
On the complexity of the multivariate
Sturm-Liouville eigenvalue problem

A. Papageorgiou
Department of Computer Science, Columbia University, New York, USA

June 13, 2007

Abstract

We study the complexity of approximating the smallest eigenvalue of −∆ + q with
Dirichlet boundary conditions on the d-dimensional unit cube. Here ∆ is the Laplacian,
and the function q is nonnegative and has continuous first order partial derivatives.
We consider deterministic and randomized classical algorithms, as well as quantum
algorithms using quantum queries of two types: bit queries and power queries. We
seek algorithms that solve the problem with accuracy ε. We exhibit lower and upper
bounds for the problem complexity. The upper bounds follow from the cost of particular
algorithms. The classical deterministic algorithm is optimal. Optimality is understood
modulo constant factors that depend on d. The randomized algorithm uses an optimal
number of function evaluations of q when d ≤ 2. The classical algorithms have cost
exponential in d since they need to solve an eigenvalue problem involving a matrix with
size exponential in d. We show that the cost of quantum algorithms is not exponential
in d, regardless of the type of queries they use. Power queries enjoy a clear advantage
over bit queries and lead to an optimal complexity algorithm.

1 Introduction

In a recent paper with H. Woźniakowski [21] we studied the classical and quantum com-
plexity of the Sturm-Liouville eigenvalue problem. This paper extends those results to the
multidimensional case. By analogy with the Sturm-Liouville eigenvalue problem [11] in one
dimension, we consider the eigenvalue problem −∆u+ qu = λu defined on the d dimensional
unit cube with Dirichlet boundary condition. Here ∆ is the d-dimensional Laplacian, and q
is a non-negative function of d variables whose first order partial derivatives exist and are
continuous. Then we study the complexity of approximating the smallest eigenvalue λ(q)
with accuracy ε.

We assume that q is not explicitly known but we can sample it at any point of the unit
cube. Any algorithm solving this problem will need to compute a number of evaluations of
q and to combine them to obtain an approximation of the eigenvalue of interest.

Classical algorithms may be deterministic or randomized. The former evaluate q at
deterministically chosen points, while the latter can sample q at randomly chosen points.

1

Moreover, randomized algorithms may also combine the evaluations of q randomly. We
obtain the worst case error of classical deterministic algorithms, and the worst expected
error of randomized algorithms.

We address the information cost of classical algorithms, i.e., the number of function
evaluations the algorithms use, as well as their total cost by taking into account the additional
cost of the operations that are used for combining the function evaluations. Accordingly,
the minimal information cost of any algorithm solving the problem with accuracy ε is the
information complexity of the problem, while the minimal total cost of any algorithm with
error at most ε is the problem complexity. Clearly, the information complexity provides a
lower bound for the problem complexity.

Quantum algorithms use quantum queries to evaluate q at deterministically chosen points.
(Recently, quantum algorithms with randomized queries have been considered [30] but we
do not deal with them in this paper.) The query information is combined using a number
of quantum operations. Quantum algorithms succeed in producing an ε-approximation with
probability, say, 3

4
. The minimal number of queries of any algorithm solving the problem

with accuracy ε is the query complexity. The total cost of a quantum algorithm takes into
account the additional quantum operations, excluding the ones used for queries, required
to solve the problem with accuracy ε. We will distinguish between quantum algorithms
using two types of queries, bit queries and power queries. Bit queries are oracle calls similar
to those in Grover’s search algorithm [14]. Power queries are obtained by considering the
propagator of the system at different time steps, as in phase estimation [19].

In some cases, quantum algorithms may be used to solve parts of the problem while other
parts may be solved classically. In such a case we need to consider the cost of the classical
and the quantum parts.

The definition of the error of algorithms and the details of the model of computation
in the different settings can be found in [21] but we will include them in this paper for the
convenience of the reader.

Turning to the eigenvalue problem we show a perturbation formula relating the eigenval-
ues λ(q) and λ(q̄) for two functions q and q̄, as in [21]. In particular, we show that

λ(q) = λ(q̄) +

∫
Id

(q(x)− q̄(x))u2
q̄(x) dx + O

(
‖q − q̄‖2

∞
)
,

where uq̄ is the eigenfunction that corresponds to λ(q̄). Using this equation we reduce the
eigenvalue problem to the integration problem.

