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Abstract

Many problems in science and engineering are formulated using
continuous mathematical models. Usually they can only be solved
numerically and therefore approximately. Since they are often difficult
to solve on a classical computer it’s interesting to investigate whether
they can be solved faster on a quantum computer.

After a brief introduction to quantum algorithms we report on
a wide range of applications including high dimensional integration,
path integration, Hamiltonian simulation, and ground state energy
estimation. We provide a rather extensive bibliography.
PACS numbers: 03.67.Ac, 03.67.Lx, 02.60.-x

1 Introduction

Problems in science and engineering are frequently formulated using con-
tinuous models. In most cases they can only be solved numerically and,
therefore, approximately to within a given accuracy ε. Examples include
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multivariate integration, path integration, function approximation, the solu-
tion of ordinary and partial differential equations, optimization and eigen-
value problems. There are numerous applications requiring the solution of
these problems ranging from physics and chemistry to economics and finance.

Typically, the solution of a problem depends on an underlying function,
often of many variables. The algorithm solving the problem must obtain
information about the function, for example, by sampling it at a number of
points, and then it must combine the information to produce the result. The
computational complexity (for brevity, the complexity) of a problem is the
least number of resources required to solve a problem with accuracy ε. In
this paper the resources will be the information operations, the combinatorial
operations and the space, e.g., the number of qubits.

There have been decades of research on the classical complexity of con-
tinuous problems, e.g., see the monographs [62, 74, 76, 89, 90, 88, 98, 65, 66].
Over the last decade there has been a significant amount of work on algo-
rithms and complexity of continuous problems in the quantum setting. This
research was motivated by the results of Shor [78] for integer factorization,
and Grover [35] for searching an unstructured database.

The challenges of quantum computing are:

• To find quantum algorithms that are better than any known classical
algorithm for solving certain continuous problems.

• To determine for which continuous problems quantum computers are
provably more powerful than classical computers.

Similar challenges apply to discrete problems, however, we do not deal with
them in this paper. An extensive review of quantum algorithms for discrete
problems can be found in [59]. The first challenge, which is weaker than the
second, allows us to consider problems for which we do not know optimal
classical algorithms or we do not have sharp bounds for the classical com-
plexity. Important problems, such as eigenvalue estimation for multiparticle
systems, fall in this category. On the other hand, there are problems, such
as path integration, where we know the quantum complexity and that the
optimal quantum algorithm is faster than any classical algorithm that has
the same accuracy.

There are certain ideas and techniques that are broadly applicable and
have led to a significant number of results for continuous problems in the
quantum setting. We discuss them briefly.
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The amplitude amplification and estimation algorithm of Brassard et al.
[13] has been applied in the study of integration, path integration, the so-
lution of ordinary differential equations and other problems. Using it we
obtain a quantum algorithm that approximates the mean of a Boolean func-
tion. This can be extended to an algorithm approximating the weighted
average of N numbers. Hence, it can be used to approximate integrals. As
a result, using the amplitude amplification and estimation algorithm we can
convert classical algorithms for integration, as well as modules of algorithms
for other problems that need to compute integrals, to quantum algorithms
more or less directly.

The quantum lower bounds of Nayak and Wu [60] establishing the op-
timality of the algorithm in [13] for computing the Boolean mean also lead
to lower bounds for the cost of quantum algorithms and the complexity not
only of integration but other continuous problems as well.

For the simulation of quantum systems, splitting formulas [83, 84] have
been used to derive quantum algorithms [61, 32, 58]. They are used to
implement efficiently approximations of matrix exponentials that are required
in a number of quantum algorithms. An example is the algorithm solving
linear systems in [37]. Phase estimation [61] has had an impact. It is used in
eigenvalue estimation problems such as those of differential operators. The
solution of the time-independent Schrödinger equation is an example.

2 The model of computation

We begin by summarizing the model of computation that is used for classical
algorithms solving continuous problems before we discuss the quantum model
of computation. This will motivate the approach taken in the analysis of
quantum algorithms allowing one to draw an analogy between the classical
and quantum model of computation.

In the study of the classical complexity of continuous problems the real
number model with oracles is often used. In this model one can compute
function evaluations or linear functionals as information operations, see e.g.
[89]. The information operations are represented as black box or oracle calls.
One can also perform arithmetic operations, comparisons and evaluate el-
ementary functions. This model of computation is an abstraction of fixed
precision floating point arithmetic used in science and engineering. It has
also been used in the study of the complexity of algebraic problems such as
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matrix multiplication [81]. A comparison of the real number model and the
Turing machine model of computation can be found in [87].

Continuous problems are typically defined for classes of functions of d ≥ 1
variables and are to be solved with accuracy ε. As a result the cost of
the algorithms and the problem complexity are studied with respect to the
parameters d and ε.

For some continuous problems, such as certain zero finding problems,
convex optimization and the solution of linear systems with well conditioned
matrices the complexity depends logarithmically on ε−1. However, for the
majority of continuous problems the complexity grows much faster. A con-
tinuous problem is considered to be tractable if its complexity is proportional
to

dp1ε−p2 for some p1, p2 ∈ R. (1)

We stress that a problem’s complexity depends on the setting in which it is
studied. Indeed, for multivariate integration of smooth functions the cost of
any classical algorithm with worst case accuracy ε can grow at least as ε−αd,
for some α > 0. Then the problem suffers from the curse of dimensional-
ity and is intractable in the worst case. In some cases, classical randomized
algorithms can break intractability because they exhibit a polynomial depen-
dence on ε−1 and, as we will see, quantum algorithms provide an additional
speedup.

2.1 Quantum queries

Inputs to quantum algorithms are often given using quantum queries. They
correspond to black box or oracle calls returning evaluations of some function
f . The model of Beals et al. [6] has been used in the study of discrete
problems and, with a slight change in the definition of the queries, it has also
been used in the study of continuous problems.

In the case of a Boolean function f : {0, . . . , 2m−1} → {0, 1} the quantum
query providing information about f is defined by the unitary operator

Qf |j〉|k〉 = |j〉|k ⊕ f(i)〉, (2)

where |j〉 is an m qubit computational basis state, |k〉 is single qubit compu-
tational basis state and ⊕ denotes addition modulo 2. This type of query is
used in Grover’s search algorithm.
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In the case of real valued bounded functions different quantum queries
have been studied in the literature. Without loss of generality assume that
f : {0, . . . , 2m − 1} → [0, 1]. Abrams and Williams [3] in their study of
integration used the query

Qf |j〉|0〉 =
√

1− f(j)2|j〉|0〉+ f(j)|j〉|1〉 (3)

Qf |j〉|1〉 = −f(j)|j〉|0〉+
√

1− f(j)2|j〉|1〉.

