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Abstract

Estimating the ground state energy of a multiparticle system with
relative error ε using deterministic classical algorithms has cost that
grows exponentially with the number of particles. The problem de-
pends on a number of state variables d that is proportional to the num-
ber of particles and suffers from the curse of dimensionality. Quan-
tum computers can vanquish this curse. In particular, we study a
ground state eigenvalue problem and exhibit a quantum algorithm
that achieves relative error ε using a number of qubits C ′d log ε−1

with total cost (number of queries plus other quantum operations)
Cdε−(3+δ), where δ > 0 is arbitrarily small and C and C ′ are inde-
pendent of d and ε.
Keywords: Eigenvalue problem, numerical approximation, quantum
algorithms
MSC2010: 65D15, 81-08

1 Introduction

A difficult and challenging problem in modern science is to accurately com-
pute properties of physical and chemical systems. One of the difficulties in
carrying out precise calculations arises from the computational demands the
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Schrödinger equation presents. The computational resources needed to ob-
tain accurate solutions appear to be exponential in the size of the physical
system. As a result these problems are considered intractable on a classical
computer for systems that are not trivial in size. For an overview of the
numerical methods used for the solution of such problems see [5, 19] and the
references therein.

So far there have been mixed results about the potential power of quan-
tum computers relative to that of classical computers. For some prob-
lems, such as factoring large numbers, quantum computers offer exponential
speedups relative to the best classical algorithms known. On the other hand,
there are results about the limits of quantum computation [2], as well as
results showing that certain problems are hard. For instance, estimating the
ground state eigenvalue of arbitrary local Hamiltonians is a QMA complete
problem [15].

Although there are fundamental problems in complexity theory that re-
main open, there is a distinct category of problems for which quantum com-
puters can offer substantial speedups relative to classical computers. This
includes problems, such as multivariate integration, path integration and
multivariate approximation, that suffer from the curse of dimensionality in
the classical deterministic worst case. Quantum computers can vanquish the
curse; see e.g. [21, 22, 29]. R. E. Bellman introduced the term curse of
dimensionality referring to multivariate problems whose complexity grows
exponentially with the number of variables and so are impossible to solve
when the number of variables is large.

An important problem in physics and chemistry that falls in this category
is the estimation of the ground state eigenvalue of a time-independent Hamil-
tonian corresponding to a multiparticle system. Solving such problems on a
classical computer in the worst case has cost exponential in the number of
particles. In particular, the number of state variables d is proportional to the
number of particles and the cost to solve the problem with relative accuracy
ε may grow as ε−d. For these reasons researchers have been experimenting
with quantum computers to solve eigenvalue problems in quantum chemistry
with very encouraging results [8, 17]. See also [13, 14] and the references
therein.

We remark that recently there has been a fair amount of work dealing
with eigenvalue problems see, e.g. [4, 11, 23, 28, 30, 31, 32]. However, our
results are different. The other papers either address different eigenvalue
problems, or use spin models, or study classical algorithms, or do not obtain
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algorithm cost and error estimates.
In particular, we study a ground state eigenvalue problem and we exhibit

a quantum algorithm that achieves relative error ε with cost Cdε−(3+δ), where
δ > 0 is an arbitrarily small positive number. The cost includes the number
of queries plus all other quantum operations. The algorithm uses C ′d log ε−1

qubits. The constants C and C ′ as well as all constants in our estimates
throughout this paper are independent of d and ε.

We stress that we are not dealing with an arbitrary eigenvalue estimation
problem. In our case we are able to obtain efficiently a rough but very useful
approximation of the ground state eigenvector. Abrams and Lloyd [1] were
the first to demonstrate the advantages of approximate eigenvectors in solv-
ing problems of physical interest. Consequently, the cost to implement and
simulate the evolution of the Hamiltonian for the amount of time prescribed
by the accuracy demand determines the cost to approximate the ground state
eigenvalue.