For deterministic and randomized classical algorithms we use known lower bounds [24]
for the information complexity of integration to obtain lower bounds for the information
complexity of the eigenvalue problem. For upper bounds we study the cost of particular
algorithms that approximate λ(q) with error ε. We show that by discretizing the continuous
problem and solving the resulting matrix eigenvalue problem we obtain an optimal deter-
ministic algorithm. Optimality is understood modulo multiplicative constants that depend
on d. We derive a randomized algorithm using the perturbation formula above. Roughly
speaking, the idea is to first approximate q by a function q̄, and then to approximate the first
two terms in the right hand side of the perturbation formula. Using a matrix discretization
we approximate λ(q̄) and using Monte Carlo we approximate the weighted integral. We

2

derive the cost of the algorithm and show that it has optimal information complexity only
when d ≤ 2. Proving the optimality of this algorithm for d > 2 is an open question at this
time.

In summary, denoting by n(ε) and comp(ε) the information complexity and the problem
complexity, for deterministic algorithms we have

n(ε) = Θ(ε−d),

Ω(c ε−d) = comp(ε) = O(c ε−d + ε−d log ε−1),

while for randomized algorithms we have

Ω(ε−2d/(d+2)) = n(ε) = O(ε−max(2/3,d/2)),

Ω(ε−2d/(d+2)) = comp(ε) = O(c ε−max(2/3,d/2) + ε−d log ε−1),

where the asymptotic constants depend on d, and c denotes the cost of one function eval-
uation. It is worth pointing out that even if one is able to obtain matching information
complexity bounds for any d, the combinatorial cost (i.e., the number of operations exclud-
ing function evaluations) of the randomized algorithm is still exponential in d, because we
have to solve a matrix eigenvalue problem and the size of the matrix is exponential in d.

For quantum algorithms, we treat algorithms using bit queries and power queries sep-
arately. For quantum algorithms with bit queries we use the perturbation formula above
to reduce the problem to integration. We obtain lower bounds for the query complexity of
integration, which yield lower bounds for the query complexity of the eigenvalue problem.
We see that we can modify the classical randomized algorithm we discussed above, to obtain
a hybrid algorithm, i.e., an algorithm with classical and quantum parts. The only differ-
ence with the randomized algorithm is that, instead of using Monte Carlo, we approximate
the weighted integral in the perturbation formula by a quantum algorithm. The quantum
algorithm that approximates the integral is due to Novak [20].

We show that the number of queries plus the number of classical function evaluations of
the hybrid algorithm matches the query complexity lower bound only when d = 1. Then
q ∈ C1([0, 1]), while for q ∈ C2([0, 1]) the same result has been shown in [21]. When d > 1 we
only show that the algorithm has information cost and uses a number of classical function
evaluations that is exponential in d. The cost of approximating q by q̄ with error ε is
dominant in the worst case. As we already indicated, even if we are able to show matching
upper and lower bounds for the query complexity that are also proportional to the classical
information cost when d > 1, the number of classical operations required by the algorithm
is still exponential in d, due to the cost of the matrix eigenvalue problem.

However, there is a different quantum algorithm (without any classical parts) that uses
bit queries whose cost is not exponential in d. Indeed, we can use phase estimation to solve
the problem. Phase estimation typically uses power queries [1, 19] but we can approximate
the power queries using a number of bit queries that is polynomial in ε−1, where the degree
of the polynomial is independent of d. Denoting the query complexity by nquery(ε) we show
that for bit queries

Ω(ε−d/(d+1)) = nquery(ε) = O(ε−6 log2 ε−1),

3

where the asymptotic constants depend on d. Moreover the algorithm uses a number of
quantum operations, excluding the queries, that is proportional to

dε−6 log4 ε−1,

a number of qubits proportional to
d log ε−1,

and the algorithm succeeds with probability at least 3
4
. We remark that due to the results

of [30] the number of qubits is optimal mudulo multiplicative constants.
Phase estimation with power queries has a considerable advantage since

nquery(ε) = Θ(log ε−1),

where the asymptotic constant is an absolute constant, and the lower bound follows using
the results of [5, 6]. The number of quantum operations, excluding queries, is proportional
to

log2 ε−1,

the number of qubits is proportional to

d log ε−1

and thereby optimal, while the algorithm succeeds with probability at least 3
4
.