We point out that this query is defined using the real number f(j). There-
fore, depending on f it may be very hard to implement the query exactly
using elementary quantum gates. A truncation of the value f(j) to a finite
number of most significant bits can be used to overcome this difficulty. Of-
ten, truncations of the function evaluations to a number of significant bits
proportional to ε−1 can be used without loss of generality.

Novak [63] in his paper studying the complexity of integration on Hölder1

classes used the query

Qf |j〉|0〉 =
√
f(j)|j〉|0〉+

√
1− f(j)|j〉|1〉 (4)

Qf |j〉|1〉 = −
√

1− f(j)|j〉|0〉+
√
f(j)|j〉|1〉.

The above considerations about truncating the function evaluations apply to
this case too.

A third kind of query was introduced by Heinrich in [38]. Namely

Qf |j〉|k〉 = |j〉|k ⊕ f̂(j)〉, (5)

where |j〉 and |k〉 are m and ν qubit computational basis states respectively,
f̂(j) is obtained from f(j) using a ν bit discretization of the range of f and
⊕ denotes addition modulo 2ν . Moreover, in the case of real functions of
real variables g : [0, 1]d → [0, 1], d ≥ 1, it suffices to consider a discretization
τ : {0, 1, . . . , 2m − 1} → [0, 1]d of the domain of g and to use the query
definition above with the function f(j) = g(τ(j)), j = 0, . . . , 2m − 1.

The three queries are not equivalent, in general. Query (5) can be used
to efficiently simulate queries (3) and (4) but the converse is not true [11].

1A function belongs to a Hölder class or a Sobolev space if it satisfies certain smoothness
express by conditions on its partial derivatives. A reader not familiar with these concepts
may think of a function with bounded partial derivatives up to a given order.
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2.2 Quantum algorithms

Consider a problem defined using a linear or nonlinear operator S such that

S : F → G. (6)

Typically, F is a linear space of real functions of several variables, and G
is a normed linear space. We wish to approximate S(f) to within ε for
f ∈ F . We approximate S(f) using n function evaluations f(t1), . . . , f(tn)
at deterministically and a priori chosen sample points. The quantum query
Qf encodes this information and provides it to the algorithm.

A quantum algorithm consists of a sequence of unitary transformations
applied to an initial state. The result of the algorithm is obtained by mea-
suring its final state. The quantum model of computation is discussed in
detail in [6, 7, 24, 38, 61]. We summarize it here as it applies to continuous
problems.

The initial state |ψ0〉 of the algorithm is a unit vector of the Hilbert space
Hν = C2⊗ · · · ⊗C2, ν times, for some appropriately chosen integer ν, where
C2 is the two dimensional space of complex numbers. The dimension of Hν

is 2ν . The number ν denotes the number of qubits used by the quantum
algorithm.

The final state |ψ〉 is also a unit vector of Hν and is obtained from the
initial state |ψ0〉 through a sequence of unitary 2ν × 2ν matrices, i.e.,

|ψ〉f := UTQfUT−1Qf · · ·U1QfU0|ψ0〉. (7)

The unitary matrix Qf is a quantum query and as we already mentioned it
is used to provide information about a function f . Qf depends on n function
evaluations f(t1), . . . , f(tn), at deterministically chosen points, n ≤ 2ν . The
selection of the query among the types (2), (3), (4) or (5) is often a matter
of convenience.

The matrices U0, U1, . . . , UT are unitary and do not depend on f . The
integer T denotes the number of quantum queries.

At the end of the quantum algorithm, the final state |ψf〉 is measured.
The measurement produces one of M outcomes, where M ≤ 2ν . Outcome
j ∈ {0, 1, . . . ,M − 1} occurs with probability pf (j), which depends on j and
the input f . Knowing the outcome j, we classically compute the final result
φf (j) of the algorithm.

In principle, quantum algorithms may have measurements applied be-
tween sequences of unitary transformations of the form presented above.
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However, any algorithm with multiple measurements can be simulated by a
quantum algorithm with only one measurement [8].

We consider algorithms that approximate S(f) with probability p ≥ 2
3
.

We can boost the success probability of an algorithm to become arbitrarily
close to one by repeating the algorithm a number of times. The success
probability becomes at least 1− δ with a number of repetitions proportional
to log δ−1.

The local error of the quantum algorithm (7) that computes the approx-
imation φf (j), for f ∈ F and the outcome j ∈ {0, 1, . . . ,M − 1}, is defined
by

e(φf , S) = min

{
α :

∑
j: ‖S(f)−φf (j)‖≤α

pf (j) ≥ 2
3

}
,

where pf (j) denotes the probability of obtaining outcome j for the function
f . The worst case error of a quantum algorithm φ is defined by

equant(φ, S) = sup
f∈F

e(φf , S).

The query complexity compquery(ε, S) of the problem S is the minimal num-
ber of queries necessary for approximating the solution with accuracy ε, i.e.,

compquery(ε) = min{T : ∃ φ such that equant(φ, S) ≤ ε }.

The query complexity gives a sense of the depth of the quantum circuit
realizing the algorithm and provides a complexity lower bound. It allows one
to study algorithms and obtain complexity results for classes of functions in
a way that is unobscured by the cost of a query, which varies with f . This
is how the cost is measured in Grover’s search algorithm [35, 61].

The cost for combining the queries to produce the result, i.e., the imple-
mentation cost of the unitary operators U0, . . . , Ut must also be taken into
account. The complexity of the problem is the minimal cost, including the
queries and other quantum operations, of an algorithm solving the problem
with accuracy ε. An algorithm with cost equal to the complexity, modulo an
absolute constant, is considered to be optimal.

Some papers in the literature consider only the query complexity. In some
cases, this is a simplification. In other cases, the query complexity, modulo
polylog factors, reflects the total cost of the optimal algorithm as well. On
the other hand, not all papers we review consider the query complexity alone.
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A number of them give estimates of the query complexity as well as the cost
of other quantum operations.