We now consider the problem in more detail. If the potential is a function
of only state variables then the ground state energy is given by the smallest
eigenvalue E1 of the equation

(−1
2
∆ + V )Ψ1(x) = E1Ψ1(x) for all x ∈ Id := (0, 1)d,

Ψ1(x) = 0 for all x ∈ ∂Id,
where ∂Id denotes the boundary of the unit cube, x is the position variable,
and Ψ1 is a normalized eigenfunction. For simplicity we assume that all
masses and the normalized Planck constant are one. The boundary condi-
tions are for particles in a box. Multiparticle systems on bounded domains
with the wave function equal to zero on the boundary have been studied in
the literature; see e.g. [5, p. 621].

This eigenvalue problem is called the time-independent Schrödinger equa-
tion in the physics literature and the Sturm-Liouville eigenvalue problem in
the mathematics literature. We want to approximate E1 with relative error
ε.

Here, ∆ is the d-dimensional Laplacian and V ≥ 0 is a function of d
variables. The dimension is proportional to the number of particles, e.g.
d = 3p. For many applications the number of particles p and hence d is huge.
We consider algorithms that approximate E1 using finitely many function
evaluations of V . Moreover, we assume that V and its first order partial
derivatives ∂V/∂xj, j = 1, . . . , d, are continuous and uniformly bounded
by 1.
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2 Complexity of Classical algorithms and Dis-

cretization error

Decades of calculating ground state eigenvalues of systems with a large num-
ber of particles have suggested that such problems are hard. We sketch a
proof that the cost of classical deterministic algorithms that approximate
eigenvalues in the worst case grows exponentially with the number of vari-
ables.

Indeed, consider a potential function V and let V̄ be a perturbation of
V . Then the eigenvalue E1(V ) corresponding to V and the eigenvalue E1(V̄ )
corresponding to V̄ are related according to the formula

E1(V ) = E1(V̄ ) +

∫
Id

(V (x)− V̄ (x))Ψ2
1(x; V̄ ) dx

+ O
(
‖V − V̄ ‖2∞

)
,

where Ψ1(·; V̄ ) denotes the eigenfunction corresponding to E1(V̄ ). This im-
plies that approximating E1 is at least as hard as approximating a multi-
variate integral in the worst case. As a result, any classical deterministic
algorithm for the eigenvalue problem with accuracy ε must use a number of
function evaluations of V that grows as ε−d; see [24] for details.

Finite differences are often used for approximating E1. The discretization
of the operator −1

2
∆ + V with mesh size h = (m + 1)−1 yields an md ×md

matrix Mh := Mh(V ) = −1
2
∆h + Vh. Then one solves the corresponding

matrix eigenvalue problem Mhzh,1 = Eh,1zh,1. Note that ∆h denotes the
discretization of the Laplacian and Vh is a diagonal matrix whose entries are
evaluations of the potential V at the md grid points. The reader may assume
that ∆h is obtained using a 2d + 1 stencil for the Laplacian; see e.g. [18, p.
60].

For instance, if d = 2 we have

−∆h = h−2


Th −I
−I Th −I

. . . . . . . . .

−I Th −I
−I Th

 ,
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is an m2 ×m2 matrix, where I is the m×m identity matrix while

Vh =


v11

. . .

vij
. . .

vmm

 ,

where vij = V (ih, jh), i, j = 1, . . . ,m, and Th is the m×m matrix given by

Th =


4 −1
−1 4 −1

. . . . . . . . .

−1 4 −1
−1 4

 .

Mh is symmetric positive definite and sparse and has been extensively
studied in the literature [7, 9, 18]. For V that has bounded first order partial
derivatives, using the results of [33, 34] we conclude

|E1 − Eh,1| ≤ c1dh (1)

If Êh,1 is such that |Eh,1 − Êh,1| ≤ c2dh, we have relative error

|1− Êh,1/E1| ≤ c′h,

where c′ is a constant. The inequality follows by observing that 2E1 is
bounded from below by the smallest eigenvalue 4dh−2 sin2(πh/2) of the dis-
cretized Laplacian.

