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Abstract
We study d-variate approximation problems in the average case setting with respect
to a zero-mean Gaussian measure v4. Our interest is focused on measures having
a structure of non-homogeneous tensor product, where covariance kernel of vy is a
product of univariate kernels,

d
Kq(s,t) = [[ Ri(se.ts)  for st e[0,1]%
k=1

We consider the normalized average error of algorithms that use finitely many eval-
uations of arbitrary linear functionals. The information complexity is defined as the
minimal number n*¥8(e, d) of such evaluations for error in the d-variate case to be at
most €. The growth of n®'8(e, d) as a function of e~ and d depends on the eigenvalues
of the covariance operator of v4 and determines whether a problem is tractable or not.
Four types of tractability are studied and for each of them we find the necessary and
sufficient conditions in terms of the eigenvalues of the integral operator with kernel Ry.

We illustrate our results by considering approximation problems related to the prod-
uct of Korobov kernels Ry. Each Ry is characterized by a weight g and a smooth-
ness r,. We assume that weights are non-increasing and smoothness parameters are
non-decreasing. Furthermore they may be related, for instance g = g(r) for some non-
increasing function g. In particular, we show that approximation problem is strongly
polynomially tractable, i.e., n®8(e,d) < C'eP for all d € N,e € (0,1], where C' and p
are independent of € and d, iff

In -

lim inf Ik > 1.
k—oo In

For other types of tractability we also show necessary and sufficient conditions in terms
of the sequences gi and rg.



1 Introduction

Multivariate problems occur in many applications. They are defined on classes of functions
of d variables. Often the number of variables d is large. Examples include problems in
computational finance, statistics and physics. These problems have been studied for different
error criteria and in different settings including the worst and average case settings. The cost
of an algorithm solving a problem depends on the accuracy € and the number of variables d.
A problem is intractable if the cost of any algorithm is an exponential function of 7!
or d. Otherwise, the problem is tractable. Different types of tractable problems have been
considered in the literature. In fact, tractability of multivariate problems has been recently
a very active research area, see [9, 10, 11] and the references therein.

More precisely, the information complexity n(e,d) of a problem is the minimal number
of information operations needed by an algorithm to solve the problem with accuracy e.
The allowed information operations consist of function evaluations, or, more generally, of
evaluations of arbitrary continuous linear functionals. We have

e weak tractability if n(e, d) is not exponential in d and 7!,

e quasi-polynomial tractability if n(e,d) is of order exp(t (1 +1n d)(1 +1n 71)),
e polynomial tractability if n(e,d) is of order d9&7P,
e strong polynomial tractability if n(e,d) is of order £77.

The bounds above hold for all d and all € € (0,1) with the parameters ¢, ¢, p and the pre-
factors independent of d and 7.

Strong polynomial tractability is the most challenging property. Then the information
complexity is bounded independently of d. One may think that this property may hold only
for trivial problems. Luckily, as we shall see, the opposite is sometimes true.

On the other hand, many multivariate problems are intractable. In particular, they
suffer from the curse of dimensionality. One way to vanquish the curse is to shrink the class
of functions by introducing the weights that monitor the influence of successive variables
and groups of variables. For sufficiently fast decaying weights not only we vanquish the
curse but obtain strong polynomial tractability; a survey of such results may be found again
in [9, 10, 11].

The other way to vanquish the curse is by increasing the smoothness of functions with
respect to the successive variables. This approach was taken recently in [14] for the worst
case multivariate approximation in Korobov spaces. In this paper we extend the approach
of [14] to the average case setting and, in a much broader context, to tensor product Gaussian
random fields. In this case we denote n(e, d) = n*8(e, d) and restrict ourselves to information
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operations given by arbitrary continuous linear functionals since the use of function values
leads to the same results due to [3] and Chapter 24 of [11].

More precisely, we consider non-homogeneous linear multivariate tensor product problems
in the average case with the normalized error criterion. The normalized error is used to
measure the error of an algorithm relative to the error of the zero algorithm. A precise
problem statement is given in Section 2. The study of non-homogeneous case is necessary
since homogeneous linear multivariate tensor product problems are intractable with this
error criterion; see Chapter 6 in [9].

In Section 3 we recall spectral conditions for different types of tractability in the average
case and prove some new conditions. The conditions are given in terms of the eigenvalues of
the covariance operator of the corresponding Gaussian measure.

In Section 4 these conditions are applied to non-homogeneous tensor product approxima-
tion problems. We equip the space of continuous real functions defined on the d-dimensional
unit cube [0, 1]¢ with a zero-mean Gaussian measure with a covariance kernel of the form

d
Ka(s,t) = [ [ Re(swota), 5,6 €10,1)7
k=1

Then n*#(e,d) depends on spectral properties of the univariate integral operators with
kernels Rj. The main results of the paper , Theorems 6 — 8, present spectral conditions for
polynomial, quasi-polynomial and weak tractability in this tensor product setting.

In Section 5 we illustrate these results for Korobov kernels,

Ri(r,y) = 14200 357 cos(2njle —y), .y e0,1]
j=1
with varying smoothness parameters r; such that
%<7°1§7“2§"',
and weight parameters g, such that
12 2g22--->0.
The sequences {ry} and {gr} may be related. We may have
gk = 9(rx)

for some non-increasing function g : [%, o0) — [0,1]. The popular choice for Korobov space
is to take g(r) = (2m)~%".
It turns out that:



Weak tractability holds iff
lim g, = 0.

k—o0

Quasi-polynomial tractability holds iff

1,ln —
en maxllnd ngmax( ! ) o

under the assumption that liminf, ... 7/In & > 0.