Finally, the qubit complexity of the problem S is the minimal number of
qubits necessary for approximating the solution with accuracy ε, i.e.,

compqubit(ε) = min{ ν : ∃ φ such that equant(φ, S) ≤ ε }. (8)

3 Applications

3.1 Integration

There are numerous applications where one seeks the expected value of a
quantity and, therefore, is confronted with an integral. Often these are in-
tegrals of multivariate functions. The number of variables can be huge, say,
in the hundredths or thousandths. In most cases the integrals cannot be
computed analytically and their values are approximated numerically.

Classical algorithms for integration have been extensively studied in the
literature and optimal algorithms are known for numerous classes of func-
tions, e.g., see [89] and the references therein.

In many cases, the optimal algorithms are linear. Thus the optimal algo-
rithm approximating

S(f) =

∫
Id

f(x) dx, (9)

where Id ⊂ Rd, has the form

A(f) =
N−1∑
j=0

ajf(xj), (10)

where aj, j = 0, . . . , N−1, are independent of f and xj, j = 0, . . . , N−1, are
deterministic or random sample points. An example of particular interest is
the algorithm

A(f) =
1

N

N−1∑
j=0

f(xj). (11)

For Id = [0, 1]d this is the midpoint rule in d dimensions that samples f on a
uniform grid. The Monte Carlo algorithm that samples f at random points
also has this form.
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Quantum algorithms can compute an approximation to A(f) fast. This
gives them an advantage over classical algorithms for integration as we will
see below. This idea was used by Abrams and Williams [3] who were the
first to derive a quantum algorithm for integration. They use query (3) to
provide the necessary function evaluations to their algorithm. Novak [63] was
the first to study the quantum complexity of integration in Hölder classes
of functions. His algorithm uses query (4). Soon after, Heinrich studied the
quantum complexity of integration in Sobolev spaces using the query (5). He
has obtained a large number of results [38, 39, 40, 45, 44].

We will use [63] to illustrate the key ideas in the derivation of quantum
algorithms for integration. We will start with an algorithm approximating
the average of N real numbers and then use it to obtain an algorithm for
integration in Hölder classes. Consider a function f : {0, . . . , N − 1} → [0, 1]
and N = 2n and the average of equation (11). To approximate the more
general sums (10) it suffices to express them as an average using a suitable
transformation.

The approximation of the Boolean mean is a special simple case. For
a function f : {0, . . . , N − 1} → {0, 1}, the amplitude amplification and
estimation algorithm of Brassard et al. [13] computes an approximation of
the mean (11) with error ε using O(ε−1) queries. Moreover, the lower bounds
of Nayak and Wu [60] show that this algorithm is optimal modulo constants.

Considering the mean (11) of a real valued function, using the query (4)
we have

Qf (H
⊗n ⊗ I)|0〉⊗n|0〉 =

1√
N

N−1∑
j=0

[√
f(j)|j〉|0〉+

√
1− f(j)|j〉|1〉

]
= a0|ψ0〉+ a1|ψ1〉,

where H is the Hadamard gate, N = 2n, a2
0 = 1

N

∑N−1
j=0 f(j), a2

0 + a2
1 = 1,

〈ψ0|ψ1〉 = 0 and

|ψ0〉 =
1

a0

√
N

N−1∑
j=0

√
f(j)|j〉|0〉

|ψ1〉 =
1

a1

√
N

N−1∑
j=0

√
1− f(j)|j〉|1〉,

have unit length.
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Then A(f) = a2
0 and the modification of the amplitude amplification and

estimation algorithm that uses T queries of the form (4) (instead of queries
of the form (2)) approximates A(f) = α2

0 with error [13, Th. 12]

2πk

√
a(1− a)

T
+ k2 π

2

T 2
,

and its success probability is at least

1− 1
2(k−1)

k > 1
8
π2 k = 1.

For functions of real variables, the smoothness of the functions determines
lower bounds on the cost of the algorithms and the complexity of integra-
tion. There are different ways to define classes of smooth functions using a
condition on their (partial) derivatives. Recall that in the Hölder classes of
functions the growth of all partial derivatives up to a given order is restricted
is a certain way, as we see in the definition below. These classes have been
considered extensively in the study of classical algorithms for integration.
Similarly, Sobolev spaces are also classes of smooth functions and we dis-
cuss them briefly at the end of this section. We define Hölder classes before
stating Novak’s integration results.

Definition 1. The Hölder class F k,α
d is the class of all k-times continuously

differentiable functions f : [0, 1]d → R with ‖f‖∞ ≤ 1 that satisfy

|∂lf(x)− ∂lf(y)| ≤ ‖x− y‖α

for all partial derivatives ∂l = ∂l11 · · · ∂
ld
d of order |l| = l1 + · · ·+ ld = k.

The integration algorithm of Novak [63] proceeds as follows. A function
f ∈ F k,α

d is approximated using a piecewise polynomial Pn(f) that interpo-
lates f at n points. This way an evaluation of f−Pn(f) has cost independent
of n, although the cost may depend on d and k. Also |f − Pn(f)| = θ(n−γ),
γ = (k + α)/d.

Then∫
[0,1]d

f(x) dx =

∫
[0,1]d

Pn(f)(x) dx+

∫
[0,1]d

(f − Pn(f))(x) dx.

Since the integral of Pn(f) can be computed exactly it suffices to approximate
the third integral above. Using the notation of equation (9) we approximate
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I(f − Pn(f)) by the average A(f − Pn(f)) as in equation (11). All the steps
are classical except the approximation of A(f − Pn(f)) which is done by the
quantum algorithm above. Appropriately selecting the values of n and N
in a way that the algorithm approximates the integral with accuracy ε and
with probability at least 3

4
, Novak shows that, modulo polylog factors, the

query complexity of integration in Hölder classes satisfies

compquery(ε) � ε−1/(1+γ) γ = (k + α)/d.

For other classes of functions, such as Sobolev spaces W r
p,d, variations of

this approach lead to algorithms with optimal query complexity. Table 1
summarizes the query complexity results (up to polylog factors) for multi-
variate integration in the worst case, randomized and quantum setting for
functions belonging to Hölder classes F k,α

d and Sobolev spaces W r
p,d. An ex-

ample of a classical randomized algorithm for integration is the well known
Monte Carlo algorithm. Observe that the integration problem suffers from
the curse of dimensionality in the classical worst case, see e.g. [89]. Quan-
tum algorithms offer an exponential speedup over classical algorithms in the
worst case and a polynomial speedup over classical randomized algorithms.
Heinrich who obtained most of the quantum query complexity results in a
series of papers, which we cited earlier, summarized his results in [39] where
a corresponding table showing error bounds can be found.