2 Problem Definition

Let Id = [0, 1]d and consider the class of functions

Q =

{
q : Id → [0, 1]

∣∣∣∣ q, Djq :=
∂q

∂xj

∈ C(Id), ‖Djq‖∞ ≤ 1, ‖q‖∞ ≤ 1

}
,

where ‖ · ‖∞ denotes the supremum norm. For q ∈ Q, define Lq := −∆ + q, where ∆ =∑d
j=1 ∂

2/∂x2
j is the Laplacian, and consider the eigenvalue problem

Lqu = λu, x ∈ (0, 1)d, (1)

u(x) ≡ 0, x ∈ ∂Id. (2)

In the variational form, the smallest eigenvalue λ = λ(q) of (1, 2) is given by

λ(q) = min
0 6=u∈H1

0

∫
Id

∑d
j=1[Dju(x)]

2 + q(x)u2(x) dx∫
Id
u2(x) dx

. (3)

We will study the complexity of classical and quantum algorithms approximating λ(q)
with error ε. We will show asymptotic bounds for the error of the algorithms and the
problem complexity, assuming that d is fixed. Henceforth, all asymptotic constants in the
error estimates, the complexity estimates and the cost of algorithms are either absolute
constants or depend on d. Often we will be addressing these constants. In some cases their
nature will be evident from the properties of the algorithm under consideration, but in all
cases, especially when the constants are omitted from the discussion, the reader may assume
they depend only on d for simplicity.

4

2.1 Preliminary Analysis

The properties of the eigenvalues and eigenvectors of problems such as (1, 2) (defined on a
rectangular domain) are discussed extensively in [23] where it is shown that the eigenfunc-
tions are continuous and they have continuous partial derivatives of the first order, including
the boundary of Id.

The operator Lq is symmetric and its eigenvalues and eigenvectors are real. The eigen-
values are positive, they can be indexed in nondecreasing order

0 < λ1(q) ≤ λ2(q) ≤ · · · ≤ λk(q) ≤ . . . ,

and the sequence of eigenvalues tends to infinity. We denote the corresponding eigenvectors
by uq,k, k = 1, 2,

The smallest eigenvalue λ(q) ≡ λ1(q) is simple, the corresponding eigenspace has di-
mension one, and the eigenvector, uq ≡ uq,1, is uniquely determined up to the sign. It is
convenient to assume that the uq,k are normalized, i.e.,

‖uq,k‖L2 :=

(∫
Id

u2
q,k(x) dx

)1/2

= 1, k = 1, 2

Thus they form a complete orthonormal system in L2(Id). Then (3) becomes

λ(q) = min
u∈H1

0 , ‖u‖L2
=1

∫
Id

d∑
j=1

(Dju)
2(x) + q(x)u2(x) dx

=

∫
Id

d∑
j=1

(Djuq)
2(x) + q(x)u2

q(x) dx. (4)

For additional details concerning the properties of eigenvalues and eigenfunctions of el-
liptic operators as well as numerical methods approximating them, see [2, 11, 12, 13] and
the references therein.

For a constant function q ≡ c we know that

λ(c) = dπ2 + c, and uc(x1, . . . , xd) = 2d/2

d∏
j=1

sin(πxj).

It is also known that the eigenvalues of Lq are nondecreasing functions of q [11, 23], i.e.,
q(x) ≤ q̄(x), for all x ∈ [0, 1]d, implies that λk(q) ≤ λk(q̄), for all k = 1, 2, Thus, using
(4) for the class Q we get

dπ2 = λ(0) ≤ λ(q) ≤ dπ2 + 1, q ∈ Q.

For d > 1, the eigenvalues of Lq are, generally, not all simple. However, as in the case d = 1,
the smallest eigenvalue λ(q) is simple and is well separated from the remaining eigenvalues.
This is because of the nondecreasing property of the eigenvalues of Lq with respect to q, and

5

the fact that the second smallest eigenvalue of L0 is equal to λ2(0) = (d + 3)π2. Therefore,
using λ(q) ≤ dπ2 + 1, we obtain

λk(q)− λ(q) ≥ λ2(q)− λ(q) ≥ 3π2 − 1, k ≥ 3, q ∈ Q. (5)

We will use this fact to establish an estimate for the smallest eigenvalue by considering a
perturbation of q.

For any two functions q, q̄ ∈ Q we have

|λ(q)− λ(q̄)| ≤ ‖q − q̄‖∞ (6)

‖uq − uq̄‖L2 ≤ O (‖q − q̄‖∞) , (7)

λ(q) = λ(q̄) +

∫
Id

(q(x)− q̄(x))u2
q̄(x) dx + O

(
‖q − q̄‖2

∞
)
. (8)

Equations (6) and (8) are derived as in [21]. They follow from elementary arguments and
(7). For the convenience of the reader we point out that it is easy to show that

λ(q) ≤ λ(q̄) +

∫
Id

(q(x)− q̄(x))u2
q(x) dx+

∫
Id

(q(x)− q̄(x))(u2
q̄(x)− u2

q(x)) dx,

and similarly

λ(q̄) ≤ λ(q) +

∫
Id

(q̄(x)− q(x))u2
q(x) dx.