Such a discretization approach for a multiparticle system is not new; see
e.g. [5, p. 621]. The problem is that the size of the resulting matrix is
exponential in d and so is the cost of classical algorithms approximating its
ground state eigenvalue.

3 Quantum algorithm

First we discuss our algorithm in general terms and then we provide a com-
plete analysis. The key observation is that the discretization we outlined
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above and the estimation of the smallest eigenvalue of the resulting matrix
can be implemented on a quantum computer with cost that does not grow
exponentially with d. This is accomplished by modifying quantum phase es-
timation, a well known quantum algorithm for approximating an eigenvalue
of a unitary matrix W , see e.g., [20, p. 225]. First we provide a sketch of
the algorithm and then give all its details and the resulting error and cost
estimates.

Sketch of the algorithm

1. Consider the discretization Mh = −1
2
∆h+Vh of −1

2
∆+V and let h ≤ ε

leading to the desired accuracy. The matrix

W = eiMh/(2d),

is unitary since Mh is Hermitian.

2. For W use phase estimation to approximate the phase corresponding
to eiEh,1/(2d) with the following modifications:

(a) Use the approximate eigenvector

|0〉⊗b|ψ1〉⊗d

as an initial state, where |ψ1〉⊗d is the ground state eigenvector
of −∆h and can be implemented efficiently; see the discussion
following (4) below for details.

(b) Replace W 2t
, t = 0, . . . , b − 1, that are required in phase estima-

tion, using approximations given by high order splitting formulas
that deal with the exponentials of −1

2
∆h and Vh separately and

can be implemented efficiently; see the discussion leading to (6)
below for details.

The effect of the modifications is to somewhat decrease the success proba-
bility while increasing the cost of phase estimation. Nevertheless, the result-
ing success probability is at least 2

3
, and the cost for implementing the initial

state and the approximate powers of W does not suffer from the curse of
dimensionality. (The actual value of the success probability is not important
since it exceeds 1

2
and can be boosted to become arbitrarily close to one; see

[20, p. 153] for details.)
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Theorem 1. Phase estimation with an approximate initial state and approx-
imate powers of W with probability at least 2

3
yields an estimate of E1 with

relative error ε and total cost

Cd ε−(3+δ),

for any δ > 0, using C ′d log ε−1 qubits, where C and C ′ are constants.

Algorithm 1 GSE(n, M , |ψ0〉, hC, hE, Emin, Emax)

Require: n to be a positive integer representing the bits of accuracy
Require: M to be a positive integer representing the number of qubits in

the bottom register and the number of basis functions
Require: τ to be a positive real number (scaling variable)
Require: |ψ0〉 to be a prepared M -qubit quantum state (approximate

ground state wave function)
Require: hC to be a list of M2 complex numbers (Coulomb integrals)
Require: hE to be a list of M4 complex numbers (exchange integrals)
Require: Emin to be real number (lower bound for ground state energy)
Require: Emax to be real number (upper bound for ground state energy)
Require: Emin < Emax

1: PauliH1(M ,hC, L, H)
2: PauliH2(M ,hE, L, H)
3: τ ← 2π/(Emax − Emin)
4: b← n+ dlog2(2π/τ)e
5: ApproxU(M , L, b, Emax, H, τ , Û)
6: Initial state : |0〉⊗b|ψ0〉
7: Apply Hadamard: → 1

2b/2

∑1
j0,j1,...,jb−1=0 |jb−1jb−2 · · · j1j0〉|ψ0〉

8: Apply Û j0
0 . . . Û

jb−1

b1
: → 1

2b/2

∑1
j0,j1,...,jb−1=0 |jb−1jb−2 · · · j1j0〉|ψ0〉Û jb−1

b−1 · · · Û
j1
1 Û

j0
0 |ψ0〉

9: Apply FT † : → (FT †⊗I)
(

1
2b/2

∑1
j0,j1,...,jb−1=0 |jb−1jb−2 · · · j1j0〉Û jb−1

b−1 · · · Û
j1
1 Û

j0
0 |ψ0〉

)
10: Measure the first b qubits in the computational basis: outcome

(mb−1, . . . ,m1,m0)
11: m←

∑b−1
k=0mk2

k

12: Ê0 ← Emax − (Emax − Emin)m/2b

13: return Ê0
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Algorithm 2 ApproxU(M , L, b, H, τ , Û)