Polynomial tractability is equivalent to strong polynomial tractability.

Strong polynomial tractability holds iff

1

Pg = h}?_l}irolf lng > 1.

If this holds then n*&(e,d) < Ce™P and the smallest p is

2 2
max , .
2ri —1 pg—1

Other applications of our approach to tensor products problems are given in [7] for covariance
kernels corresponding to Euler and Wiener integrated processes. We summarize the results
of [7] in Section 6 and compare them to those of the Korobov case that we study here. By
adjusting the weights g, the Korobov case behaves either like the Euler or Wiener case.

2 Problem setting

In this section we introduce multivariate problems in the average case setting. We define
the information complexity and the different notions of tractability. More can be found in
e.g., [9] and [16].

Let F; be a Banach space of d-variate real functions defined on a Lebesgue measurable
set Dy C R? The space Fy is equipped with a zero-mean Gaussian measure jig defined
on Borel sets of F;. We denote by C,,, : Fj — Fj the covariance operator of ji4; e.g., see
[9, Appendix B] for its definition. Let H; be a Hilbert space with inner product and norm
denoted by (-, ) and [ - [|u,, respectively.

We want to approximate a continuous linear operator

Sdi Fd — Hd.
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Let vg = pq Sd_l be the induced measure. Then v, is a zero-mean Gaussian measure on the
Borel sets of Hy with covariance operator C,, : H; — H, given by

CVd = 54 Oud S:ik

where S : Hy — F} is the operator dual to Sy.
Then C,, is self-adjoint, nonnegative definite, and has finite trace. Let (Ag;, 7a;)j=1.2...
denote its eigenpairs

CoNaj = AajNa; — with  Ag1 > Xgo > -+
Then

Fy

trace(Cy) = 3 gy = / lolBy va(dg) = [ 1Saf %, aldf) < oo.
j=1 Ha

We approximate Syf for f € Fy by algorithms A,, that use n function evaluations or
n evaluations of arbitrary continuous linear functionals. It suffices to consider the case of
arbitrary continuous functionals since it is known that the results are roughly the same for
function values, see [3] and Chapter 24 of [11]. The average case error of A,, is defined as

1/2
eavgmn):( ||sdf—An<f>u%,dud<df>) |

Fy

Without essential loss of generality, see e.g., [9] as well as [16], we can restrict ourselves in
the average case setting to linear algorithms A,, of the form

Au(f) =D Li(f)g; with L;€F;, g;€H,
j=1

For a given n, it is well known that the algorithm A, that minimizes the average case

error is of the form
n

An(f) = Z (Saf,a) g, Nk, (1)

and its average case error is

ian = (3 ) 2)

For n = 0 we have the zero algorithm Ay = 0. Its average case error is called the initial error,
and is given by the square-root of the trace of the operator C,,, i.e., by (2) with n = 0.
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The average case information complexity n*'8(e, d) is defined as the minimal n for which
there is an algorithm whose average case error reduces the initial error by a factor ¢,

Z )\d,j S €2 ZAd’j}' (3)
j=1

j=n+1

n*%(e,d) = min { n

We present the definitions of four types of tractability that will be studied in this paper.
Let S = {S4}a=12,.. denote a sequence of multivariate problems. We say that

o S is weakly tractable ift

avg
i In max (1,n*8(e, d))

=0.
e~ 1+d—oo el +d

e S is quasi-polynomaially tractable iff there are positive numbers C' and t such that
n™8(e,d) <Cexp(t(l+Ind)(l1+ne')) forall d=1,2,..., €€ (0,1).

The infimum of ¢ satisfying the bound above is called the exponent of quasi-polynomial
tractability and is denoted by ¢dPel-ave,

e S is polynomially tractable iff there are non-negative numbers C, ¢ and p such that

n®8(e,d) < Cdle¢™? forall d=1,2,..., €€ (0,1).

e S is strongly polynomially tractable iff there are positive numbers C' and p such that
n®8(e,d) < Ce™® forall d=1,2,..., €€ (0,1).

The infimum of p satisfying the last bound is called the exponent of strong polynomial
tractability and is denoted by ps*~2ve,

Tractability can be fully characterized in terms of the eigenvalues A\q;. Necessary and
sufficient conditions on weak, quasi-polynomial, polynomial and strong polynomial tractabil-
ity can be found in Chapter 6 of [9] and Chapter 24 of [11]. In particular, S is polynomially
tractable iff there exist ¢ > 0 and 7 € (0, 1) such that

. 1/7
(Z524)
C :=sup

= d™7 < . 4
deN Zj:l /\d,j ( )
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If so then

T qT

n*&(e,d) < C1-7 d1-7 ¢

=27
1-7 (5)
for all d € N and ¢ € (0, 1).

Furthermore, S is strongly polynomially tractable iff (4) holds with ¢ = 0. The exponent
of strong polynomial tractability is

2
pstrfavg — 1Ilf{ T
1—7

3 General Bounds

7 satisfies (4) with g = 0} : (6)

We show bounds on n*V8(e, d) which we will use to derive necessary and sufficient conditions
for the four types of tractability. We first analyze an arbitrary problem {S;} and then restrict
our attention to non-homogeneous tensor product problems.

We begin with a bound on n®#(e,d) which from a probabilistic point of view is an
application of Chebyshev’s inequality.