These inequalities imply (6), and using them with (7) we obtain (8). Moreover,∫
Id

(q(x)− q̄(x))(u2
q̄(x)− u2

q(x)) dx ≥ 0.

We prove equation (7) using an approach similar to that in [29], which is based on the
separation between λ2(q) and λ(q). It is a different proof from the one used in [21].

Indeed, let q and q̄ be two functions from the class Q and consider Lq and Lq̄. Let λk(q),
uq,k and λk(q̄), uq̄,k, be the eigenvalues and the normalized eigenvectors, k = 1, 2 . . . , of Lq

and Lq̄, respectively. Then

Lq̄uq − λ(q)uq = Lquq + (q̄ − q)uq − λ(q)uq,

which implies that

‖Lq̄uq − λ(q)uq‖L2 = ‖(q̄ − q)uq‖L2 ≤ ‖q̄ − q‖∞.

Since the eigenvectors of Lq̄ form a complete orthonormal system in L2(Id) we have

uq =
∞∑

k=1

akuq̄,k, with ‖uq‖2
L2

=
∞∑

k=1

a2
k = 1, ak ∈ R, and

Lq̄uq =
∞∑

k=1

akλk(q̄)uq̄,k.

6

Thus

‖q − q̄‖2
∞ ≥

∥∥∥∥ ∞∑
k=1

ak[λk(q̄)− λ(q)]uq̄,k

∥∥∥∥2

L2

=
∞∑

k=1

a2
k|λk(q̄)− λ(q)|2

≥
∞∑

k=2

a2
k|λk(q̄)− λ(q)|2 ≥ (3π2 − 1)2

∞∑
k=2

a2
k = (3π2 − 1)2(1− a2

1),

where the last inequality is due to the lower bound (5). Thus

a2
1 ≥ 1− (3π2 − 1)−2‖q − q̄‖2

∞. (9)

Observe that the inequality above implies that a2
1 ≥ 0.99. Without loss of generality we

assume that the sign of uq has been chosen such that a1 > 0 and then

a1 ≥
√

1− (3π2 − 1)−2‖q − q̄‖2
∞.

Also

‖uq − uq̄‖2
L2

= (1− a1)
2 +

∞∑
k=2

a2
k (10)

= (1− a1)
2 + 1− a2

1 = 2(1− a1)

≤ 2
[
1−

√
1− (3π2 − 1)−2‖q − q̄‖2

∞

]
≤ (3π2 − 1)−2‖q − q̄‖2

∞, (11)

where the last inequality is due to the fact that (3π2−1)−2‖q− q̄‖2
∞ ∈ (0, 1), and this proves

(7).
As a final remark, we observe that the same analysis that led to (9) can be used to

establish that λ(q) is indeed a simple eigenvalue for any q ∈ Q. Clearly λ(0) is simple.
Using (9) with q̄ = 0, we obtain that the square of the projection of u0 onto uq is bounded

from below, i.e., that
{∫

Id
u0(x)uq(x) dx

}2

> 1/2. If λ(q) were not simple and the eigenspace

corresponding to it had dimension greater than one, there would be at least two orthogonal
eigenfunctions uq,1 and uq,2 (both corresponding to λ(q)). Then each of the projections of uq,1

and uq,2 on on u0 satisfies the preceding inequality (since λ(0) is simple.) Thus, expanding
u0 using the eigenfunctions of Lq would lead us to conclude that ‖u0‖L2 > 1, a contradiction
since we have assumed u0 is a normalized eigenfunction..

3 Classical Algorithms

Let us now discuss the type of classical algorithms we consider and define how we measure
their error and cost. These algorithms can be either deterministic or randomized. They use
information about the functions q from Q by computing q(ti) for some discretization points
ti ∈ [0, 1]d. Here, i = 1, 2, . . . , nq, for some nq, and the points ti can be adaptively chosen,
i.e., ti can be a function

ti = ti(t1, q(t1), . . . , ti−1, q(ti−1)),

7

of the previously computed function values and points for i ≥ 2. The number nq can also be
adaptively chosen, see, e.g., [24] for details.