Require: M to be a positive integer (number of basis functions)
Require: L to be a positive integer (number of groups of Hamiltonian terms)
Require: b to be a positive integer (number of qubits in top register of the

PEA)
Require: H to be a list of L Hamiltonian terms acting on M qubits (list of

groups of Hamiltonian terms)
Require: τ to be a positive real number (scaling parameter)
Require: N to be a list of b positive integers (list of time intervals for Trotter

approximations)
1: for k = 0 to b− 1 do
2: Nk ← 100 · 2k

3: Û [k]← eiEmaxτjk2k
(∏L

`=1 e
−iH`τ2

k−1/N [k]
)

4: for j = 2 to N [k] do

5: Û [k]← Û [k]
(∏L

`=1 e
−iH`τ2

k−1/N [k]
)

6: end for
7: end for
8: return
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Next we discuss the details of our algorithm and this will lead us to
the proof of the theorem. Assume h is the largest mesh size satisfying
h ≤ min(ε, 1/4). This leads to the desired accuracy while ensuring the
discretization is not trivial. The eigenvalue of W that corresponds to Eh,1 is
eiEh,1/(2d) = e2πiϕ1 , where

ϕ1 = Eh,1/(4πd)

is the phase and belongs to the interval [0, 1) since Eh,1 ≤ 2dh−2 sin2(πh/2)+
1 ≤ dπ2/2 + 1.

Quantum phase estimation approximates the phase ϕ1 with b-bit ac-
curacy, where b = dlog2 h

−1e. The output of the algorithm is an index
j ∈ [0, 2b − 1] such that |ϕ1 − j 2−b| ≤ 2−b. Hence,

|Eh,1 − 4πdj 2−b| ≤ c2dh. (2)

Combining (1) and (2) we conclude

|E1 − 4πdj 2−b| ≤ c1dε+ c2dε = cdε. (3)

Hence the algorithm approximates the ground state eigenvalue E1 by

Êh,1 := 4πdj 2−b.

This estimate holds with probability at least 8
π2 (see, e.g., [3]) assuming:

• The initial state of the algorithm is |0〉⊗b|zh,1〉, where |zh,1〉 is the eigen-
vector of Mh that corresponds to Eh,1.

• We are given the matrix exponentials W 2t
, t = 0, . . . , b− 1.

In our case, however, we do not know |zh,1〉 and we use an approximation.
Similarly, we use approximations of the W 2t

, t = 0, . . . , b − 1, to simulate
the evolution of the quantum system that evolves with Hamiltonian H =
Mh/(2d). We will compute the cost to implement these approximations so
that (3) holds. All these approximations affect the estimate 8

π2 of the success
probability of phase estimation, but only by a small amount.

The initial state of our algorithm is

|0〉⊗b|ψ1〉⊗d, (4)

where |ψ1〉⊗d is the ground state eigenvector of the discretized Laplacian. We
know [7] that the coordinates of |ψ1〉 are

ψ1j =
√

2h sin(jπh), j = 1, . . . ,m,
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and |ψ1〉⊗d has unit length. Since h is proportional to ε, the matrix Mh

has size md × md, with m = Θ(ε−1). Therefore, |ψ1〉⊗d ∈ Cmd
and can be

represented using log2m
d = O(d log2 ε

−1) qubits and can be implemented
with d · O(log2 ε−1) quantum operations using the Fourier transform; see
e.g., [16, 35]. We point out that here and elsewhere the implied constants
in the big-O and Θ notation are independent of d and ε. (From a practical
standpoint, it is possible to further reduce the cost of the initial state using
the algorithm in [12] but we do not pursue this alternative since the analysis
of the algorithm becomes more involved.)