Worst case Randomized Quantum

F k,α
d ε−d/(k+α) ε−2d/(2(k+α)+d) ε−d/(k+α+d)

W r
p,d, 2 ≤ p ≤ ∞ ε−d/r ε−2d/(2r+d) ε−d/(r+d)

W r
p,d, 1 ≤ p ≤ 2 ε−d/r ε−pd/(rp+pd−d) ε−d/(r+d)

W r
1,d ε−d/r ε−d/r ε−d/(r+d)

Table 1: Complexity of integration in Sobolev spaces and Hölder classes

Quantum algorithms for integration have been used to derive optimal
quantum algorithms for other continuous problems, such as path integration,
certain approximation problems, and the solution of ordinary differential
equations.

3.2 Path integration

Traub and Wońiakowski [91] study quantum algorithms and the complexity
of path integration. Path integrals can be viewed as infinite dimensional
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integrals. They are defined by

I(f) =

∫
X

f(x)µ(dx),

where µ is a probability measure on X, an infinite dimensional space in
general, f : X → R belongs to a class F , of µ-integrable functions. In
particular, they consider a Gaussian measure µ where the eigenvalues of its
covariance operator are of order j−k, k > 1. The Wiener measure is an
example with k = 2. They also assume that F is the class of functions with
rth Frechet derivative (r <∞) continuous and uniformly bounded by one.

We describe the idea leading to the algorithm in [91]. First approximate
I(f), with error ε, by a d-dimensional integral

Id(f) =

∫
Rd
fd(t)µd(df),

where µd is a zero mean Gaussian measure. This implies that d = d(ε) is
a polynomial in ε−1 and its degree depends on k. Then approximate Id(f),
with error ε, using an algorithm A(f) of the form (10). The number of
terms in the sum is N = md and m is a polynomial in ε−1. Thus, N is an
exponential function of ε−1. Finally, use a quantum algorithm for integration
to approximate the value A(f) with error ε.

The resulting algorithm has error proportional to ε. It uses a number of
queries proportional to ε−1. The number of additional quantum operations
is polynomial in ε−1. The number of qubits is also polynomial in ε−1.

On the other hand, the classical complexity of path integration has been
considered in [97, 25]. In the worst case it is of order ε−ε

−β
, where β is a

positive number that depends on r. Hence, the problem is intractable in the
worst case. Approximating the finite dimensional integral Id(f) using Monte
Carlo leads to a classical randomized algorithm with cost proportional to
ε−2, which is an optimal classical algorithm.

In summary we have:

• Path integration on a quantum computer is tractable.

• Path integration on a quantum computer can be solved roughly ε−1

times faster than on a classical computer using randomization, and
exponentially faster than on a classical computer with a worst case
assurance.
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The Feynman-Kac path integral is a special case of a path integral and
occurs in many applications [29]. In this case X = C the space of continuous
functions and the measure is the Wiener measure µ = w. For example the
diffusion equation

∂z

∂t
(u, t) =

1

2
∆z(u, t) + V (u)z(u, t)

z(u, 0) = v(u),

with u ∈ Rd, t > 0, and V, v : Rd → R, are the potential and the initial value
functions, respectively, and ∆ denotes the Laplacian. The solution is given
by the Feynman-Kac path integral

z(u, t) =

∫
C

v(x(t) + u)e
R t
0 V (x(s)+u) dsw(dx), (12)

where C is the set of continuous functions x : R+ → Rd such that x(0) = 0.
Note that there are two kinds of dimension here. A Feynman-Kac path

integral is infinite dimensional since we’re integrating over continuous func-
tions and u is a function of d variables.

Kwas [53] following an approach similar to that of Traub and Woźniakowski
derived a quantum algorithm for Feynman-Kac path integration that uses a
number of queries proportional to ε−1. He also showed that a slightly more
complicated algorithm that uses a number of queries proportional

ε−1/(1+r/d)

is optimal.
For comparison, we briefly discuss the classical complexity of Feynman-

Kac path integration. For d = 1 when u is a scalar there is an number of
papers dealing with the solution of (12); see e.g. [17]. In particular, for u = 1
and V four times continuously differentiable, Chorin’s well known algorithm
has cost proportional to ε−2.5. Plaskota et al. [75] where the first to study
the complexity in the worst case. They construct and algorithm with cost
ε−0.25 and show it is optimal. We remark that the algorithm depends on a
numerically difficult precomputation. Multivariate Feynman-Kac integration
is studied in [54] in the worst case and in [53]. In the worst case the complex-
ity is ε−d/r, for v and V that are r < ∞ times continuously differentiable.
In the randomized case the curse of dimensionality is broken. An algorithm
based on Monte Carlo has cost of order ε−2. We remark that the quantum
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algorithm of Kwas uses a quantum algorithm for integration as a module
instead of Monte Carlo. Finally, as in the quantum case, a more complicated
randomized algorithm with cost proportional to ε−2/(1+2r/d) is optimal.

3.3 Approximation

Classically, approximation of functions of d variables has been studied for
functions in Sobolev spaces W r

p,d with error measured using the norm of Lq.
Its complexity depends on the values of the parameters [62, 88] and the
accuracy ε. Here r is a smoothness parameter, d is the number of variables
and 1 ≤ p ≤ ∞ indicates the norm is the Lp norm. For p =∞ the problem
suffers the curse of dimensionality in the classical worst and randomized case,
i.e the cost of any classical deterministic or randomized algorithm grows
exponentially with the number of variables d. Recently, Heinrich [41] showed
that quantum algorithms do not provide an advantage.

Table 2 summarizes the classical and quantum complexity of approxima-
tion (modulo polylog factors) in Sobolev spaces for the various values of the
parameters p, q, r, d.

Worst case Randomized Quantum

1 ≤ p < q ≤ ∞, ε−dpq/(rpq−d(q−p)) ε−dpq/(rpq−d(q−p)) ε−d/r

r/d ≥ 2/p− 2/q

1 ≤ p < q ≤ ∞, ε−dpq/(rpq−d(q−p)) ε−dpq/(rpq−d(q−p)) ε−dpq/(2rpq−2d(q−p))

r/d < 2/p− 2/q

1 ≤ q ≤ p ≤ ∞ ε−d/r ε−d/r ε−d/r

Table 2: Complexity of approximation in Sobolev spaces

On the other hand, there are approximation problems for which quantum
algorithms have an advantage over classical algorithms. Novak et al. [64]
study such problem. They consider a space of functions of d variables, where
certain variables are more important than others. Weights are used to define
the relative importance of the variables. They show a quantum algorithm
that is exponentially faster than any classical algorithm in the worst case,
and is roughly ε−(1+r) times faster than any classical randomized algorithm.
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The parameter r depends on the weights and can be large. Moreover, the
quantum algorithm uses about d+ log ε−1 qubits.