A classical deterministic algorithm produces an approximation

φ(q) = φ(q(t1), . . . , q(tnq))

to the smallest eigenvalue λ(q) based on finitely many values of q computed at deterministic
points. Let n = supq∈Q nq. We assume that n < ∞. The worst case error of such a
deterministic algorithm φ is given by

ewor(φ, n) = sup
q∈Q

|λ(q)− φ(q)|. (12)

A classical randomized algorithm produces an approximation to λ(q) based on finitely
many evaluations of q computed at random points, and is of the form

φω(q) = φω(q(t1,ω), . . . , q(tnq,ω ,ω)),

where φω, ti,ω and nq,ω are random variables. We assume that the mappings

ω 7→ ti,ω = ti(t1,ω, q(t1,ω), . . . , ti−1,ω, q(ti−1,ω)),

ω 7→ φω,

ω 7→ nq,ω

are measurable. Let nq = E(nq,ω) be the expected number of values of the function q with
respect to ω . As before, we assume that n = supq∈Q nq < ∞. The randomized error of
such a randomized algorithm φ is given by

eran(φ, n) = sup
q∈Q

(
E[λ(q)− φω(q)]2

)1/2
. (13)

We denote the minimal number of function values needed to compute an ε-approximation
of the Sturm-Liouville eigenvalue problem in the worst case and randomized settings by

nwor(ε) = min{n : ∃ φ such that ewor(φ, n) ≤ ε } and

nran(ε) = min{n : ∃ φ such that eran(φ, n) ≤ ε },

respectively. We refer to nwor(ε) and nran(ε) as the worst case and the randomized case
information complexity, respectively.

We also consider the cost of combining the function evaluations. For a function q ∈ Q,
let mq be the number of arithmetic operations used by an algorithm in order to combine nq

function values and obtain the final result. Then the worst case cost of an algorithm φ is
defined as

costwor(φ) = sup
q∈Q

(cnq +mq) ,

where c denotes the cost of an evaluation of q. The worst case complexity compwor(ε) is
defined as the minimal cost of an algorithm whose worst case error is at most ε,

compwor(ε) = min { costwor(φ) : φ such that ewor(φ, n) ≤ ε } .

8

Obviously, compwor(ε) ≥ cnwor(ε).
The cost of a randomized algorithm φ using n = supq∈Q E(nq,ω) <∞ randomized function

evaluations is defined as

costran(φ) = sup
q∈Q

(
E (cnq,ω +mq,ω)2)1/2

,

where mq,ω is the number of arithmetic operations used by the algorithm for a function q
from Q and a random variable ω. The randomized complexity

compran(ε) = min { costran(φ) : φ such that eran(φ, n) ≤ ε } ,

is the minimal cost of an algorithm whose randomized error is at most ε. Obviously,
compran(ε) ≥ cnran(ε).

3.1 Deterministic Algorithms

In this section we derive lower and upper bounds for the error and the complexity of deter-
ministic algorithms in the worst case. We begin with the lower bounds. Our derivation is
based on the proof in [21] which deals with the case d = 1. Let q̄ = 1/2 and consider q ∈ Q
such that ‖q − 1/2‖∞ ≤ c. Then u1/2 is known and (8) becomes

λ(q) = dπ2 +
1

2
+ 2d

∫
Id

(
q(x1, . . . , xd)−

1

2

) d∏
j=1

sin2(πxj) dx1 . . . dxd + δ, (14)

where |δ| = O(c2). Recall that δ ≤ 0 because the first three terms in the right hand side of
the equation overestimate λ(q) due to (4). Functions that differ by a constant satisfy the
above equation with the same value of δ. Assume that c > 0 is sufficiently small so that
c+ |δ| < 1/2.

We will reduce the eigenvalue problem to the multivariate integration problem and use
the well known [24] lower bounds for integration to establish a lower bound for the eigenvalue
problem.

Consider the class of functions

Fc =
{
f : Id → R

∣∣ f,Djf ∈ C(Id), ‖Djf‖∞ ≤ 1, j = 1, . . . , d, ‖f‖∞ ≤ c
}
. (15)

and the approximation of weighted integrals of the form

S(f) =

∫
Id

f(x1, . . . , xd)
d∏

j=1

sin2(πxj) dx1 . . . dxd. (16)

The worst case error of any deterministic algorithm approximating such integrals using n
points in Id is Ω(n−1/d), where the asymptotic constant depends on d. Here we assume that
n is large enough so that c� n−1/d. This lower bound is known [24] for integration without
weights but the same proofs carry over to this case.

