(h)
AInt(gB, ε, δ) +

1

2

⌋
.

Then ∣∣∣∣jB −
16N4

Int(h)
AInt(gB, ε, δ)

∣∣∣∣ =
16N4

Int(h)

∣∣I(gB)− AInt(gB, ε, δ)
∣∣ ≤ 16N4

Int(h)
ε =

1

3
,

and this holds with probability 1− δ. Hence,

jB = AGrover
n (B, δ) with probability 1− δ.

This and Theorem 3.1 yield the following theorem.

Theorem 7.1. Grover’s problem for the class Bn is solved with probability 1 − δ by the
quantum algorithm AGrover

n which uses of order

• n log δ−1 power queries and

• n qubits.

11

8 Minimization

In this section we consider a real number minimization problem which we will use to solve
the traveling salesman problem in the quantum setting with power queries.

For positive N = 2n and M , define the set

Xn,M = {x = [x0, x1, . . . , xN−1] : xj ∈ R and |xj| ≤ M for j = 0, 1, . . . , N − 1 }.

Let
Min(x) = min

j=0,1,...,N−1
xj.

The minimization problem is defined as:

• MIN1 : compute A(x) which is an ε-approximation of Min(x) with probability 1− δ,
i.e., |Min(x)− A(x)| ≤ ε holds with probability 1− δ for all x ∈ Xn,M .

• MIN2 : compute an index j = j(x) for which |Min(x)−xj| ≤ ε with probability 1− δ
for all x ∈ Xn,M .

Clearly, using a classical computer we must use each xj at least once and that is why
the worst case and randomized complexities are proportional to N , i.e., they are exponential
in n. We now show how to solve this problem in the quantum setting using a number of
power queries which is polynomial in n, log M, log δ−1 and log ε−1.

We begin with the minimization problem MIN1. For a real number y, define the Boolean
function fy : {0, 1, . . . , N − 1} → {0, 1} by

fy(j) =

{
1 if xj ≤ y,

0 if xj > y.

Then let

SN(fy) =
1

N

N−1∑
j=0

fy(j).

Note that
SN(fy) > 0 iff y ≥ Min(x).

Clearly, the condition SN(fy) > 0 is equivalent to the SAT1 problem for the Boolean func-
tion fy and can be solved by the quantum algorithm ASAT1

n of Section 6.
Initially, we know that Min(x) ∈ [−M, M]. That is why we set a0 = −M , b0 = M and

y0 = 0, and use the bisection algorithm for the interval [−M, M] with k∗ steps,

k∗ =

⌈
log2

M

ε

⌉
.

We also choose δ1 such that (1 − δ1)
k∗ = 1 − δ. For small δ, we have δ1 = δ/k∗(1 + o(1)).

More precisely, we perform the following steps.
For k = 1, 2, . . . , k∗ do:

12

• run the quantum algorithm ASAT1(fyk−1
, δ1),

• compute on a classical computer

ak =

{
ak−1 if ASAT1

n (fyk−1
, δ1) = YES,

yk−1 if ASAT1
n (fyk−1

, δ1) = NO,

bk =

{
yk−1 if ASAT1

n (fyk−1
, δ1) = YES,

bk−1 if ASAT1
n (fyk−1

, δ1) = NO,

• and yk = 1
2
(ak + bk).

Finally set
AMin1

n,M (x, ε, δ) = yk∗ .

After k∗ steps we have the interval [ak∗ , bk∗] of length 2M/2k∗ ≤ 2ε, and Min(x) ∈
[ak∗ , bk∗]. Therefore |Min(x) − yk∗| ≤ ε is an approximation of Min(x). Note that this
algorithm works with probability (1 − δ1)

k∗ = 1 − δ. Knowing the requirements of the
algorithm ASAT1

n we obtain the following theorem.

Theorem 8.1. We compute an ε-approximation with probability 1− δ for the minimization
problem MIN1 for the class Xn,M by the quantum algorithm AMin1

n,M using of order

• n (log M + log ε−1) (log δ−1 + log (log M + log ε−1)) power queries and

• n qubits.