Lemma 1 For anye € (0,1),de N, 7€ (0,1) and z > 0 we have

z/(1-7)
Zj:l )\é,j Zj=1 )\g,j —2z/(1-71)

(Zmow) L(Z2M) : ' (7)

n*8(e,d) <

1/(1—7)

Proof. Let b := [(zj Ad,j) =y (Zj Agyj)] . Then
DA< ) AT AT =) Mgy et
J J

JAa,; <b Jira,j<b
Hence,
-, z z)\é
n™e(e,d) < #{jhay >0 =#{j: NG, >0} < — Adéfb -
3 z/(1—7)
< 25 Nay _ Zj)‘d,jz (Zj dvj)T g22/(1-7)
T () L(E50)
as claimed. =



Note that (7) immediately proves sufficiency of polynomial tractability conditions in (4).
Furthermore, if we set z = 7 then we obtain the estimate (5) with the exponent of strong
polynomial tractability at most 27/(1 — 7) for 7 satisfying (4) with ¢ = 0.

As we shall see now, the bound (7) is also useful when we consider quasi-polynomial
tractability. In the rest of the paper we denote

In, d := max(1,Ind).
Theorem 2 S is quasi-polynomially tractable iff there exists 6 € (0,1) such that
00 l_ﬁ

sup =TT oo, (8)

1——96
deN (Z;il >\d,j> Injd
Proof. Sufficiency. Apply (7) with 7 =1 — ﬁl € (0,1) and z = 1. We obtain
1_% Ing d/é
(Zj Aaj ) g2

1—-9
In d
(Zj Ad,j)

< M;m— /0 _—2Iny /s _ exp (

n™e(e,d) <

In M5
Y

2
In, d+ 51H+d In 5_1> )

where Mjs is the supremum in (8). We can rewrite the last estimate as
n™%(e,d) <exp ({(1+Ind)(1+Ine))
for t = 5~ max(2,In Ms). This means that S is quasi-polynomially tractable.
Necessity. Assume now that S is quasi-polynomially tractable, i.e.,

n™%(e,d) < Cexp (t(lnd +1)(In e + 1)) .

We verify (8) for some § € (0,1). Note that (8) is invariant under multiplication of the
eigenvalues by a positive number, and so is the value of n*¢(e,d). That is why we may
assume that > jAa; =1 Quasi-polynomial tractability means that for all e > 0 and d > 1

we have
Z )\dvj S 62.
§>C exp(t(Ind+1)(|Ing|+1))+1
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Let ¢ :=e (n/C’)t(ln_darl). Then
> Ay < €An/C)TED = 2 (n/C) "
i>n
with h = 2/(t(1 +1n d)).
To avoid too small eigenvalues, we introduce a regularization
/)\\d,j = max{)\dyj, hj_l_h}.
Note that (9) implies
SXag Y A+ b < (20 + 1y, (10)
j>n j>n ji>n

Let
Ny, ={jeN: 2m/h < j < omtl/my m=0,1,....

Note that N,, depends on h. For any v € (0,1) and any integer m > 0 we have

Z )\1—7 < Z Xclz? < Z Xdﬁ Jrél]{[n /\d]]

]ENm ]GNm jEan
£\ (m+1)/h\—1=h] 77
< D Ay | (2 )
jZQm/h

y(m+1)(1+h)
h

(by (10)) < (e*CM+1)27™. K72
For a fixed § € (0,1), let v = 1+h We obtain
AL < (12T 2
JENm

oh
< (20N 4+1)20 - pr2m(EOm < (2Ch 4 1)20 exp <| In |- - 1) 9~ (=0)m

Since
sup |Inhlh =:¢(t) < oo,
0<h<2

it follows that

AT =3 T AT <220 + 1) 3 20 s o1 5),
m=0

J m=0jEN,,



Note that
oh 20

T 1+h tl+Ind) +2

v

Thus we have v
1—— 20
Sup Z Adjt(lJrlnd)JrZ < 00.
J

deN
bet 25 In, d 2
n
5 = + < 1.
SN il md) 12 112
Then 05 5
1— <1- forall deN
fltmd +2 > Impd 0% e
and ,
sup Z /\klnéj < 00
deN < & ’
as required. This completes the proof. O

Theorem 2 does not address the exponent t9°°'=2V8 of quasi-polynomial tractability. There
is, however, the bound on the exponent presented in the first part of the proof,

wel=ave < 5= max(2,In Mj) (11)

for all § € (0,1) satisfying (8).

The presence of My may seem artificial. However, we now show that in general Mj;
cannot be avoided in determining the exponent of quasi-polynomial tractability. Indeed, for
§€(0,1), M >1andd>1let N = N(d,M,06) := M™% and consider the following
eigenvalues

1 for 7=1,2,...,N,
Adj = .
0 for 7> N.
Then
1—_6
Zoo A A1n+d
Mjs = sup Jj=17"'d,j — = sup N(d’ M, 5)6/1n+d — lim N(d, M, 5)6/ln+d — M.

1-—2— d—
deN 0o i d deN o0
(Zj:l )‘d,j>

Hence quasi-polynomial tractability holds and for any € € (0,1) we have

n™8(e,d) = [(1 —e*)N] < Cexp (t(1+ Ind)(1 +1In 7 ")).
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It follows that | ) ] } 1 |
¢ > lim lim n[(1 - e)N(d, M,9)] _ InM _ InMs

e—1d—oo Ind N (5 n (5

This justifies the presence of % in the bound (11) for exponent of quasi-polynomial
tractability. However, we believe this bound is not always sharp.

We now show that the necessary condition on quasi-polynomial tractability can be sim-
plified by eliminating the powers of 1 — d/In, d. The following lemma will be a convenient
tool for establishing this fact.