9

Take an f ∈ Fc and set q = f + 1/2. Then q belongs to Q. The functions q ± δ also
belong to the class Q because c+ |δ| < 1/2. Let q̃ = q − δ. Then

λ(q̃) = dπ2 +
1

2
+ 2dS(f).

Let λ̂(q̃) be an algorithm approximating λ(q̃) using n function evaluations of q̃ at determin-
istic points. Then

φ(f) = 2−d

[
λ̂(q̃)− dπ2 − 1

2

]
, (17)

is an algorithm approximating the weighted integral S(f) with error

|S(f)− φ(f)| = 2−d|λ̂(q̃)− λ(q̃)|.

In the worst case with respect to f this quantity is Ω(n−1/d).
Hence, the error of any deterministic algorithm λ̂ that approximates λ(q), for q ∈ Q,

using n evaluations of q is bounded from below as follows

ewor(λ̂, n) = sup
q∈Q

|λ̂(q)− λ(q)| = Ω(n−1/d),

where the asymptotic constant depends on d. Therefore, the worst case information com-
plexity nwor(ε) is bounded from below by a quantity proportional to ε−d.

Let us now consider upper bounds for the problem complexity. We discretize Lq at the
points (i1h, . . . , idh), ij = 1, . . . ,m, j = 1, . . . , d, where h = (m + 1)−1, and we obtain an
md ×md matrix Mh(q) = −∆h + Bh(q), where −∆h is the md ×md matrix resulting from
the (2d+1)-point finite difference discretization of the Laplacian [12, 13]. The matrix Bh(q)
is diagonal containing evaluations of q at all the discretization points. The matrix Mh(q)
is sparse, symmetric positive definite, and its smallest eigenvalue approximates the smallest
eigenvalue of Lq with error O(h) [26, 27], i.e.,

|λ(q̄)− λ(Mh(q̄))| = O(h).

For example when d = 2 we have

−∆h = h−2

Th −I
−I Th −I

.

−I Th −I
−I Th

 and Bh(q̄) =

b11

. . .

bij
. . .

bmm

 ,

where I is the m ×m identity matrix, bij = q(ih, jh), i, j = 1, . . . ,m, and Th is the m ×m
matrix given by

Th =

4 −1

−1 4 −1
.

−1 4 −1
−1 4

 ,

10

see [12, p. 270] for more details.
The matrix −∆h has been extensively studied in the literature; see [12, 13] and the

references therein. Its eigenvalues and eigenvectors are known. The smallest eigenvalue of
Mh(0) = −∆h is λ(Mh(0)) = 4dh−2 sin2(πh/2) = dπ2(1+O(h2)). Moreover, the eigenvectors
of Mh(0) are tensor products of the eigenvectors of the corresponding matrix in the one-
dimensional case d = 1. This is also trivially true for the eigenvectors of Mh(c), where c is
any constant. Using results concerning the eigenvalues of perturbed symmetric matrices [29]
we have that the smallest eigenvalue λ(Mh(q)) of Mh(q) satisfies

|λ(Mh(0))− λ(Mh(q))| ≤ 1.

Moreover, the eigenvalues λk(Mh(q)), k = 1 . . . ,md, (indexed in non-decreasing order) satisfy
an equation similar to (5), namely,

λk(Mh(q))− λ(Mh(q)) ≥ λ2(Mh(q)− λ(Mh(q)) ≥ 3π2 − 2, k ≥ 3, q ∈ Q. (18)

The inequalities follow from results concerning the eigenvalues of the sum of two symmetric
matrices [29, p. 101], and the separation of the eigenvalues of the matrix Mh(0) = −∆h.

We can approximate the smallest eigenvalue of Mh(q) with error h using the bisection
method [12, p. 228] in O(logm) steps. Each step takes a number of arithmetic opera-
tions proportional to the number of non-zero elements in Mh(q), which is O(md), with the
asymptotic constant depending on d. Hence, the total cost of approximating λ(Mm(q)) is
O(md logm), and the asymptotic constant depends on d.

Setting m + 1 = ε−1, we obtain an algorithm that approximates λ(q) by the smallest
eigenvalue of the matrix λ(Mε(q)). This algorithm has error O(ε) and uses ε−d evaluations
of q, and O(ε−d log ε−1) arithmetic operations.

Combining the lower bound for nwor(ε) from the first part of this section with the cost
of the algorithm above we obtain the following theorem.