We now turn to the minimization problem MIN2. It is easy to see that this problem can
be solved by combining the quantum algorithms developed so far. To explain the main idea
of the quantum algorithm for the minimization problem MIN2 we ignore for a moment the
fact that all the quantum algorithms of the previous sections work probabilistically. Knowing
y = yk∗ by the AMin1

n algorithm, we apply the ABool
n algorithm of Section 5 and compute the

exact value of SN(fy). If SN(fy) 6= 0 then fy is a non-zero Boolean function. If S(fy) = 0 then
y < Min(x) and since y is an ε-approximation to Min(x), we have Min(x)− ε ≤ y < Min(x).
In this case we have Min(x) ≤ y + ε and 0 ≤ y + ε − Min(x) ≤ ε. Hence, y + ε is also an
ε-approximation to Min(x) and S(fy+ε) 6= 0. Thus we modify y := y + ε if S(fy) = 0. Then
S(fy) 6= 0 in either case, and y is still an ε-approximation to Min(x). Knowing that fy is
a non-zero Boolean function, we now run the ASAT2

n algorithm and compute an index j for
which fy(j) = 1, or equivalently, xj ≤ y. Hence, Min(x) ≤ xj ≤ y ≤ Min(x) + ε and xj is
an ε-approximation that solves the minimization problem MIN2. We now formalize the idea
of this algorithm. Let (1 − δ1)

3 = 1 − δ. Hence, for small δ we have δ1 = 3δ(1 + o(1)). We
perform the following steps:

• run the quantum algorithm AMin1
n,M (x, ε, δ1) to obtain y,

• run the quantum algorithm ABool
n (fy, 1/(3N), δ1) to obtain z,

• if z = 0 then set y := y + ε,

13

• run the quantum algorithm ASAT2
n (fy, δ1) to obtain j.

Finally set,
AMin2

n,M (x, ε, δ) = j.

Then the index j solves the minimization problem MIN2 and this algorithm works with
probability (1− δ1)

3 = 1− δ. Counting the number of power queries and qubits of all parts
of the algorithm we obtain the theorem.

Theorem 8.2. We compute an ε-approximation with probability 1− δ for the minimization
problem MIN2 for the class Xn,M by the quantum algorithm AMin2

n,M using of order

• n2 (log δ−1 + log n) + n (log M + log ε−1) (log δ−1 + log (log M + log ε−1))
power queries and

• n qubits

.

9 Traveling salesman

The traveling salesman problem, TSP for short, is a well known NP-complete problem that
deals with the shortest tour between m cities, see [8]. Let D = [d(j, k)]mj,k=1 denote the m×m
matrix with d(j, k) being the distance between the city j and the city k. We assume that
d(j, k) are positive integers for j 6= k and d(j, j) = 0. The TSP can be studied as a decision
or as a computational problem and we consider the three variants:

• TSP1 : for a given integer B verify if there is a permutation π = [π(1), π(2), . . . , π(m)]
of indices {1, 2, . . . ,m} for which

d(π) :=
m∑

j=1

d(π(j), π(j + 1)) ≤ B

with π(m + 1) = π(1).

• TSP2 : compute
Min(D) = min

π
d(π).

• TSP3 : compute a permutation π∗ such that

d(π∗) = Min(D).

Observe that if we can solve TSP2 then it is just enough to check whether Min(D) ≤ B.
Similarly, if we can solve TSP3 then it is enough to compute d(π∗) to solve TSP2.

We now show that TSP is a special case of the minimization problem studied in the
previous section. Indeed, consider the set Pm of all m! possible permutations, and let g :
{0, 1, . . . ,m!− 1} → Pm be an injective mapping. We take

n := dlog m!e = m log m (1 + o(1)).

14

Let N = 2n. For j = m!, m! + 1, . . . , N − 1 we extend the function g by setting g(j) =
g(m!− 1). Then g : {0, 1, . . . , N − 1} → Pm and

g(j) = πj = [πj(1), πj(2), . . . , πj(m)] for j ∈ {0, 1, . . . , N − 1}.

