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Abstract

It has been an open problem to derive a necessary and sufficient condition for a
linear tensor product problem S = {Sd} in the average case setting to be weakly
tractable but not polynomially tractable. As a result of the tensor product struc-
ture, the eigenvalues of the covariance operator of the induced measure in the one
dimensional problem characterize the complexity of approximating Sd, d ≥ 1, with
accuracy ε. If

∑∞
j=1 λj < 1 and λ2 > 0, we know that S is not polynomially tractable

iff lim supj→∞ λjjp = ∞ for all p > 1. Thus we settle the open problem by showing
that S is weakly tractable iff

∑
j>n λj = o

(
ln−2 n

)
. In particular, assume that

` = lim
j→∞

λjj ln3(j + 1),

exists. Then S is weakly tractable iff ` = 0.

1 Introduction

The complexity of multivariate problems is often studied with respect to the required accu-
racy ε while assuming the number of variables d is fixed. Treating d as a constant disregards
important aspects of the complexity. There are many problems where the cost of any algo-
rithm solving them to within ε grows exponentially with d.

Henryk Woźniakowski initiated research studying the complexity of multivariate prob-
lems as a function of the accuracy ε and the dimension d about fifteen years ago. His work
and that of his colleagues has produced numerous results, many of them quite recent, which
are included in the recently published book Tractability of Multivariate Problems, Volume
1: Linear Information, by Erich Novak and himself. A second volume Tractability of Mul-
tivariate Problems, Volume 2: Standard Information for Functionals, by the same authors,
is expected to be published by the European Mathematical Society in 2010. The two books
contain 91 open problems. In this paper we solve Open Problem 28, which can be found in
the first volume.
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The problem we study in this paper concerns linear tensor product problems in the
average case setting. A linear problem S = {Sd} is obtained through a sequence of continuous
linear operators Sd each defined on a space of functions of d ≥ 1 variables [2]. In the worst
case setting, the tensor product structure is introduced by setting

Sd = S ⊗d1 ,

where S1 is defined on a space of univariate functions. This construction is generalized in the
average case setting. In fact, fewer assumptions are necessary. For Sd : Fd → Gd, only the
target space Gd needs to be a tensor product space Gd = G⊗d1 , where G1 is a Hilbert space.
The space Fd is equipped with a Gaussian measure that is derived from a given Gaussian
measure on F1. We will go over the details later in this paper.

We are interested in algorithms approximating the operator Sd using n evaluations of
arbitrary linear functionals and we consider their average error. The information complexity
(complexity for brevity) is the minimal number of evaluations needed to approximate Sd
to within accuracy ε. In order to underline the dependency on ε and d, we denote the
complexity by n(ε, d).

The problem S is polynomially tractable iff n(ε, d) grows as a polynomial in d and ε−1.
In particular, when n(ε, d) is bounded by a quantity independent of d and polynomial in ε−1

the problem S is strongly polynomially tractable.

The problem S is weakly tractable iff

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0,

otherwise the problem is intractable. Hence, a problem is weakly tractable if its complexity
is not exponential in both ε−1 and d. Note that weakly tractable problems have complexity
that is subexponential even though it may grow faster than any polynomial in ε−1 or d.

The complexity of linear tensor product problems in the average case setting is character-
ized by the eigenvalues of the covariance operator of the induced measure on the space G1.
These eigenvalues, due to the tensor product structure, determine the rate of decay of the
eigenvalues of the covariance operator in the d-dimensional problem and, through them, they
determine the (average) error of optimal algorithms, as we will see soon.

We know that if the sum of all the eigenvalues, in the one-dimensional problem, is greater
than or equal to 1 then S is intractable. When the opposite is true, the notions of poly-
nomial and strong polynomial tractability are equivalent. When the eigenvalues in the one
dimensional problem satisfy

λj = O(j−p) with p > 1,

the problem is polynomially tractable. See [2, Ch. 6.2] for all the details. It has been an open
question to characterize the eigenvalues for which S is weakly tractable but not polynomially
tractable. The precise statement of this question is Open Problem 28 in [2], and we solve it
in this paper.

In particular, consider the linear tensor product problem S = {Sd} in the average case
setting with

∑∞
j=1 λj < 1, λ2 > 0, for the absolute error criterion. We show that:
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• S is weakly tractable iff

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
.

• In particular, suppose that
` = lim

j→∞
λjj ln3(j + 1)

exists. Then S is weakly tractable iff ` = 0.

In this paper we deal only with the absolute error criterion since linear tensor product
problems are intractable in the average case setting with the normalized error criterion for
λ2 > 0. M. A. Lifshits and E. V. Tulyakova in [1, Sec. 3] derive the complexity with the
normalized error criterion when d → ∞ and ε is fixed. It appears that their approach can
be used to derive the complexity for the absolute error criterion as well. However, we do not
pursue this since we are mainly interested in determining when weak tractability holds.