Theorem 3.1.

nwor(ε) = Θ(ε−d), Ω(c ε−d) = compwor(ε) = O(c ε−d + ε−d log ε−1),

where the asymptotic constants depend on d.

We conclude this section by remarking that we can extend these results about nwor(ε) to
the case where q has continuous and bounded partial derivatives up to order r. The same
approach yields that nwor(ε) = Θ(ε−d/r). So we have a delayed curse of dimension.

3.2 Randomized Algorithms

We first prove lower bounds for nran(ε) just as we proved lower bounds for nwor(ε). We reduce
the problem to multivariate integration and use the known randomized information complex-
ity lower bounds for integration. Recall the perturbation formula (14), the definition (15) of
the class Fc and the weighted integration problem (16).

Assuming that n is sufficiently large so that c� n−(d+2)/(2d), we know [24] that the error
of any randomized algorithm that approximates the weighted integral S(f) using n function

11

evaluations at randomly chosen points is bounded from below by a quantity proportional to
n−(d+2)/(2d). (As we already mentioned, this is known for integrals without weights but the
same proofs carry over to this case.)

For f ∈ Fc, set q = f + 1/2 ∈ Q and q̃ = q− δ ∈ Q; see (14). Let λ̂ω be any randomized
algorithm that uses n function evaluations to approximate λ(q̃). Then φω(f), defined by
replacing λ̂ with λ̂ω in (17), is a randomized algorithm approximating S(f), and its error is{

E[S(f)− φω(f)]2
}1/2

= 2−d
{
E[λω(q)− λ(q)]2

}1/2
.

Taking the worst case with respect to f we see that this quantity is Ω(n−(d+2)/(2d)).
Therefore for any randomized algorithm λ̂ that approximates λ(q), for q ∈ Q, using n

function evaluations of q at randomly chosen points, we have

eran(λ̂, n) = Ω(n−(d+2)/(2d)),

which implies that nran(ε) = Ω(ε−2d/(d+2)), where the asymptotic constant depends on d.
We now derive upper bounds for compran by constructing an algorithm. First we take

(n + 1)d samples of q on a grid of equally spaced points (i1/n, . . . , id/n), ij = 0, . . . , n,
j = 1, . . . , d. Using these points we construct a piecewise polynomial q̃ by interpolation.
For instance, q̃ can be a natural spline. Then ‖q̃ − q‖∞ = O(n−1). Setting q̄ = q̃ + O(n−1)
we have that q̄ ≥ 0 and ‖q̄ − q‖∞ = O(n−1). Clearly, given the evaluations of q, q̄ can be
constructed with O(nd) arithmetic operations.

The perturbation formula (8) for q and q̄ becomes

λ(q) = λ(q̄) +

∫
Id

(q(x)− q̄(x))u2
q̄(x) dx+O(n−2). (19)

We will approximate λ(q) by an algorithm that

1. computes λ̂(q̄) that approximates λ(q̄) by discretizing Lq̄ and solving a matrix eigen-
value problem,

2. replaces uq̄ in the integral above by an approximate eigenfunction ûq̄, and

3. approximates the resulting integral by Monte Carlo.

Therefore, (19) becomes

λ(q) = λ(q̄)+

∫
Id

(q(x)− q̄(x)) û2
q̄(x) dx+

∫
Id

(q(x)− q̄(x)) (u2
q̄(x)− û2

q̄(x)) dx+O(n−2), (20)

and the algorithm approximates the first two terms in the right hand side of this expression.
In particular, the algorithm is given by

λ̃(q) := λ̂(q̄) +
1

k

k∑
i=1

(q(ti,ω)− q̄(ti,ω)) û2
q̄(ti,ω), (21)

12

where t1,ω, . . . , tk,ω are independent random numbers that follow the uniform distribution in
Id. Then the expected error of this algorithm satisfies{

E[λ(q)− λ̃(q)]2
}1/2

≤ |λ(q̄)− λ̂(q̄)|

+

{
E

[∫
Id

(q(x)− q̄(x)) û2
q̄(x) dx−

1

k

k∑
i=1

(q(ti,ω)− q̄(ti,ω)) û2
q̄(ti,ω)

]2
}1/2

+ ‖uq̄ − ûq̄‖L2 O(n−1) + O(n−2) (22)

Let us now discuss the individual steps of the algorithm and the resulting errors. We
discretize the operator Lq̄ on a grid with mesh size h = (m+ 1)−1, exactly as we did in the
previous section. The smallest eigenvalue λ(Mh(q̄)) of the resulting matrix approximates
λ(q) with error

|λ(q̄)− λ(Mh(q̄))| = O(h), (23)

see [27]. We approximate λ(Mh(q̄)) by λ̂(Mh(q̄)) with error

|λ̂(Mh(q̄))− λ(Mh(q̄))| ≤ h, (24)

which we obtain using the bisection method with cost proportional to md logm times a
constant that depends on d. In (21), we set λ̂(q̄) := λ̂(Mh(q̄)).