3.4 Ordinary differential equations

Quantum algorithms for initial value problems for systems of first order equa-
tions and scalar equations of higher order have been studied in the literature.
In both cases the algorithms are derived from classical algorithms by taking
the modules that compute integrals classically and replacing them by a quan-
tum algorithm for integration.

Kacewicz [50] studied the problem

z′(t) = f(z(t)), t ∈ [a, b], z(a) = η,

where f : Rd → Rd, z : [a, b]→ Rd and η ∈ Rd with f(η) 6= 0. For the right
hand side function f = [f1, . . . , fd], where fj : Rd → R, he assumed that

the fj belong to the Hölder class F k,α
d , k + α ≥ 1. He wanted to compute a

bounded function on the interval [a, b] that approximates the solution z.
He derived a quantum algorithm with cost that differs from the lower

bound by only an arbitrarily small parameter in the exponent. In particular,
its cost (modulo polylog factors) is

O(ε−1/(k+α+1−γ)),

where γ ∈ (0, 1) is arbitrarily small, while the quantum complexity satisfies

Ω(ε−1/(k+α+1)).

The complexity of classical randomized algorithms is also studied by
Kacewicz in the same paper. He derived a randomized algorithm with cost

O(ε−1/(k+α+1/2−γ)),

modulo polylog factors, where γ ∈ (0, 1) is arbitrarily small, and showed the
complexity lower bound

Ω(ε−1/(k+α+1/2)).

Much earlier he had studied the classical worst case complexity of ordi-
nary differential equations [49].
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Goćwin and Szczesny [34] considered quantum and classical randomized
algorithms for the solution of{

u(k)(x) = g(x, u(x), u′(x), . . . , u(q)), x ∈ [a, b],
u(j)(a) = uja, j = 0, 1, . . . , k − 1,

where 0 ≤ q < k, g : [a.b]× Rq+1 → R, u : [a, b] → R (a < b). They showed
the same complexity upper and lower bounds as the ones above hold for any
k.

Finally we mention that Heinrich and Milla [46] recently showed that the
randomized complexity lower bound of Kacewicz holds with γ = 0.

3.5 Partial differential equations

The numerical solution of partial differential equations is a vast subject.
Here we confine ourselves to elliptic equations. They have many applications
and classical algorithms for solving them have been extensively studied in
the literature, see [98] and the references within. A simple example is the
Poisson equation, for which we want to find a function u : Ω̄ → R, that
satisfies

−∆u(x) = f(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω,

where ∆ denotes the Laplacian and Ω ⊂ Rd.
Heinrich [42] studied the quantum query complexity of elliptic partial

differential equations of order 2m on a smooth bounded domain Ω ⊂ Rd

with smooth coefficients and homogeneous boundary conditions with the
right hand side function belonging to Cr(Ω) and the error measured in the
L∞ norm, and (modulo polylog factors) found it proportional to

ε−max{d/(r+2m), d/(r+d)}.

We note that classical randomized algorithms have cost at least propor-
tional to

ε−max{d/(r+2m), 2d/(2r+d)},

and this lower bound is sharp [43]. In the worst case the problem has com-
plexity proportional to ε−d/r and is intractable.

Hence, quantum algorithms may have a polynomial advantage over clas-
sical algorithms, but not always. For fixed m and r and for d > 4m the
problem is intractable in the quantum and classical settings.
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3.6 Optimization

The query complexity of finding the maximum of a multivariate function
belonging to the Hölder class F dα

d is studied in [33]. Lower bounds are derived
using the results of [60]. An optimal quantum algorithm is also shown. The
main idea is to discretize the function and then use an algorithm that finds
the maximum of a finite sequence. The latter algorithm is based on that in
[28]. In particular, the query complexity is

compquery(ε) = Θ(ε−d/(2(r+α))).

The classical worst case and randomized complexity of this problem is
well known [62]. In both cases it is Θ(ε−d(k+α)). Thus quantum algorithms
provide a quadratic speedup relative to classical algorithms.

3.7 Gradient estimation

Approximating the gradient of a function f : Rd → R with accuracy ε
requires a minimum of d + 1 function evaluations on a classical computer.
Jordan [48] shows how this can be done using a single query on a quantum
computer.

We present Jordan’s algorithm for the special case where the function is
a plane passing through the origin, i.e., f(x1, . . . , xd) =

∑d
j=1 ajxj, and is

uniformly bounded by 1. Then ∇f = (a1, . . . , ad)
T . Using a single query and

phase kickback we obtain the state

1√
Nd

N−1∑
j1=0

· · ·
N−1∑
jd=0

e2πif(j1,...,jd)|j1〉 · · · |jd〉,

where N is a power of 2. Equivalently, we have

1√
Nd

N−1∑
j1=0

· · ·
N−1∑
jd=0

e2πi(a1j1+···+adjd)|j1〉 · · · |jd〉.

This is equal to the state

1√
N

N−1∑
j1=0

e2πia1j1|j1〉 . . .
1√
N

N−1∑
jd=0

e2πiadjd|jd〉.
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We apply the Fourier transform to each of the d registers and then measure
each register in the computational basis to obtain m1, . . . ,md. If aj can be
represented with finitely many bits and N is sufficiently large then mj/N =
aj, j = 1, . . . , d.

For functions with second order partial derivatives not identically equal
to zero the analysis is more complicated. We refer the reader to [48] for the
details.

3.8 Simulation

In 1982 Richard Feynman [32] observed that simulating quantum systems
would be difficult or impossible on a classical computer. The number of pa-
rameters describing the quantum states grows exponentially with the system
size and so does the computational cost of the best classical deterministic
algorithms known. In some cases classical randomized algorithms have been
used to overcome these difficulties, however, randomized algorithms also have
limitations. As an alternative to simulation with a classical computer Feyn-
man proposed simulation with a quantum computer. He conjectured that
quantum computers might be able to carry the simulation more efficiently
than classical computers. For an overview of quantum simulation see, e.g.,
[32, 58, 51, 16].