Lemma 3 Let Ay =) 2| Ag;. For any v >0 we have
- Ay In Ay
AP YN e <72A—) 02)
j=1 j=1

Proof. Jensen’s inequality states that for a convex function ¢(-) defined on a convex
set D, non-negative weights p; satisfying > ;pj =1, and any set of arguments z; from D we

have
S byt 2 6 (ijx]) .
J J
We apply Jensen’s inequality with p; := ’\AL:, z; = —In p; and the function ¢(z) = e?* for

xz € D :=R. We obtain

ZAI L= Z 1=y _ Zp] exp —’ylﬂp]) = ij¢($3)
J

> (Zpﬂ?]) = exp ('yz —p;1In p; ) = exp (—'y ij (In Ag; —In Ad))
J
Agiln Ag
= Ajexp (—'y ij In )\d7j> — Al exp (_,YZ d,JAd d,J) .
j j
This is equivalent to (12) and completes the proof. O

We will see in the next section that the right-hand side of (12) is convenient for tensor
product problems. We are ready to simplify the necessary conditions for quasi-polynomial
tractability.
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Corollary 4 If quasi-polynomial tractability holds then

Z/\d] In ()\dj) < o0. (13)

Proof. Quasi polynomial tractability implies that (8) holds for some § € (0,1). Let
v=7(d) = 1n -. Using (12) we obtain

sup
deN ln+

é

0o l_m 0o 1—v
Zj:l )\d,j — ijl )\duj
) _
<ZC'>O1 )\dj>1_ln+d N
J= .
Ay In A
> A} exp (—72#)
j=1

o 1 4
= exp {'y <ln Ay — Z Ady An AdJ) }
j=1 d
o A\ A
= exp{vZAij ln(ﬁ )}
=1 7

The claim (13) now follows from (8). O

We will use later the following simple inequality that provides a sufficient condition for
the curse of dimensionality. Recall that trace(C,,) = > 77, Aa; denotes the trace of the
covariance operator.

Lemma 5 For any d € N and € > 0 we have

(e, d) > (1—&?) mfﬁ —(1-¢?) (1 =S &) ,
d,1

In particular, if trace(C,,)/Aa1 > (14 h)? for some h > 0 and all d € N, then we have curse
of dimensionality.

Proof. For n = n®8(e,d) we have

trace(C,,) — nAqg1 < trace(C, Z Aij = Z Aaj < e trace(C,,).

j=n+1
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Hence
n*8(g,d) > (1 — &*) trace(C,,)/ a1,

as claimed. O

4 Tensor Product Problems

In this section we assume that F,, H; and Sy are given by tensor products. That is,
F=FY9F%...@F" and H,=H"@H" -.-© HV

1 L . : . .
for some Banach spaces F; ,§ ) of univariate real functions equipped with a zero-mean Gaussian

measures u,gl), and some Hilbert spaces H ,51). (For Banach spaces the tensor product is defined

as the projective tensor product [15, Ch. 2].) Here the superscript (1) reminds us that the
objects are univariate. Furthermore we assume that

=5 eosNg... .ol

for continuous linear operators S,gl) : Fk(l) — ngl) and k=1,2,...,d.
Let I/]gl) = ,LL,E})(S,E}))_l and let C’,gl) : H,gl) — H,gl) be the covariance operator of the
measure 1/,51). The eigenpairs of C,gl) are denoted by (A(k,j),n(k, 7)) and

Ak, 1) > Ak,2) > - >0

as well as 322 A(k,j) < oco. To avoid the trivial case we assume that A(k,1) > 0 for all
k e N.
The covariance operator C,, is now the tensor product

C,=CPecPw- . .@c

and therefore the eigenvalues A\;; and the eigenfunctions 74 ; are given by corresponding
products of the one-dimensional eigenvalues and eigenvectors A(k,j) and ny ;, respectively.
More precisely we have

{Aajtien = {H /\(k’vjk)}

J1,925---Ja €N

Note that

d oo
Z A = H Z Ak, )" for any 7 > 0. (14)

jeN k=1 j=1
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We want to express necessary and sufficient conditions, for each of the four types of tractabil-
ity, in terms of the eigenvalues A(k, j), k,7 € N. The homogeneous case of the tensor product

problem, i.e., when F,El) = Fl(l), H,gl) = Hl1 and S S Y which implies that
ME,j)=X(1,5) forall k,j=1,2,...,

was studied in [9, Section 6.2] and in a recent paper [12]. In this section we mainly focus on
a non-homogeneous case.

4.1 Polynomial Tractability

We know that S = {S4} is polynomially iff (4) holds for some ¢ > 0. It is strongly poly-
nomially tractable iff (4) holds with ¢ = 0. We now simplify the condition (4) for tensor
product problems.

Theorem 6 Consider a tensor product problem S = {S4}. Then
e S is strongly polynomially tractable iff there exists T € (0,1) such that

[oe) oo )\(k’)j) T
. 1
>3 (5ad) < )
k=1 j=2
If so the exponent of strong polynomial tractability is

2
pstrfavg — mf{ T
1—7

e S is polynomially tractable iff there exists T € (0,1) such that

Zln< + ( >)<oo. (16)
A simpler and stronger condition

1 K& Ak )Y
sup Zzz (/\Ek,i;) < 00, (17)

In. d
deN My d 4=

T satisfies (15)}.