Defining

xj =
m∑

k=1

d(πj(k), πj(k + 1)) with πj(m + 1) = πj(1),

we see that
min

j=0,1,...,N−1
xj = Min(D).

Note that xj can be computed using a number of bits which is polynomial in m and the
maximal distance between cities,

dmax = max
i,j=1,2,...,m

d(i, j).

Furthermore, xj ∈ [0, M] for j ∈ {0, 1, . . . , N − 1} with

M ≥ m dmax.

To run the algorithms AMin1
n,M and AMin2

n,M for the solutions of the minimization problem we
need to know an upper bound on m dmax. This can be achieved as follows. For k = 0, 1, . . . ,
we run the quantum algorithm ASAT1

n (1 − f2k , δ1) of Section 6 to check, with probability
1− δ1, whether the Boolean function 1− f2k defined in Section 8 is zero. If so, then f2k ≡ 1
meaning that for all xj ≤ 2k, and we can take M = 2k. Hence, we perform as many steps
as necessary until the first occurrence of ASAT1

n (1− f2k , δ1) = NO. This will happen after at
most p := dlog2 m + log2 dmaxe steps. Then we define M = 2p and M ∈ [m dmax, 2m dmax].
We choose δ1 such that (1− δ1)

p = (1− δ)1/2 to conclude that we obtain M with probability
(1− δ)1/2. For small δ, we have δ1 = δ/(2p)(1 + o(1)).

Knowing M , we can solve TSP by solving the minimization problem of Section 8. Since
all xj are integers, it is enough to compute an ε-approximation y of Min(x) with ε < 1

2
to

conclude that by + 1
2
c is equal to Min(x). The number y can be computed with probability

(1− δ)1/2 = 1− δ2 by the quantum algorithm AMin1
n,M (x, ε, δ2) with ε, say, 1

3
. In the same way,

we can find a shortest path represented by a permutation π∗ by first computing the index j
by the algorithm AMin2

n,M of Section 8 for which |Min(x) − xj| ≤ 1
3
. Again, since xj is an

integer, xj = Min(x) and π∗ = g(j) is a needed permutation. Hence the following algorithms

ATSP1
m (D, δ) =

{
YES if bAMin1

n,M (x, 1
3
, δ2) + 1

2
c ≤ B,

NO if otherwise,

ATSP2
m (D, δ) = x

A
Min2
n,M (x,

1
3

,δ2)
= d(π

A
Min2
n,M (x,

1
3

,δ2)
)

ATSP3
m (D, δ) = g

(
AMin2

n,M (x, 1
3
, δ2)

)
solve the traveling salesman problems TSPj for j = 1, 2, 3, respectively, with probability
1− δ2 = (1− δ)1/2. We also know the proper M with probability (1− δ)1/2. Therefore, the
whole algorithm works with probability 1− δ. This proves the following theorem.

15

Theorem 9.1. The traveling salesman problems TSPj are solved with probability 1 − δ by

the quantum algorithms A
TSPj
m using of order

• for j = 1,

– m log m (log δ−1 + log m + log dmax) (log m + log dmax) power queries and

– m log m qubits,

• for j = 2, 3,

–

m2 log2 m
(
log δ−1 + log m

)
+ m log m

(
log δ−1 + log m + log dmax

)
(log m + log dmax)

power queries and

– m log m qubits.

Acknowledgments

This research has been supported in part by the National Science Foundation, the Defense
Advanced Research Projects Agency, and the Air Force Research Laboratory.

We are grateful for valuable comments and suggestions how to improve the presentation
of the paper from Stefan Heinrich, Marek Kwas, Klaus Meer Joseph F. Traub and Mihalis
Yannakakis.

References

[1] Abrams, D. S. and Lloyd, S. (1999), Quantum Algorithm Providing Exponential Speed
Increase for Finding Eigenvalues and Eigenvectors Phys. Rev. Lett., 83, 5162–5165.

[2] Babuska, I. and Osborn, J. (1991), Eigenvalue Problems, in Handbook of Numerical
Analysis, Vol. II, P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam, 641–
787.