In the Hamiltonian simulation problem one is given a Hamiltonian H,
t ∈ R and an accuracy demand ε and the goal is to derive an algorithm
approximating the unitary operator e−iHt with error at most ε. The size of
the quantum circuit realizing the algorithm is its cost. Assuming that H is
a matrix of size 2q × 2q the algorithm is efficient if its cost is a polynomial in
q, t and ε−1.

Lloyd [58] showed that local Hamiltonians can be simulated efficiently
on a quantum computer. About the same time, Zalka [105, 104] showed
that many-particle systems can be simulated efficiently on a quantum com-
puter. Later, Aharonov and Ta-Shma [4] generalized Lloyd’s results to sparse
Hamiltonians. We note that Hamiltonian simulation is also related to adia-
batic evolution and quantum walks [31, 21, 30, 19, 20].

Berry et al. [10] extended the complexity results of [4] for sparse Hamil-
tonians. They assume that the Hamiltonian H is given by an oracle (a
black-box) and that H can be decomposed efficiently, by a quantum algo-
rithm using oracle calls, into a sum of Hamiltonians Hj, j = 1, . . . ,m, that
individually can be simulated efficiently. They approximate e−iHt with error
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ε by a sequence of N unitary operators of the form e−iHj` tj` , ` = 1, . . . , N .
The cost of the simulation is the total number of oracle calls. All the uni-
tary operators in the sequence have to be considered in the simulation, one
after the other. The algorithm has to make oracle calls to each Hamiltonian
appearing in the sequence and to simulate it. Each oracle call to any Hj is
simulated by making oracle calls to H; see [10, Sec. 5] for details. Thus the
total number of oracle calls is proportional to N , although it is not equivalent
since there can be overhead in implementing each e−iHj` tj` , ` = 1, . . . , N .

In particular, let H =
∑m

j=1Hj, where e−iHjt, t ∈ R, can be implemented
efficiently, and the Hj do not commute, j = 1, . . . ,m. Consider algorithms
approximating e−iHt, t ∈ R, that are obtained using Suzuki’s high order
splitting formulas [83, 84]. These algorithms have the form

N∏
l=1

e−iHjl tjl , (13)

for suitable tjl ∈ R, where jl ∈ {1, . . . ,m}. The cost of the simulation of H
is proportional to the number of exponentials, N , so that∥∥∥∥∥e−iHt −

N∏
l=1

e−iHjl tjl

∥∥∥∥∥ ≤ ε.

Berry et al. [10] show that

N ≤ Nprev := m52k(m‖H1‖t)1+ 1
2k ε−1/(2k), (14)

where the splitting formula is of order 2k + 1 and ‖H1‖ ≥ ‖H1‖ ≥ · · · ≥
‖Hm‖. They also derive the value of k that minimizes the upper bound.
Papageorgiou and Zhang [72] improve this estimate for N by showing

N ≤ Nnew := 2(2m− 1) 5k−1‖H1‖t
(

4emt‖H2‖
ε

)1/(2k)
4me

3

(
5

3

)k−1

.

From this they also derive an improved estimate for the k that minimizes the
upper bound.

There are many applications of these estimates. In [10] they are used
along with the decomposition cost of H and the simulation cost of the in-
dividual Hj, j = 1, . . . ,m, to derive the overall simulation cost. Recently,
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Childs and Kothari [22] used the estimates in [10] in the simulation of sparse
Hamiltonians with star decompositions.

A more general Hamiltonian simulation problem is studied by Wiebe et
al. [100] who derive an estimate similar to (14).

Besides the papers mentioned above there is a large and varied literature
on Hamiltonian simulation. Many papers deal with particular algorithms.
There are no tight complexity bounds. The following list of papers, which is
by no means complete, is of interest. Abrams and Lloyd [1] show algorithms
for the simulation of many-body Fermi systems. Brown et al. [15] establish
limits of quantum simulation. Boghosian and Taylor [12] present efficient
algorithms simulating quantum mechanical systems. Bravyi et al. [14] show
an efficient algorithm for the simulation of weakly interacting quantum spin
systems. Buluta and Nori [16] provide an overview of quantum simulators.
Chen et al. [18] study the simulation of the Burgers equation. Kassal et
al. [52, 51] deal with quantum simulation in chemistry. Ortiz et al. [68]
study algorithms for fermionic simulations. Paredes et al. [73] present an
algorithm that exploits quantum parallelism to simulate randomness. Somma
et al. [79, 80] study the quantum simulation of physics problems. Whitfield
et al. [99] study the quantum simulation of electronic Hamiltonians. Wiesner
[101] studies the quantum simulation of many-body systems. Wu et al. [102]
study the simulation of pairing models on a quantum computer. Yepez [103]
presents an efficient algorithm for the many-body three-dimensional Dirac
equation.

3.9 Eigenvalue estimation

The estimation of the ground state eigenvalue of a time-independent Hamil-
tonian corresponding to a multiparticle system is an important problem in
physics and chemistry. Decades of calculating ground state eigenvalues of
systems with a large number of particles have suggested that such problems
are hard on a classical computer. That is why researchers have been experi-
menting with quantum computers to solve eigenvalue problems in quantum
chemistry with very encouraging results [27, 55].

In fact, there has been a fair amount of work dealing with eigenvalue
problems see, e.g. [14, 57, 36, 67, 86, 92, 94, 96]. See also [51, 52] and the
references therein.

Abrams and Lloyd [2] were the first to observe that the ground state
eigenvalue of the Born-Oppenheimer electronic Hamiltonian [85, p. 43] can
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be approximated on a quantum computer using the phase estimation al-
gorithm [61, Fig. 5.2]. Phase estimation is not limited to this particular
Hamiltonian eigenvalue problem but is broadly applicable, provided its re-
quirements are met with reasonable cost for the problem at hand.

One requirement is that the second register of its initial state should con-
tain an approximation of the eigenvector corresponding to the eigenvalue of
interest. For instance, for the estimation of the ground state eigenvalue one
needs an approximate ground state eigenvector. This approximation does
not need to be very precise. It suffices that the magnitude of its projection
on the actual eigenvector is not exponentially small. The success probability
of the algorithm depends on the quality of the approximate eigenvector. In
some cases such approximations can be computed efficiently by quantum al-
gorithms [47], in other cases quantum algorithms designed to prepare general
quantum states [94] are used to prepare the approximate eigenvector, or it is
empirically or randomly chosen [2, 57].