Q. = sup
deN ln+ d

1s sufficient for polynomial tractability and necessary whenever

sup Z( (k. ) < 0. (18)
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Proof. We prove the four conditions in the iff statements. Let

T Ak, j) :
= for all k N
be the sequence of the normalized eigenvalues so that 1 = A(k,1) > A(k , 7). We need to
verify (4) which by (14) now asserts that for some ¢ > 0 and 7 € (0,1) we have
oo 1/7 o ~ ‘ 1/
o (20 ()
o i=Ssup = = sup =
! deN Zj:l )\d,j S Zj:l )‘(kmj)

For strong polynomial tractability ¢ = 0, whereas for polynomial tractability ¢ > 0.
1. Sufficiency of (15) for strong polynomial tractability. Note that

HiX(k,j)T = H(l+i§(k,j)7> <

k=1 j=1 k=1 7j=2 k j=2
d oo 0o 00

= oxp <Z X(k,jy) < exp (ZZM«W) <oo (19)
k=1 j=2 k=1 j=2

due to (15). On the other hand, Hk 1D e Xk, j) > 1, hence Cy, < oo. This implies
strong polynomial tractability.

2. Necessity of (15) for strong polynomial tractability. We now know that Cy, < oo for
some 7 € (0,1). This implies that

Q=1]] (1 - ZMJ)T) <cr ] (1 + Zi(ks,j)) :
k=1 = k=1 =2
Since A(k,j) <1 and 7 € (0,1), we can estimate A(k, j) by A(k, ). This yields Q < Co Q"

or
1l <1 +3 Nk j)T> < 071 < oo,

k=1 7j=2

This is equivalent to




Hence (15) holds, as claimed. The formula for the exponent of strong polynomial tractability
follows from (6).

3. Sufficiency of (16) for polynomial tractability. By (16) we have

d oo d 00
350 = T1(1+ 3007

k=1 ]:1 k=1
d ()
= exp (Zln <1+ZX(1€,]’)T>> < max(e®,d9).

Using again the fact that [J{_, P Xk, j) > 1, we conclude that Cyr < 00 for g = Q. /T,
and obtain polynomial tractability. Since condition (17) is stronger than (16), it is also
sufficient for polynomial tractability.

4. Necessity of (16) for polynomial tractability. We now know that C,, < oo for some
q>0and 7 € (0,1). Proceeding as before we conclude that

d

11 <1 + > Ak, j)T> < Cr/=n qar/(=7),
j=2

k=1

Hence,

d 0o
~ Ny qT T
;m (1—|—;)\(k,j) ) < Inpdt Gy,

and (16) follows.
It is easy to see that under the assumption (18), the conditions (16) and (17) are equiv-
alent. Therefore, (17) is also necessary in this case. O

We comment on the necessary condition for polynomial tractability. Typically, the coor-
dinates in tensor product problems are ordered according to ”decreasing importance”. This
means that the sequence ) 72, A(k, 7)™ is non-increasing in k. In this case (18) holds and
the simple condition (17) is necessary and sufficient for polynomial tractability. However,
in general, nothing prevents us from a strange ordering of important and unimportant co-

ordinates so that the sequence of Z;’iQ A(k, j)7 is not non-increasing in k. In this case the
stronger condition (17) may fail as illustrated by the following example. Let

1 for j=1,
AME,7) =AMk, 7) =<1 for j €[2,k] and k = 22" for non-negative integer m,

0 otherwise.
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By counting the number of 1’s in A(k, j) we easily conclude that
m n n 2
nie,d) < [ 22" <22™ 7 =d?  forall e€[0,1) and deN.
meN, 22™ <d

So polynomial tractability holds but condition (17) fails. Therefore, in general, it is not
necessary for polynomial tractability.

4.2 Quasi-Polynomial Tractability

We now consider quasi-polynomial tractability of tensor products. First of all let us check
how the right-hand side of Lemma 3 simplifies in this case. Let

- d
= Z AMk,7) and by (14) A4 := Z Adj = HA(k)
k=1

Jj=1
For tensor products we have

d

iAd,jlnAd,j — > | I RXCED Zln)\kzk
j=1

2=[z1,22,...,24]EN? k=1

= 3> AMkom) Ak z) [T A za)

=1 zeNd 1<m<d
m#k

im; ln)\kj> 11 <me3>

1<m<d
m#£k

1<m<d
m#k

;
(im; ln)\/{:j> I Am
(

Inequality (12) now becomes

At Z; )\Cll;”/ > exp (—’yz ﬁ Z Ak, 7) In A(k,j)) . (21)



This inequality will be used in the following theorem which addresses
tractability for tensor product problems.

Theorem 7 Consider a tensor product problem S = {Sy}. Then

e S is quasi-polynomially tractable iff there exists 6 € (0,1) such that

d _6
Ak Ty d
p [ D)

O (TR k)

o [f S is quasi-polynomially tractable then

or

then S is quasi-polynomially tractable.

quasi-polynomial

(22)

(23)

Proof. In view of (14), criterion (22) is just the general criterion (8) in Theorem 2
specified for tensor products. The necessary condition in (23) is just a specification of the
general necessary condition in (13) for tensor products. To see this, note that

I
=3
=
QU
|
=
=
AN
>
QU
<
=3
>
is9
<

Z )\dj " (Adg)

j=1 j=1

(by (20)) = > In A(k) — ZZ AX‘E}S) In Ak, 5)

N AR (k)
22 A i (50.77)



To see that (24) is sufﬁcifnt for quasi-polynomial tractability, observe that the fraction
in (22) can be written with A\(k,j) = A(k,j)/\(k, 1) as

d 0 X k. i 17%
H 1+Zj:2 (k.g) ™+

~ 1—0 "
k=1 (1+Zj’;2 A(k:,j)) e

Taking logarithms, we see that the numerator is bounded by (24) while the denominator is
larger than 1. Hence (22) is bounded and we are done.
Since (25) is stronger than (24), it is also sufficient for quasi-polynomial tractability. O

4.3 Weak Tractability

We present a simple criterion of weak tractability for tensor products.