Expanding |ψ1〉⊗d using the eigenvectors of Mh we have

|ψ1〉⊗d =
md∑
k=1

dk|zh,k〉.

The approximate initial state reduces the success probability of phase esti-
mation by a factor equal to the square of the magnitude of the projection of
|ψ1〉⊗d onto |zh,1〉, to become 8

π2 |d1|2; see, e.g., [1, 12].
We will see that |d1|2 > π2/10. Indeed, we estimate |d1| using the ap-

proach in [36, p. 172] which is based on the separation of the eigenvalues of
Mh. In particular, we have

1 ≥ (Eh,2 − Eh,1)2(1− |d1|2),

where Eh,1 and Eh,2 are the smallest and second smallest eigenvalues of Mh.
We estimate Eh,2 − Eh,1 from below using the two smallest eigenvalues of
−∆h to obtain Eh,2 − Eh,1 ≥ 2h−2(sin2(πh)− sin2(πh/2))− 1.

This yields that the success probability of phase estimation with the ap-
proximate ground state eigenvector is at least

8

π2

(
1− 1

(2h−2(sin2(πh)− sin2(πh/2))− 1)2

)
>

4

5
, (5)

h ≤ 1/4. (The overall success probability of the algorithm is affected by an
additional factor and once we address that we will provide a final estimate.)

Now let us turn to the approximation of the matrix exponentials. We
simulate the evolution of a quantum system with Hamiltonian H = Mh/(2d)
for time 2t, t = 0, 1, . . . , b − 1. Let H = H1 + H2 where H1 = −∆h/(4d)
and H2 = Vh/(2d). Recall that h is the largest mesh size satisfying h ≤
min(ε, 1/4). The eigenvalues and eigenvectors of the discretized Laplacian
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are known and the evolution of a system with Hamiltonian H1 can be imple-
mented with d ·O(log2 ε−1) quantum operations using the Fourier transform
in each dimension; see e.g., [20, p. 209]. The evolution of a system with
Hamiltonian H2 can be implemented using two quantum queries and phase
kickback. The queries are similar to those in Grover’s algorithm [20] and
return function evaluations of V truncated to O(log ε−1) bits.

In particular, we use a splitting formula of order 2k + 1, k ≥ 1, to ap-
proximate W 2t

= ei(H1+H2)2t
by

Nt∏
`=1

eiA`z` , (6)

where A` ∈ {H1, H2} and suitable z` that depend on t and k as described in
[26, 27].

From [25] (see p. 2 using m = 2), the number Nt of exponentials needed
to approximate W 2t

by a splitting formula of order 2k + 1 with error εt,
t = 0, . . . , b− 1, is

Nt ≤ 16e‖H1‖2t
(

25

3

)k−1(
8e 2t‖H2‖

εt

)1/(2k)

,

for any k ≥ 1. The total number of exponentials required for the approxi-
mation of all the W 2t

is bounded from above as follows

N =
b−1∑
t=0

Nt ≤ 16e‖H1‖
(

25

3

)k−1

(8e‖H2‖)1/(2k)

×
b−1∑
t=0

2t
(

2t

εt

)1/(2k)

(7)

≤ 16e‖H1‖2b
(

25

3

)k−1 (
160e 2b‖H2‖

)1/(2k)
,

where we obtained the last inequality by setting εt = 2t+1−b

40
, t = 0, . . . , b− 1.

It is easy to check that
∑b−1

t=0 εt ≤
1
20

. Thus the success probability of phase
estimation can be reduced by twice this amount [20, p. 195]. Using (5) we
conclude our algorithm succeeds with probability at least

4

5
− 1

10
>

2

3
.

11



Since ‖H1‖ ≤ 4dh−2

4d
≤ ε−2 and ‖H2‖ ≤ 1/(2d), the algorithm uses a

number of exponentials of H1 and H2 that satisfies

N ≤ 16e

(
80e

d

)1/(2k)(
25

3

)k−1

ε−2 2b(1+1/(2k)).

