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Abstract

It has been an open problem to derive a necessary and sufficient
condition for a linear tensor product problem to be weakly tractable
in the worst case. The complexity of linear tensor product problems
in the worst case depends on the eigenvalues {λi}i∈N of a certain
operator. It is known that if λ1 = 1 and λ2 ∈ (0, 1) then λn =
o((lnn)−2), as n → ∞, is a necessary condition for a problem to be
weakly tractable. We show this is a sufficient condition as well.

1 Introduction

Traditionally, the complexity of multivariate problems has been studied with
respect to the accuracy demand ε while considering the number of variables
d to be arbitrary but fixed; for example, see [2] and the references therein.
The resulting asymptotic estimates tend to ignore components of the cost of
the algorithms and thereby of the complexity that are independent of ε but
depend on d, even though they may be substantial and perhaps exponentially
large in d. The study of the complexity of multivariate problems as a function
of the number of variables and the accuracy requires a significant amount of
new research.
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About fifteen years ago, Henryk Woźniakowski introduced these ideas and
initiated research in this area that has produced numerous results. Many
results, some of them very recent, are presented in the book Tractability
of Multivariate Problems, Volume 1: Linear Information, by Erich Novak
and Henryk Woźniakowski, which has just been published [1]. However,
many questions remain open, thirty of which are stated in this book as open
problems. In this paper we solve Open Problem 26.

Linear multivariate problems deal with the approximation of a problem
S = {Sd}, where each of the Sd, d ≥ 1, is a continuous linear operator
defined on a space of functions f of d variables. Moreover, the algorithms
that approximate Sd(f) can use n evaluations of arbitrary continuous linear
functionals. The information complexity (for brevity, the complexity) is the
minimal number of evaluations required to approximate Sd with accuracy ε.
Accordingly, the complexity is denoted by n(ε, d) to emphasize its depen-
dence on ε and d. We remark that there are a variety of error criteria that
one may consider for the accuracy of the algorithms but we limit ourselves
to the worst case error. We will give all the necessary definitions and details
in the next section.

A problem S = {Sd} is weakly tractable iff

lim
ε−1+d→∞

lnn(d, ε)

ε−1 + d
= 0,

otherwise it is intractable. Thus, a problem is intractable if its complexity
is an exponential function of either d or ε−1. Observe that weakly tractable
problems may have complexity that grows faster than a polynomial in ε−1

and d.

Linear multivariate tensor product problems are the linear multivariate prob-
lems obtained by taking the tensor product of d copies of a single univariate
linear problem. Thus

Sd =
d⊗
j=1

S1,

where S1 is a given continuous linear operator. In this case, the complexity of
approximating Sd with accuracy ε depends on the singular values of S1 and,
particularly, on their rate of decay [1, Ch. 5.2]. The squares of the singular
values of S1 are the eigenvalues, {λi}i∈N, of the operator S∗1S1, where the
eigenvalues are indexed in non increasing order. Moreover, the relationship
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between the tractability of S = {Sd} and the {λi}i∈N is studied in detail in
[1, Thm. 5.5]. In particular, we know that if a problem is weakly tractable
with λ1 = 1 and λ2 ∈ (0, 1) then λn = o((lnn)−2), as n → ∞. Proving the
converse is Open Problem 26, which we solve in this paper. We remark that
[1, Thm. 5.5] shows a stronger condition, namely, that if λ1 = 1, λ2 < 1 and
λn = o((lnn)−2(ln lnn)−2), as n→∞, then S is weakly tractable.

2 Linear Tensor Product Problems

A linear tensor product problem is defined in [1, Ch. 5.2] as a tensor product
of a single univariate linear problem.

Let H1 be an infinite dimensional separable Hilbert space of real univariate
functions with its inner product denoted by 〈·, ·〉H1 , and let G1 be an arbitrary
Hilbert space. Assume that S1 : H1 → G1 is a compact linear operator. The
operator

W1 := S∗1S1 : H1 → H1

is positive semi-definite, self-adjoint and compact. Let us denote its ordered
eigenvalues by {λi}, where λ1 ≥ λ2 ≥ · · · ≥ λi ≥ . . . . They are the squares
of the singular values of S1. We denote the eigenpairs of W1 by {(λi, ei)}i∈N.

For d ≥ 1, define Hd =
⊗d

j=1H1 to be the tensor product of the space H1.

This is a space of real functions of d variables. Similarly, let Gd =
⊗d

j=1G1.
The linear tensor product problem is defined by considering the operator

Sd :=
d⊗
j=1

S1 : Hd → Gd.

Observe that Sd is compact and that ‖Sd‖Hd
=
∏d

j=1

[
λ1

]1/2
. The problem

S = {Sd} is called the linear tensor product problem.

The non-negative definite, self adjoint and compact operator

Wd := S∗dSd : Hd → Hd

has eigenpairs {λd,i, ed,i}i∈Nd with λd,i =
∏d

j=1 λij , and ed,i =
⊗d

j=1 eij for all

i = [i1, i2, . . . , id] ∈ Nd. Let λd,βj
denote the j-th largest of all the λd,i and

let ed,βj
denote the corresponding eigenvector. Clearly, λd,β1 = λd,1,...,1 = λd1.
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Suppose we can use arbitrary linear continuous functionals as information
operations. Then it is known, see e.g. [3], that the algorithm

An,d(f) =
n∑
j=1

〈f, ed,βj
〉Hd

Sded,βj

minimizes the worst case error among all possible algorithms using at most
n information operations. The worst case error is defined as

e(An,d) = sup
f∈Hd, ‖f‖Hd

≤1

‖Sdf − An,d(f)‖Gd
.

It is also known that e(An,d) =
√
λd,βn+1 .