Theorem 8 Consider a tensor product problem S = {Sy}. If for some T € (0, 1)

e (AR Y
Jm d ;;(A(/@,l)> =0 (26)

Proof. The idea is basicagy the same as in the proof of Theorem 6. Namely, we apply (7)
with z = 1. As before, let A(k, ) := A(k,j)/A(k,1). Then (7), by (14) can be rewritten as

then S 1s weakly tractable.

angd SH

k=1

o Ty g7 1/0-T)
1+Zj:2 )\<k7]> ] 6_2/(1_7)
L+ 7720 Ak, 7)

Since the denominator above is larger than one, it may be dropped. Using (19) we have

d oo 1/(1=7)
n*&(e, d) [exp <Z Zx(k,j)7> 5_2] =exp[(1—7)""(fad+2In ™),

where

gi=d ! Z/\ as d — oo (27)

1 5=2

Mg

e
Il
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due to (26). Equivalently,

In n™%a(e,d) < (1—7)"" [6gd+2ne7'].

By (27)
. O;d+21In et
lim — =0,
d+e~1—o00 d —+ g1
and we obtain the weak tractability. |

Note that (26) holds if

o (AR

1 =0. 2
kllf}oZ; (/\(k:, 1)) ’ (28)
Hence (28) implies weak tractability. The last condition yields

(1)
lim trace(C,)

=1
k—o0 )\(/{, 1)

so that the Gaussian measure is asymptotically concentrated on the one-dimensional sub-
space span(n(k, 1)) of H,El).

5 Multivariate Approximation and Korobov Kernels

The non-homogeneous case offers the possibility of vanquishing the curse of dimensionality
via variation of weights and smoothness parameters. We illustrate this by an example with
Korobov kernels of decreasing weights g, and increasing smoothness r,. As we shall see,
even strong polynomial tractability holds if the decay of g is sufficiently fast. Multivariate
approximation for Korobov spaces in the worst case setting was recently studied in [14].
Here we present its average case analog.

In this section we consider a multivariate approximation problem defined over the space
of continuous real functions equipped with a zero-mean Gaussian measure whose covariance
is given as a Korobov kernel. More precisely, consider the approximation problem

APP = {APPg}4en  with APP,: C([0,1]%) — Lo(]0,1]%)

given by
APP,f = f forall fe C([0,1]%).
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The space C([0,1]¢) of continuous real functions is equipped with a zero-mean Gaussian
measure ji,; whose covariance kernel

Ka(z,y) = / @) f () paldf), .y € [0,1]%
C([0,1])

is given as follows. First of all we assume that K is of product form,

d
Kd(xay) = HRk(xkayk) for all z = [fL‘l,.ﬁUg, e axd]7 Y= [ylvaa s 7yd] € [07 1]d7
k=1

where Ry, = R,, g, are univariate Korobov kernels,
Rplx,y)=1+20 Zj’% cos(2mj(x —y)) forall z,y€]0,1].
j=1

Here 5 € (0,1] and r is a real number such that r > % Note that for y = x we have
Rr’ﬂ(.f,l’) =1 + 26 C(Z’f’),

where ((z) = > 272, 7~ is the Riemann zeta function which is well-defined only for z > 1.
That is why we have to consider r > %
We assume that the sequence {r;} is non-decreasing,

T<rm << <rg < (29)

The weight sequence {gx} serves as a scaling and, as we shall see, tractability results will
depend on the behavior of g at infinity. We assume that

1>2g1>2g2--->0. (30)

As already mentioned, the sequences {r;} and {gx} may be related, g, = g(ry) for some
non-increasing function g : [3,00) — [0,1]. The case which can be often found in the
literature corresponds to g, = 1 or gp = (27) ?"*. For g = g(rx) the behavior of g at
infinity depends on the function g and the behavior of r; at infinity. A summary of the
properties of the Korobov kernels can be found in Appendix A of [9].

For a fixed d, the multivariate approximation problem under similar conditions was stud-
ied in [8, 13]. For varying d, the homogeneous case, i.e., Ry = R for all £ with R not
necessarily equal to a Korobov kernel, was studied in [5, 6, 9]. In this case, we have the curse

of dimensionality since n*8(e, d) depends exponentially on d.
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The induced measure vy = gAPP; ! on Ly([0, 1]9) is also a zero-mean Gaussian measure.
It is known, see e.g., [9], that the eigenvalues of its covariance operator C,, are given by

d
Az = H Mk, z,) forall z=[z,2,...,25 € N (31)
k=1
where A(k,1) =1 and
Ak, 25) = Ak, 2 + 1) = ]‘Z’:k ,  jeN (32)
Note that the trace of C,, is
d
trace(C H 1+2gxC(2rg)) .

We have the curse of dimensionality when
Jlim = lim g > 0.
k—o00

Indeed, in this case
trace(C,,) > (1 + 2 gim)?,

and Lemma 5 yields the curse. Therefore limy g = 0 is a necessary condition to vanquish
the curse.

Theorem 9 Consider the approzimation problem APP = {APP,} in the average case with
a zero-mean Gaussian measure whose covariance operator is given as the Korobov kernel
with the weights gr and smoothness 1y, satisfying (30) and (29), respectively. Then

o APP s polynomially tractable iff

In L
Py = ligglf ﬁ > 1. (33)

o APP is strongly polynomially tractable iff it is polynomially tractable. If so, the expo-
nent of strong polynomaial tractability s

. 2 2
pavg—str = max ( ’ ) .
2ri —1 pg—1
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o [f APP is quasi-polynomially tractable then

1 1

su In, — < 0.
deg In d ;gk "

If (34) holds and

lim inf L >0
k—oo n k‘

then APP is quasi-polynomially tractable.

o APP is weakly tractable iff
lim g = 0.

k—o0

Proof: We will use Theorem 6 and proceed in a way similar to that of the proof of Theorem 1

n [14]. The main difference is that here 7 € (0,1).