Since we have chosen 2b = Θ (1/ε) we obtain

N ≤ C̃

(
80e

d

)1/(2k)(
25

3

)k−1

ε−(3+ 1
2k

),

for any k > 0, where C̃ is a constant.
The optimal k∗, i.e., the one minimizing the upper bound for N in (7), is

obtained in [25, Sec. IV] and is given by

k∗ =

√
1

2
log25/3

80e 2b

d
= O

(√
ln

1

dε

)
as dε→ 0,

The number of exponentials corresponding to k∗ satisfies

N∗ = O
(
ε−3e
√

ln 1
dε

)
as dε→ 0. (8)

We remark that of the N∗ matrix exponentials half involve H1 and the
other half involve H2; see the detailed definition of the high order splitting
formula [26, 27]. Since each exponential involving H2 requires two queries
the total number of queries is also N∗.

Hence, the number of quantum operations, excluding queries, to imple-
ment the initial state, the matrix exponentials involving H1 and the inverse
Fourier transform yielding the final state of phase estimation is

N∗ ·O(d log2 ε−1). (9)

Equations (7), (8) and (9) yield that the total cost of the algorithm,
including the number of queries and the number of all other quantum oper-
ations, is

Cdε−(3+δ),

where δ > 0 is arbitrarily small and C is a constant.
Summarizing our results we see that the dependence on d of the number

of qubits and the cost is linear. As far as the number of qubits is concerned
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this is not really surprising. The algorithm uses phase estimation to ap-
proximate an eigenvalue of a matrix whose size is proportional to ε−d × ε−d.
The corresponding eigenvector has a number of coordinates proportional to
ε−d and, therefore, is represented using a number of qubits proportional to
d log2 ε

−1.
We now turn to the cost. The depth of the quantum circuit realizing the

algorithm grows as N∗ which is given in (8). Clearly, ε−3e
√

ln 1
dε ≤ ε−3e

√
ln 1

ε ,
for any d. Thus N∗ is bounded from above by a quantity independent of
d. Recall that N∗ is the total number of matrix exponentials the algorithm
uses. Half of these exponentials involve the discretized Laplacian ∆h and the
other half involve the discretized potential Vh.

Each of the matrix exponentials involving the d dimensional ∆h is im-
plemented efficiently with cost proportional to d log2 ε−1 using the quantum
Fourier transform. Hence the cost of all matrix exponentials involving ∆h

depends linearly on d.
We consider the cost of the matrix exponentials involving Vh. Each expo-

nential can be implemented with two quantum queries. We assume the cost
of each query is constant. Hence the cost of all matrix exponentials involving
Vh is 2N∗ times the cost of a quantum query.

Thus the sum of the cost of all matrix exponentials and, therefore, the
cost of the algorithm depends linearly on d.

This cost analysis has the advantage that it reveals the computational
effort spent on solving the ground state eigenvalue problem unobscured by
the actual cost of evaluating V (i.e., the the cost of a quantum query). It is
not limited in any way, since for any particular choice of V when the actual
cost of a query is known, it suffices to multiply it by the number of queries
and add the product to (9) to obtain an aggregate cost estimate.

For multiparticle systems studied in physics and chemistry the number
of dimensions d is directly proportional to the number of particles p. For
instance, p particles in three dimensions yield d = 3p. Thus the dependence
on p of the number of qubits and the cost of the algorithm is linear.

Finally, our analysis assumes a perfect physical realization of a quan-
tum computer. However, for the implementation of the algorithm, one needs
to address decoherence and other sources of error for a specific underlying
architecture. This may significantly increase the required computational re-
sources. Such a study exists for phase estimation and the Abrams and Lloyd
algorithm [1] applied to the ground state eigenvalue of the transverse Ising
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model [6]; see also the references therein and [10]. This study is broad enough
to cover Shor’s algorithm and conveys the general idea in our case as well. It
concludes that for the current state of the art in quantum logic array archi-
tectures the existing fault tolerance and error correction techniques impose
significant resource requirements in the implementation of these algorithms.
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