2 Linear Tensor Product Problems

In this section we briefly introduce linear tensor product problems in the average case setting.
The material is from [2, Ch.6] and we include it here for the convenience of the reader.

Let
Sd : Fd → Gd,

be a continuous linear operator mapping a separable Banach space Fd to a separable Hilbert
space Gd, d ≥ 1. We assume that the space Gd is the tensor product of d copies of a separable
Hilbert space G, i.e., Gd = ⊗di=1G. Thus Gd is spanned by ⊗di=1gi, gi ∈ G, and has an inner
product defined by

〈⊗di=1gi,⊗di=1hi〉Gd
=

d∏
i=1

〈gi, hi〉G for gi, hi ∈ G.

Hence,

Sdf =
∑
j∈Nd

〈Sdf, ηd,j〉Gd
ηd,j for f ∈ Fd,

where
ηd,j = ⊗dk=1ηjk j = [j1, j2, . . . , jd] ∈ Nd, (1)

and {ηi}i∈N is an orthonormal system in G.

Consider a zero-mean Gaussian measure µd on Fd with
∫
Fd
‖Sdf‖2Gd

µd(df) < ∞. Let

νd = µdS
−1
d be the induced measure on Gd, which is also a zero-mean Gaussian measure.

Let Cνd
denote the covariance operator of νd and let (λd,j, ηd,j), j ∈ Nd, be its eigenvalues

and the corresponding eigenvectors.
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We also assume that the eigenvalues satisfy the conditions below, in order to preserve the
tensor product structure of Gd and its orthonormal system {ηd,j}j∈Nd . For d = 1, λ1,j = λj,
with λ1 ≥ λ2 ≥ . . . ≥ 0 and

d∑
j=1

λj = trace(Cν1) <∞.

For d ≥ 1, we assume

λd,j = Πd
k=1λjk for all j = [j1, j2, . . . , jd] ∈ Nd, (2)

and

trace(Cνd
) =

∑
j∈Nd

λd,j =

(
∞∑
i=1

λj

)d

.

A linear tensor product problem in the average case setting is a multivariate problem
S = {Sd} with the eigenpairs of the covariance operator Cνd

satisfying the conditions (1, 2).

For notational convenience, let us now reindex the eigenvalues and eigenvectors to obtain
{λd,j}j∈Nd = {λd,i}i∈N and {ηd,j}j∈Nd = {ηd,i}i∈N, respectively. Also assume the eigenvalues
are ordered, λd,1 ≥ λd,2 ≥ · · · ≥ 0.

Suppose that we can use arbitrary linear functionals on Fd as information operations,
i.e., we can use functionals from the class Λall, as denoted in [2, 3]. Then it is known, see
e.g. [3], that the algorithm

Ad,n(f) =
n∑
i=1

〈Sdf, ηd,i〉Gd
ηd,i (3)

minimizes the average error

e(Ad,n) =

(∫
F1

‖Sf − Ad,n(f)‖2Gd
µ(df)

)1/2

,

among all possible algorithms using at most n information operations. It is also known that
the error of this optimal algorithm is obtained from the truncated trace of Cνd

and

e(Ad,n) =

(
∞∑

i=n+1

λd,i

)1/2

. (4)

The information complexity of the problem Sd for accuracy ε with the absolute error
criterion is the minimal number of information operations needed to guarantee that the
average case error is at most ε, and is given by

n(ε, d) = min

{
n :

∞∑
i=n+1

λd,i ≤ ε2

}
.

The problem S is polynomially tractable iff there exist constants c, p2 ≥ 0, p1 > 0 such
that

n(ε, d) ≤ c dp2ε−p1 ∀ d ≥ 1, ε ∈ (0, 1).
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When p2 = 0 the problem is strongly polynomially tractable.

As we have already mentioned, the problem S is weakly tractable iff

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0.

The reader is referred to [2] for more details.

3 Weak Tractability

Linear tensor product problems in the average case setting are discussed in [2, Ch. 6]. We
briefly review some of the results, which motivate Open Problem 28 in the book [2]. Details
can be found in [2, Th. 6.5, Th. 6.6].

Recall that we deal only with the absolute error criterion, since linear tensor product
problems are intractable in the average case setting with the normalized error criterion for
λ2 > 0.

If the one-dimensional eigenvalues satisfy
∑∞

j=1 λj ≥ 1 then the linear tensor product
problem S = {Sd} is intractable. From this point on we consider the case

∞∑
j=1

λj < 1, λ2 > 0.

Then the following conditions are equivalent:

1. S is polynomially tractable.

2. S is strongly polynomially tractable.

3. There exists a τ ∈ (0, 1) such that
∑∞

j=1 λ
τ
j ≤ 1.