[3] Bennet, C. H., Bernstein, E., Brassard, G. and Vazirani, U. (1997), Strengths and
weaknesses of quantum computing SIAM J. Computing, 26(5), 1510–1523.

[4] Bernstein, E., and Vazirani, U. (1997), Quantum complexity theory, SIAM J. Comput-
ing, 26(5), 1411–1473.

[5] Bessen, A. J. (2005), A lower bound for phase estimation on a quantum computer,
Physical Review A, 71(4). Also http://arXiv.org/quant-ph/0412008.

16

[6] Brassard, G., Høyer, P., Mosca, M., and Tapp, A. (2002), Quantum Amplitude Am-
plification and Estimation in Contemporary Mathematics, Vol. 305, Am. Math. Soc.,
53–74. Also http://arXiv.org/quant-ph/0005055.

[7] Courant, C. and Hilbert, D. (1989), Methods of Mathematical Physics, Vol. I, Wiley
Classics Library, Willey-Interscience, New York.

[8] Garey, M. R. and Johnson, D. S. (1979), Computers and Intractability, A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, New York.

[9] Grover, L. (1997), Quantum mechanics helps in searching for a needle in a haystack,
Phys. Rev. Lett., 79(2), 325–328. Also http://arXiv.org/quant-ph/9706033.

[10] Heinrich, S. (2002), Quantum Summation with an Application to Integration, J. Com-
plexity, 18(1), 1–50. Also http://arXiv.org/quant-ph/0105116.

[11] Heinrich, S. (2003), Quantum integration in Sobolev spaces, J. Complexity, 19, 19–42.

[12] Heinrich, S. (2004), Quantum Approximation I. Embeddings of Finite Dimensional Lp

Spaces, J. Complexity, 20(1), 5–26. Also http://arXiv.org/quant-ph/0305030.

[13] Heinrich, S. (2004), Quantum Approximation II. Sobolev Embeddings, J. Complexity,
20(1), 27–45. Also http://arXiv.org/quant-ph/0305031.

[14] Jaksch, P. and Papageorgiou, A. (2003), Eigenvector approximation leading to expo-
nential speedup of quantum eigenvalue calculation, Phys. Rev. Lett., 91, 257902. Also
http://arXiv.org/quant-ph/0308016.

[15] Keller, H. B. (1968), Numerical methods for two-point boundary-value problems,
Waltham, Mass., Blaisdell.

[16] Nayak, A. and Wu, F. (1999), The quantum query complexity of approximating the me-
dian and related statistics, STOC, 384-393. See also LANL preprint quant-ph/9804066.

[17] Nielsen, M.A. and Chuang, I.L. (2000), Quantum Computation and Quantum Informa-
tion, Cambridge University Press, Cambridge, UK.

[18] Novak, E. (2001), Quantum complexity of integration, J. Complexity, 17, 2–16. Also
http://arXiv.org/quant-ph/0008124.

[19] Novak, E., Sloan, I. H. and Woźniakowski, H. (2004), Tractability of approximation for
weighted Korobov spaces on classical and quantum computers, Journal of Foundations of
Computational Mathematics, 4(2), 121–156. Also http://arXiv.org/quant-ph/0206023.

[20] Papageorgiou, A. and Woźniakowski, H. (2005) Classical and quantum complexity of the
Sturm-Liouville eigenvalue problem, Quantum Information Processing, 4, 87–127. Also
http://arXiv.org/quant-ph/0502054.

[21] Shor, P. W. (1997), Polynomial-time algorithms for prime factorization and discrete
logarithm on a quantum computer, SIAM J. Comput., 26(5), 1484–1509.

17

[22] Strang, G. and Fix, G. J. (1973), An Analysis of the Finite Element Method, Prentice-
Hall, Englewood Cliffs, NJ.

[23] Titschmarsh, E. C. (1958), Eigenfunction Expansions Associated with Second-Order
Differential Equations, Part B, Oxford University Press, Oxford, UK.

[24] Traub, J. F. and Woźniakowski, H. (2002), Path integration on a quantum computer,
Quantum Information Processing, 1, 365–388, 2002. Also http://arXiv.org/quant-
ph/0109113.

18