For accuracy ε, the worst case information complexity of the problem Sd for
the absolute error criterion is defined as the minimal number of information
operations needed to guarantee that the worst case error is at most ε, and is
given by

n(d, ε) = |{i ∈ Nd : λd,i > ε2 }|,
where |{·}| denotes the cardinality of the set.

As we have already mentioned, the problem Sd is weakly tractable iff

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0.

The reader is referred to [1] for more details.

3 Weak Tractability

Recall that the relationship between the complexity n(ε, d) of linear tensor
product problems and the singular values of S1 is extensively studied in [1,
Thm. 5.5]. More precisely, the complexity depends on the eigenvalues {λi}i∈N
of the operator W1. The problem S = {Sd} is intractable when λ1 > 1 and
λ2 > 0. When λ1 = λ2 = 1 the problem remains intractable.

When λ1 = 1 and λ2 ∈ (0, 1) the problem is weakly tractable as long as
the remaining eigenvalues decay sufficiently fast. Theorem 5.5 shows that
λn = o((lnn)−2(ln lnn)−2), as n→∞ is a sufficient condition. It also shows
that if a problem is weakly tractable then λn = o((lnn)−2), as n → ∞.
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The question in Open Problem 26 in [1] is whether the latter is a necessary
and sufficient condition for a problem to be weakly tractable. We give an
affirmative answer below.

Theorem 1. : Consider the linear tensor product problem in the worst case
setting S = {Sd} with λ1 = 1 and λ2 ∈ (0, 1) with the absolute error criterion.
Then S is weakly tractable iff

λn = o((lnn)−2) as n→∞.

Proof. We know that λn = o((lnn)−2) is a necessary condition for weak
tractability of S [1, Thm. 5.5]. We show that it is also a sufficient condition.

When λn = o(ln−2 n) one may proceed as in [1] to obtain lnn(ε, 1) = o(ε−1).
Indeed, n(ε, 1) = min{n : λn+1 < ε2} ≤ min{n : lnn = o(ε−1)}.
When λ2 ≤ ε2 we know that n(ε, 1) ≤ 1 and so we consider the case λ2 > ε2.

For d ≥ 2, we are interested in eigenvalue products satisfying

λj1λj2 · · ·λjd > ε2. (1)

Let k be the number of indices ji ≥ 2, i.e., λji < 1. The inequality above
implies

λk2 > ε2, (2)

and we know that k ≤ ad(ε), where

ad(ε) = min

(
d,

⌈
2

ln ε−1

lnλ−1
2

⌉
− 1

)
,

see [1, Thm. 5.5] for the details.

There are
(

d
ad(ε)

)
ways to select the (d− ad(ε)) indices jr that must be equal

to 1, i.e., λjr = 1, due to (1,2).

Let jmax be the largest index of the eigenvalues in (1), then λjmax ≥ λj1 · · ·λjd >
ε2, which implies jmax ≤ n(ε, 1). Note that there are no more than a(d) ≤ d
choices for the location of the largest index.

Consider now the second largest index j′max of the eigenvalues in (1) , then
λ2
j′max
≥ λj′max

λjmax ≥ λj1 · · ·λjd > ε2, which implies that λj′max
> ε and so

j′max ≤ n(ε1/2, 1).
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(Similarly, we see that the i-th largest index is at most n(ε1/i, 1).)

Thus, we estimate n(ε, d) by

n(ε, d) ≤
(

d

ad(ε)

)
[n(ε1/2, 1)]ad(ε)−1n(ε, 1)d.

Taking the logarithm we obtain

lnn(ε, d) ≤ ln

[(
d

ad(ε)

)
[n(ε1/2, 1)]ad(ε)−1n(ε, 1)d

]
= ln

(
d

ad(ε)

)
+ (ad(ε)− 1) lnn(ε1/2, 1) + lnn(ε, 1) + ln d

≤ ad(ε) ln d− ln(ad(ε)!) + ad(ε) lnn(ε1/2, 1) + lnn(ε, 1) + ln d

≤ ad(ε) ln d+ ad(ε) lnn(ε1/2, 1) + lnn(ε, 1) + ln d.

Dividing by (ε−1 + d) and taking the limit as ε−1 + d→∞ yields

lim
ε−1+d→∞

lnn(ε, d)

ε−1 + d
≤ lim

ε−1+d→∞

[
ad(ε) ln d

ε−1 + d
+
ad(ε) ln[n(ε1/2, 1)]

ε−1 + d
+

lnn(ε, 1)

ε−1 + d
+

ln d

ε−1 + d

]
.

Using lnn(ε, 1) = o(ε−1) and ad(ε) = Θ(min(d, ln ε−1)), we consider the limit
of each of the four terms in the right hand side above.

The limit of the first term is zero. Indeed, as in [1], if x = max(d, ε−1), then
min(d, ln ε−1) ≤ lnx, and

lim
ε−1+d→∞

min(d, ln ε−1) ln d

(ε−1 + d)
≤ lim

ε−1+d→∞

ln2 x

x
= 0.

The limit of the second term is zero since

lim
ε−1+d→∞

min(d, ln ε−1) · o(ε−1/2)

(ε−1 + d)
= 0.

Observe that if we had o(ε−1) instead of o(ε−1/2) in the numerator, then for
d = Θ(ε−1) the limit would not be zero, which was the complicating factor
in [1].

For the third term, it is easy to see that

lim
ε−1+d→∞

lnn(ε, 1)

ε−1 + d
= lim

ε−1+d→∞

o(ε−1)

ε−1 + d
= 0.
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Finally, the limit of the fourth term is trivially zero.

Hence,

lim
ε−1+d→∞

lnn(ε, d)

(ε−1 + d)
= 0,

and the problem is weakly tractable.
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