Moreover, if λj = O(j−p) with p > 1, the following conditions are equivalent:

1. S is weakly tractable.

2. S is polynomially tractable.

3. S is strongly polynomially tractable.

4.
∑∞

j=1 λj < 1.

Combining the above with

∞∑
j=1

λτj ≤ 1 for τ ∈ (0, 1) iff
∞∑
j=1

λj < 1 and λj = O(j−p) for p > 1,
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(see, [2, p. 258] for the proof) we conclude that one possibility for having a weakly tractable
problem which is not polynomially tractable is if

λj = O

(
1

j lnq(j + 1)

)
for q > 1.

This observation led to the following open problem in [2]:

Open Problem 28

Consider the linear tensor product problem in the average case setting S = {Sd} with∑∞
j=1 λj < 1 and λ2 > 0. Study this problem for the absolute error criterion and for the

class Λall. Verify whether there are eigenvalues λj for which we have weak tractability but
not polynomial tractability. If so, characterize all such {λj}. In particular, characterize the
numbers q for which we have weak tractability for

λj = Θ

(
1

j lnq(j + 1)

)
.

We are interested in estimating the information complexity n(ε, d). Let a =
∑∞

j=1 λj.

The error of the zero algorithm that does not use any information at all is ad/2. Hence,
the interesting case is when the required accuracy satisfies ε2 < ad. Let us start with the
relatively easier task of characterizing the numbers q and then we will deal with the general
case.

Lemma 1. Consider the eigenvectors of Cνd
given by

ηd,j = ηj1 ⊗ · · · ⊗ ηjd ,

where j = [j1, j2, . . . , jd], for jk = 1, . . . ,m, and k = 1, . . . , d. The average error of the
algorithm

φd,md(f) =
m∑

j1,...,jd=1

〈Sd(f), ηd,j〉ηd,j

is bounded from above as follows

e2(φd,md) ≤ d ad−1 tm,

where tm =
∑∞

j=m+1 λj.
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Proof. The error of φd,md satisfies

e2(φd,md) =
∑

j1,...jd≥1

λj1 . . . λid −
m∑

j1,...jd=1

λj1 . . . λid

=
∑

j1>m,j2,...,jd≥1

λj1 . . . λjd +
∑

j1≤m,j2,...,jd≥1

λj1 . . . λjd −
m∑

j1,...jd=1

λj1 . . . λjd

= tma
d−1 +

∑
j1≤m,j2,...,jd≥1

λj1 . . . λjd −
m∑

j1,...jd=1

λj1 . . . λjd

≤ 2tma
d−1 +

∑
j1,j2≤m,j3,...,jd≥1

λj1 . . . λjd −
m∑

j1,...jd=1

λj1 . . . λjd

...

≤ dad−1tm.

We remark that the algorithm φd,md minimizes the average error among all algorithms
that use the the same information as φd,md although this information is not optimal, in gen-
eral. The reason is that the eigenvectors ηd,j do not correspond to the md largest eigenvalues.
Hence, if m is large enough and φd,md satisfies the accuracy demand ε then md is an upper
bound of n(ε, d).

Theorem 1. Consider the linear tensor product problem S = {Sd} in the average case
setting with

∑∞
j=1 λj < 1, λ2 > 0, for the absolute error criterion and the class of Λall.

• S is weakly tractable iff

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
.

• In particular, suppose that
` = lim

j→∞
λjj ln3(j + 1)

exists. Then S is weakly tractable iff ` = 0.

Proof. We begin by showing that

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
is a sufficient condition for weak tractability. Let ε−1 and/or d to be sufficiently large. The
error of the algorithm φd,md of Lemma 1 satisfies

e2(φd,md) ≤ dad−1tm = dad−1 sm

ln2(m+ 1)
,
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where sm = o(1).

Let m = m(ε, d) be the smallest integer such that

e2(φd,md) ≤ dad−1 sm

ln2m
≤ ε2 < ad.

Then m→∞ as ε→ 0 and/or d→∞. Clearly n(d, ε) ≤ md and

lnm ≥ (dad−1sm)1/2ε−1.

By definition of m(ε, d), there exists a constant c such that

lnm(ε, d) ≤ c (dad−1sm(ε,d)−1)
1/2ε−1.

Hence,

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
≤ lim

ε−1+d→∞

d lnm(ε, d)

ε−1 + d
= lim

ε−1+d→∞

c d
[
ad−1sm(ε,d)−1

]1/2
ε−1

ε−1 + d
= 0.

On the other hand, it is relatively easy to show that

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
is a necessary condition for weak tractability. One can use the same proof as the one used
in [2, p. 178] for the worst case. For completeness, we include it here. Assume S is weakly
tractable, i.e.,

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
= 0.