The second requirement is the implementation of powers of the unitary
matrix U that phase estimation uses. In the case of the time-independent
Schrödinger equation U = eiγH , where H denotes the system Hamiltonian
and γ is a suitable constant that aims to ensure the phase corresponding
to the eigenvalue of interest belongs to [0, 1). Then one needs to derive the
cost simulating the U2t , t = 0, . . . , b− 1, so that the algorithm has accuracy
2−b ≤ ε, with high probability. We remark that the powers of U do not have
to be simulated very accurately, because the simulation error only affects
the success probability of phase estimation. The algorithms for Hamiltonian
simulation we discussed previously are used to approximate the powers of U .
Thus the total cost of phase estimation includes the simulation cost.

For the approximation of the ground state eigenvalue (ground state en-
ergy) of the time-independent Schrödinger equation the form of the Hamilto-
nian H used in phase estimation depends on the way the eigenvalue problem
is approached. One possibility is to obtain H by spatially discretizing the
time-independent Schrödinger equation. An advantage of this is that one
solves the problem for a class of potentials. Another possibility is to use the
Born-Oppenheimer electronic Hamiltonian in the second quantized form [85,
p. 89] in phase estimation. We discuss both alternatives below.

Papageorgiou et al. [71] using a spatial discretization of the Schrödinger
equation provide rigorous estimates of the cost and the success probability
of the phase estimation. Their algorithm prepares the initial state, and
simulates all the U2t , t = 0, . . . , b − 1. We remark that there are some
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similarities between their approach and that already used by Lidar and Wang
[57] for the calculation of the thermal rate constant.

In particular, Papageorgiou et al. consider the approximation of the
smallest eigenvalue E1 of the equation

(−1
2
∆ + V )Ψ1(x) = E1Ψ1(x) for all x ∈ Id := (0, 1)d,

Ψ1(x) = 0 for all x ∈ ∂Id,

where ∂Id denotes the boundary of the unit cube, x is the position variable,
and Ψ1 is a normalized eigenfunction. For simplicity, they assume that all
masses and the normalized Planck constant are one. The boundary condi-
tions are for particles in a box. Multiparticle systems on bounded domains
with the wave function equal to zero on the boundary have been studied in
the literature; see e.g. [23, p. 621].

Here, ∆ is the d-dimensional Laplacian and V ≥ 0 is a function of d
variables. The dimension is proportional to the number of particles p, e.g.,
d = 3p. For many applications the number of particles p and hence d is huge.
Moreover, it is assumed that V and its first order partial derivatives ∂V/∂xj,
j = 1, . . . , d, are continuous and uniformly bounded by 1.

To approximate E1 with relative error proportional to ε observe that the
finite difference discretization of the operator −1

2
∆+V on a regular grid with

mesh size h = ε yields a matrix H = −1
2
∆h + Vh, whose smallest eigenvalue

Eh,1 approximates E1 with relative error O(ε). The matrix size is ε−d × ε−d.
Phase estimation approximates Eh,1 using:

1. The state
|ψ1〉⊗d

in the second register of the initial state. This is an estimate of the
eigenvector corresponding to Eh,1, where |ψ1〉⊗d is the ground state
eigenvector of −∆h, which are implemented efficiently using the quan-
tum Fourier transform with a number of quantum operations propor-
tional to d(log ε−1)2.

2. Suzuki’s [83, 84] high order splitting formulas to simulate the unitaries
U2t , t = 0, . . . , b − 1, where U = eiH/(2d). These splitting formulas use
exponentials involving −1

2
∆h and Vh, respectively. The former are im-

plemented using the quantum Fourier transform with cost proportional
to d(log ε−1)2. The latter, involving the evaluations of the potential,
are implemented using quantum queries.
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The overall simulation error is at most 1/20 using

O
(
ε−3e
√

ln 1
dε

)
as dε→ 0.

matrix exponentials.

The errors due to the approximation of the ground state eigenvector and
the simulation of the exponentials affect the success probability of phase
estimation. However, it remains at least 2/3. Its total cost, including the
number of queries and the number of all other quantum operations, is

Cdε−(3+δ),

where δ > 0 is arbitrarily small and C is a constant. The number of qubits
is

cd log ε−1.

where c is a constant.
Tight quantum complexity bounds for the ground state eigenvalue prob-

lem are not known. On the other hand the cost of any classical algorithm in
the worst case with respect to V grows exponentially with d. Indeed, consider
a potential function V and let V̄ be a perturbation of V . Then the eigenvalue
E1(V ) corresponding to V and the eigenvalue E1(V̄ ) corresponding to V̄ are
related according to the formula

E1(V ) = E1(V̄ ) +

∫
Id

(V (x)− V̄ (x))Ψ2
1(x; V̄ ) dx

+ O
(
‖V − V̄ ‖2∞

)
,

where Ψ1(·; V̄ ) denotes the eigenfunction corresponding to E1(V̄ ). This im-
plies that approximating E1 is at least as hard as approximating the mul-
tivariate integral involving V in the worst case. As a result, any classical
deterministic algorithm for the eigenvalue problem with accuracy ε must use
a number of function evaluations of V that grows as ε−d; see [70] for details.

As we indicated, for multiparticle systems many papers consider the Born-
Oppenheimer electronic Hamiltonian in the second quantized form, see e.g.,
[5, 52, 69, 93, 95, 99]. It is given by

H =
∑
p,q

hpqa
†
paq +

1

2

∑
p,q,r,s

hpqrsa
†
pa
†
qaras,
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where hpq and hpqrs are one- and two-electron integrals, respectively, in a
molecular spin orbital basis, p, q, r, s = 1 . . . ,M ; see [99, Eq. 3 and Eq. 4],
and M is the number of basis functions. So we have M2 + M4 integrals.
The values of these integrals are considered known since they are computed
classically once the basis functions are chosen. The aj, a

†
j are fermionic

annihilation and creation operators, respectively, j = 1, . . . ,M . We have the
anti-commutation relations

ajai + aiaj = 0, and aja
†
i + a†iaj = δijI, i, j = 1, . . . ,M, (15)

where δij is the Kronecker delta and I is the identity operator.
Whitfield et al. [99], Ovrum and Hjorth-Jensen [69] and Veis and Pittner

[93] take similar approaches for estimating the ground state eigenvalue of H.
Our discussion is based on [99]. The Jordan-Wigner transformation is used
to map the creation and annihilation operators a†j and aj to products of Pauli
matrices. This transformation is defined by

aj → σ+
j

(
M∏

k=j+1

σzk

)
(16)

a†j → σ−j

(
M∏

k=j+1

σzk

)
,

where σsj = 1⊗· · ·⊗σs⊗1 · · ·⊗1, σs is applied to the jth qubit, s ∈ {z,+,−},
and

σz =

(
1 0
0 −1

)
, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
.