We first show that (33) implies strong polynomial tractability and then that polynomial
tractability implies (33). Assume thus that (33) is satisfied. Then for some § > 0 and all

large k we have
In L

— I > 149
k=

Hence, there is a positive C' such that for any 7 € (0,1) we obtain

gr < CTETTIH) forall k€N,

If we choose T € (1+5, N (%, 1) then
») A(kj?]) ' —277r T - 7(146)
ZZ(Mk,l)) - 22% Zy £ <207 sup((2rm) Sk
e k=1 j=1 k=1

< 2C7¢(211r1) C(T(1 4 6)) < o0,

and condition (15) of Theorem 6 yields strong polynomial tractability.
Assume now that polynomial tractability holds. Then for 7 € (27, , 1) we have

Slipjz:; (%) = QSL;p[g,: C(2711)] = 291 C(277r1) < 0.
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Therefore, condition (18) is verified, hence condition (17) is necessary for polynomial tractabil-
ity. The latter condition for the Korobov case is

2
C :=su
dell\l) In,d

d
Z g5 C(217r) < 00,
k=1

for some 7 € (%, 1). All terms of the last sum are larger or equal to ¢] and therefore for
d > 1 we have g < ¢

21261. This is equivalent to

n g 1 <1 ~ In(C/2) +lnlnd) |

>
Ind — 7 Ind

Hence,
1 f o g_ld 1
= liminf —% > — > 1,
P d—oc Ind — 7
as required in (33).
We now turn to the exponent of strong polynomial tractability. We must have 7 > %

and from the last displayed formula 7 > é. From Theorem 6 we obtain that

2 2
pstrfavg — max ’ )
2ri —1 pg—1

This completes the proof of polynomial tractability.

Assume now that quasi-polynomial tractability holds. Then the necessary condition (23)
is satisfied. Clearly, all terms appearing in this condition are positive. We simplify (23) by
omitting all terms for j # 2, and obtain

1 & Ak, 2) A(k)
WP d 2 A " (A(k:,Q)) <o (36)

Recall that for the Korobov case, A(k) = 1+ 2 g, ((2ry) and A(k,2) = gg. Since A(k) > 1
and A(k)/A(k,2) > 3 we obtain

su ! y Ak, 2) In <L) < 00
seh I d & AGR) T\ Ak 2) |
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Furthermore, since {A(k)} is non-increasing, we have

sup

/\k 2 1
1n+d Z o (A(k 2)) =

This is equivalent to (34), and completes this part of the proof.

We now prove that (34) and (35) are sufficient for quasi-polynomial tractability. Theo-
rem 7 states that APP is quasi-polynomially tractable iff there exists § € (0, 1) such that (22)
holds, i.e.,

Ak, 4)™
sup H = < 00, (37)
s v
where 7, = 1 — =>~. Take any § € (0,min(3,1 — —)) Inequality § < 1 —1/(2r;) ensures

ln
that all the sums gbove are finite because 27,74 > 27"171 > 1.

We split the product in (37) into two products

and
Ak J)Td

J= 1 )

In what follows we will write C' for some p051tlve number which is independent of d and k,
and whose value may change for successive estimates.
For TI; (d) we use (1 + x)" = exp(tIn(1 + z)) < exp(tx) and have

I (d) = H<1+Z)\(k,j)> - <exp<ln dZZAm>

k=1 j=2
d CC(2r)) &
d;%(@m)) < exp (le;gk :

Clearly, (34) implies that supyey 11 (d) < oo.
We now turn to the product Ily(d). We estimate each of its factors by

(38)

(?o_/\k,'ﬁr‘i Td a
Zjo_ol( J) o L2k 2) Z“ﬂ
S Mk, 7)) T 1+ 2M(k,2)
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Note that if [In A(2, k)| < 31n, d, then

—0 In A(k,2
L4 2a(k, 2y L+ 2A(k2)exp <—1n+2 ))

1+2M(k,2) 1+ 2X\(k,2)

C|In A(k,2)|
B 1+ 2X(k, 2) (1 + T) <14 Ak, 2)[ (K, 2)
= 1+ 2X(k,2) = In, d ’

while if [In A(k,2)| > 3In; d then § < 1 implies

1+ 2X\(k,2)™

<1 4+2ME.2)4 <1422k, 2)Y2 <14 2d73/2,

Thus, in any case

1+ 2A(k, 2)7 o CA(,2)[ (K, 2)
T2k o) ST In, d

(39)

It remains to evaluate the sum in (38). An easy and elementary calculation shows that
(34) implies A(k,2) = g < £. On the other hand, (35) yields r, > hInk — C for all k € N
with appropriate h, C' > 0. We obtain now

S OAE G < CAk, 4= C Ak, 2) 47"
j=4

< C- (C/k)1—6/1n+d2—(hlnk—0) < le_(1+u), (40)

where u = hIn2 > 0. Combining (38), (39)) and (40), and using again 1+ = < exp(z) we
easily check that

2o Ak, )™
2 e Ak, )

Then it follows that

C Ak, 2)|In A(k, 2)|
In, d

< exp <2d‘3/2 + + Ck:—(l*“)) :

M=

Iy(d) < eXp< <2d‘3/2+ C Ak, 2)|In (K, 2)| +Ck_—(1+u)>)

A 111+ d

Cgln, +
< exp ( <2d3/2 + fn—;g’“ + Ck<1+“>>> ,
k=1 +
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and (34) implies that sup,ey H2(d) < co. Therefore,

sup I[1;(d) [Iy(d) < supIli(d) suplly(d) < oc.
deN deN deN

Hence, (37) holds so that the quasi-polynomial tractability is proved.