Setting d = 1, we get 1
ε−1+1

= o(ln−1 n(ε, 1)) as ε → 0. Equivalently, ε = o(ln−1 n(ε, 1)).
Also

ε2 ≥ e2(A1,n(ε,1)) = tn(ε,1).

So
tn = o(ln−2(n+ 1)).

This completes the proof of the first part of the theorem.

For the second part of the theorem it is easy to see that ` = 0 is a necessary condition
for weak tractability. Indeed, let d = 1 and ε be sufficiently small. Assume there exists a
constant c such that ` = limj→∞ λjj ln3(j + 1) ≥ c > 0. Then tn is bounded from below as
follows

tn = e2(A1,n) ≥ c
∑
j>n

1

j ln3(j + 1)
= Ω

(
1

ln2(n+ 2)

)
and we have a contradiction.

We now show that the condition ` = 0 is sufficient for weak tractability. Let

λj =
g(j)

j ln3(j + 1)
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and since ` = 0 we have g(j) = o(1). Let ε−1 and/or d be sufficiently large. We have

tn =
∑
j>n

g(j)

j ln3(j + 1)
≤ sn

ln2(n+ 1)
,

where sn = supj>n g(j) = o(1). Hence tn = o(ln−2(n+ 1)), and the first part of the theorem
yields that S is weakly tractable.

Remark 1. In the second part of Theorem 1 we assumed that the limit of λjj ln3(j+1) exists
as j → ∞ and we showed a necessary and sufficient condition for weak tractability. If, on
the other hand, this limit does not exist the problem may still be weakly tractable.

Indeed, the condition tn =
∑

j>n λj = o(ln−2(n+ 1)) implies that nλ2n = o(ln−2(n+ 1)).
Therefore,

λn = o

(
1

n ln2(n+ 1)

)
is a necessary condition for weak tractability. Moreover, proceeding in a way similar to that
in the proof of Theorem 1, we can show a second necessary condition, namely

lim inf
n→∞

λnn ln3(n+ 1) = 0.

It is interesting to observe that as long as the slower converging subsequence of eigenvalues
does not contribute excessively to tn the problem can be weakly tractable. We illustrate this
by an example.

Let k0 be a sufficiently large integer. For k = k0, k0 + 1, . . . , let j = dek2e, and

λi =
1

j ln3+γ(j + 1)
i = j + 1, . . . , dj + j ln(j + 1)e,

and γ ∈ (1/2, 1). So we have a segment of dj ln(j+1)e eigenvalues that are equal and the first
eigenvalue in the segment, λj, goes to zero faster than the last λdj+j ln(j+1)e. Furthermore,
since k0 is large enough the segments are disjoint. We define the remaining eigenvalues by

λj =
1

j ln3+γ(j + 1)
.

Hence, λn = o(n−1 ln−2(n+1)) and lim infn→∞ λnn ln3(n+1) = 0. However, lim supn→∞ λnn ln3(n+
1) =∞ since γ < 1. Thus the limit ` of Theorem 1 does not exist. Nevertheless, S is weakly
tractable.

Indeed,
dj+j ln(j+1)e∑

i=j+1

λi ≤ c′
1

ln2+γ(j + 1)
,

where c′ is an absolute constant. The contribution of all such segments starting at j = dek2e,
k ∈ N, to tn is

c′
∑

j=dek2e>n, k∈N

1

ln2+γ(j + 1)
≤ c′

1

ln2+γ(n+ 1)
+ c′′

∫
x2>lnn

dx

x2(2+γ)
= o

(
1

ln2(n+ 1)

)
,
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where c′′ is an absolute constant and the last equality holds since γ > 1/2. It is easy to
see that the contribution to tn of the remaining eigenvalues is also o(ln−2(n + 1)). Since
tn = o(ln−2(n+ 1)) the problem S is weakly tractable, as claimed.

Finally, it is relatively easy to see that a problem can be weakly tractable even though
it is not polynomially tractable. We state this fact in the following corollaries.

Corollary 1. Consider the linear tensor product problem S = {Sd} in the average case
setting with

∑∞
j=1 λj < 1 for the absolute error criterion and the class of Λall. If λj =

Θ
(

1
j lnq(j+1)

)
, then the problem is weakly tractable if and only if q > 3.

Proof. This directly follows from Theorem 1.

Corollary 2. Consider the linear tensor product problem S = {Sd} in the average case
setting with

∑∞
j=1 λj < 1, λ2 > 0, for the absolute error criterion and the class of Λall. Then

S is weakly tractable but not polynomially tractable iff

tn =
∑
j>n

λj = o

(
1

ln2(n+ 1)

)
.

and
lim sup
j→∞

λjj
p =∞ for all p > 1.

Proof. This directly follows from Theorem 1 and [2, Th. 6.7].
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