See [99, Eq. 5a and Eq. 5b] for details.
This yields the Pauli representation of the Hamiltonian

H =
K∑
j=1

Hj,

with K = O(M4). For simplicity we assume here that each of the Hj corre-
sponds to a term of the original Hamiltonian. Phases estimation is used to
approximate the ground state eigenvalue of this Hamiltonian. The exponen-
tials e−iHjt, t ∈ R, j = 1, . . . , K, can be implemented using O(M) elementary
quantum gates. We remark that in [99] extra care is taken to group the terms
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in a way that each of the resulting ones can be implemented using quantum
circuit primitives with cost O(M), and this is an important feature of their
algorithm. In either case, the cost of implementing the exponentials of all
the terms in H is O(M5).

In phase estimation the Trotter formula is used to simulate the exponen-
tial of the Hamiltonian as follows

eiγH2t ≈

(
K∏
j=1

eiγHj2
t/Nt

)Nt

t = 0, . . . , b− 1,

where b is the number of qubits in the first register of phase estimation upon
which the accuracy depends. The error of this approximation is bounded
by cγ2t

∑K
j=1 ‖Hj‖N−1

t ,, see [82, Th. 3], where c is constant independent of
K and the Hj, j = 1, . . . , K. Often, the values of the Nt, t = 0, . . . , b − 1,
are chosen empirically in practice. Similarly, the value of b is determined by
considerations, such as reasonable chemical accuracy, and is relatively small.

3.10 Linear systems

Many applications require the solution of systems of linear equations. There
is an extensive literature about classical algorithms for this problem; see
[26, 77] and the references therein. Recently Harrow et al. [37] derived a
quantum algorithm for this problem. We sketch this algorithm.

Consider the linear system Ax = b, where A is an N × N Hermitian
matrix. Harrow et al. derive an quantum algorithm that computes the
solution of A|x〉 = |b〉. They assume that the singular values of A belong to
[κ−1, 1] (so the condition number K(A) of A satisfies K(A) ≤ κ) and that b is
a unit vector that has been quantum mechanically implemented and is given
as state |b〉. The algorithm does not output |x〉 classically. The solution is
available as a quantum state so that one can compute functionals involving
it. For instance, an expectation 〈x|M |x〉, for a given M .

Let λj be the eigenvalues and |uj〉, j = 1, . . . , N be the normalized eigen-

vectors of A. Then |b〉 =
∑N

j=1 βj|uj〉. Consider phase estimation as in [61,
Fig. 5.2] with the state |b〉 in the second register, and the conditional Hamil-
tonian evolution

T−1∑
k=0

|k〉〈k| ⊗ eiAkt0/T ,
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where t0 = O(κε−1), T is a sufficiently large number, and ε is the desired
accuracy in the solution of the system. After the inverse Fourier transform
is applied at the top register the state is

N∑
j=1

βj

T−1∑
k=0

α(j, k)|k〉|uj〉.

Then |α(j, k)| is large for the indices kj ∈ {0, . . . , T − 1} that lead to good

approximations λj ≈ 2πkj
t0

=: λ̃j, and are small for the remaining indices,
j = 1, . . . , N .

Neglecting the terms that do not lead to good approximations of the
eigenvalues of A we have

N∑
j=1

βjα(j, kj)|kj〉|uj〉.

Adding a qubit and performing a conditional rotation we get

N∑
j=1

βjα(j, kj)|kj〉|uj〉
(√

1− C2/λ̃2
j |0〉+ C/λ̃j|1〉

)
,

where C = O(κ−1). At this point we do not need the |kj〉 any longer and
we undo phase estimation. To further simplify the analysis we assume that
α(j, kj) = 1, j = 1, . . . , N . So we have the state

N∑
j=1

βj|uj〉
(√

1− C2/λ̃2
j |0〉+ C/λ̃j|1〉

)
,

If we measure the last qubit and the outcome is 1 the system collapses to the
state

γ
N∑
j=1

βj

λ̃j
|uj〉,

which is an approximation to the solution |x〉 of the linear system, modulo the
factor γ = (

∑N
j=1C

2|βj|2/|λ̃j|2)−1/2, which is the reciprocal of the square root

of the probability to obtain outcome 1. This probability is Ω(κ−2) because
C = O(κ−1). Thus O(κ) steps of amplitude amplification [13] are sufficient
to boost this probability.
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Assuming that A is s-sparse and taking into account the cost of simulating
eiAt, as well as the error of phase estimation the total cost of the quantum
algorithm is proportional to

s logN κ2ε−1.

The best general purpose classical algorithm for the solution of linear
systems is the conjugate gradient algorithm [77] and has cost proportional
to

sN
√
κ log ε−1

for a positive definite matrix A, and

sNκ log ε−1

otherwise.
This quantum algorithm is very efficient for systems involving matrices

of huge size with condition number polynomial in logN , assuming ε is not
arbitrarily small. However, in many applications the matrix size N depends
on the desired accuracy ε, and grows as ε → 0. This can be true for the
condition number K(A) as well. Thus the dependence of N and K(A) on ε
determines if there is an advantage of the quantum algorithm.

Two recent papers apply this quantum algorithm to the solution of first
order differential equations [56, 9]. Since neither addresses the relationship
between N and ε for solving the differential equations with error ε it is hard
to draw a conclusion about the efficiency of the quantum algorithm in these
cases.

However, a detailed analysis of the performance of the quantum algorithm
for the linear systems involved in the solution of differential equations with
error εmay reveal a significant advantage. Consider, for example, the systems
obtained from the discretization of second order elliptic partial differential
equations in d dimensions. Then we can have N = ε−d and K(A) = Θ(ε−2).
Observe that classical algorithm that solves the system must have cost at
least proportional to the matrix size N = ε−d, i.e., exponential in d. On the
other hand, the quantum algorithm whose cost depends on the logarithm of
N , and the condition number K(A), is exponentially faster than the classical
algorithm when d is large.
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