We now consider weak tractability. Sufficiency. Let limy gx = 0. Then for an arbi-
trarily small positive 0 there exists k(d) such that g < 6 for all & > k(). We check the
assumption (26) of Theorem 8. For 7 € (1/(2ry),1) and d > k(6) we have

L EE AEDY 2 G

w23 (5rs) - 7 o sEctn)

2(2r17) k() | (d=k(2))d
d d ’

IN

Hence,
limsup ag < 6.

d—oo

For ¢ tending to zero, we conclude that limsup, ag = limg a4y = 0, and obtain weak tractabil-
ity due to Theorem 8.

Necessity. We have already showed that limy g, = 0 is a necessary condition for weak
tractability. This completes the proof. a

We do not know if (35) is needed for quasi-polynomial tractability. However, for g, =
g(ry) with g(r) = 97 and J € (0,1), or g(r) = r=* and s > 0, this condition clearly
follows from (34) since the latter implies that g, < % For such weights and smoothness
parameters, (34) is a necessary and sufficient condition for quasi-polynomial tractability.

We illustrate Theorem 9 for special weights.

o Let g = v™ with v € (0,1).

— Strong polynomial tractability holds iff p, := liminf, . & > ——.

In k In v—

If so the exponent is  p*&8 " = max (2“2_1, oo 5_1]_1> .
— Quasi-polynomial tractability holds iff 22:1 v max(1,r;) = O(Ind).
— Weak tractability holds iff limyg .., 7 = 00.

o Let g, =1, ° for s > 0.
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— Strong polynomial tractability holds iff p, :=liminf; 111:17",’; > %

: avg—str __ 2 2
If so the exponent is  p = max <2h_1, i)

— Quasi-polynomial tractability holds iff Zzzl r.® max(1l,In ;) = O(Ind).
— Weak tractability holds iff limg .., 7rp = 00.

It is also important to notice that Theorem 9 holds for constant smoothness parameters
rE =T > % if g, are not related to 7, and satisfy the conditions presented in Theorem 9.
This corresponds to appropriately decaying product weights, the case that was also studied
in [9] p. 276.

6 Comparison of Korobov, Euler, and Wiener Kernels

Another application of our general results is given in [7]|, where tensor products of multi-
parametric Wiener and Fuler integrated processes are considered. We briefly summarize the
results of [7] to compare them to the results of the previous section.

Let W (t),t € [0,1], be a standard Wiener process, i.e. a Gaussian random process with
zero mean and covariance K7,(s,t) = K%(s,t) := min(s,t). Consider two sequences of
integrated random processes XV, XF on [0, 1] defined inductively on r by X" = X§ = W,
and for r =0,1,2,...

t
X (1) = ﬂjxr@m&

1
Xia) = [ Xrs)ds
1—t

{XV} is called the univariate integrated Wiener process, while { X} is called the univariate
integrated Euler process.

Clearly, XV and X have the same smoothness properties but they satisfy different
boundary conditions.

The covariance kernel of XV is given by

du

) (@ — ) (y = u)
Ky =
Lr(xa y) \/0 7! r!

and is called the Wiener kernel, while the covariance kernel of X is given by

Ky, (z,y) = / min(z, 1) min(sy, $2) - -+ min(s,,y) ds; dsy - - - ds,
[0,1]"
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and is called the Fuler kernel. The last kernel can be expressed in terms of Euler polynomials,
hence the name of the process and its kernel.
The corresponding tensor product kernels on [0, 1]¢ are given by

d d
Ky (s,t) = [[ KV (skote),  and  Kj(s,t) = [ KT, (sk. t)-

k=1 k=1
As for the Korobov case, the sequence {r;} with integers

STy S STg S

9

describes the increasing smoothness of a process with respect to the successive coordinates.
We now compare tractability results for processes described by the Euler, Korobov and
Wiener kernels from [7] and from Theorem 9. Some results are the same:

e strong polynomial tractability and polynomial tractability are equivalent,
e there is a lim-inf-type criterion for polynomial tractability,

e there is a narrow zone where quasi-polynomial tractability holds while polynomial
tractability fails,

e weak tractability is equivalent to a convergence without rate, limgr, = oo for both
integrated processes, or to limy g, = 0 for Korobov case,

e if weak tractability fails then the curse of dimensionality appears.

The conditions on strong polynomial tractability for Euler and Wiener integrated pro-
cesses are different. Namely, strong polynomial tractability holds iff

.. Td 1 .
= liminf — > for Euler integrated process,
pE ine Ind ~ 2In3 srarec p
r
pw = lini ior.}f d—‘j > 0 for some s > % for Wiener integrated process.

For the Korobov case, strong polynomial tractability depends on {g;} and holds iff

i inf 25 > 1

= — 9

pre = lipinf 5 > 1

For g4 = 97" | we see that px = (2 In 3) pg and conditions for strong polynomial

tractability for the Euler and Korobov cases are equivalent.
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For g; = d7"/* we see that py = px. Hence, strong polynomial tractability holds for
the Wiener and Korobov cases if py > 1, whereas it holds only for the Wiener case when
pw € (O, 1].

Without going to technical details, we may say that all depends on the two largest
eigenvalues for the univariate cases. These eigenvalues are quite different for the Euler and
Wiener cases, whereas for the Korobov case they depend on the weights gr. By adjusting
these weights, the Korobov case behaves either like the Euler or Wiener case.
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