We now show how to construct the approximate eigenfunction ûq̄ required for the second
step of our algorithm. Let z = z(Mh(q̄)) be the eigenvector of Mh(q̄) that corresponds to
λ(Mh(q̄)). We assume that z is normalized so that

‖z‖2 :=

(md∑
k=1

z2
k

)1/2

= 1.

Given λ̂(Mh(q̄)), we compute an approximation of z using an inverse iteration with the
matrix

Mh(q̄)− λ̂(Mh(q̄)) I.

We can compute the determinant of this matrix with cost proportional to md. If the matrix
is singular, we can perturb λ̂(Mh(q̄)) by h to obtain a nonsingular matrix. The initial
vector in inverse iteration is z0, the eigenvector of Mh(0) that corresponds to its smallest
eigenvalue. Observe that the separation of eigenvalues of Mh(q̄) as expressed by (18) and
arguments similar to those that led to (9) and which can be found in [29, p. 172], yield that
(zT

0 z)
2 ≥ 1−‖q̄‖2

∞/(3π
2−2)2. Since the projection of the initial vector onto the eigenvector of

interest is sufficiently large, with O(logm) inverse iteration steps we obtain an approximate
eigenvector ẑ, with ‖ẑ‖2 = 1, such that

‖ẑ − z‖2 = O(h).

The total cost to obtain ẑ is O(md logm).
The Rayleigh quotient

µh =
ẑTMh(q̄)ẑ

‖ẑ‖2
2

,

13

also approximates λ(Mh(q̄)) with error O(h). Using ẑ we construct the approximate eigen-
function ûq̄ of Lq̄ by a method suggested by Courant [10] and used in [27]. In particular, we
subdivide Id into simplices whose vertices are the grid points. Then we construct a piecewise
linear function on each simplex that is zero on the boundary of Id and interpolates the values
of ẑ at the grid points; see [27] for the details. We denote the interpolating function by ũq̄.
The cost for constructing ũq̄ is O(md).

Consider now the Rayleigh quotient

µ =

∫
Id

∑d
j=1[Djũq̄(x)]

2 + q̄(x)ũ2
q̄(x) dx

‖ũq̄‖2
L2

(25)

for the function ũq̄. From [27] we know that

λ(q̄) ≤ µ ≤ µh +O(h).

Since |µh − λ(Mh(q̄))| = O(h), the equation above and (23) imply that

|µ− λ(q̄)| = O(h). (26)

We set ûq̄ := ũq̄/‖ũq̄‖L2 with cost O(md). Let us now estimate ‖uq̄− ûq̄‖L2 . Consider the
eigenvalues λk(q̄) and eigenvectors uq̄,k, k = 1, . . . , of Lq̄. Then we have ûq̄ =

∑∞
k=1 akuq̄,k,

where
∑∞

k=1 a
2
k = 1. Thus from (25) we obtain

µ =
∞∑

k=1

λk(q̄)a
2
k.

Equivalently,

0 =
∞∑

k=1

a2
k[λk(q̄)− µ] =

∞∑
k=2

a2
k[λk(q̄)− µ]− a2

1[µ− λ1(q̄)].

Using (5) and (26) and the fact that λ(q̄) = λ1(q̄) we obtain

a2
1[µ− λ(q̄)] ≥ (3π2 − 2)

∞∑
k=2

a2
k = (3π2 − 2)(1− a2

1),

and using (26) again, we find that

1− a2
1 = O(h).

Hence,
‖uq̄ − ûq̄‖2

L2
= O(h). (27)

The proof of the last equation is the same as the proof we used to derive (11) from equa-
tion (9).

14

Recall that the algorithm (21) uses Monte Carlo to approximate the first integral in (20).
It is well known that Monte Carlo (MC) with k function evaluations has error bounded from
above by the L2 norm of the integrand times k−1/2, i.e., the MC error does not exceed

n−1k−1/2 (28)

Combining (22) with (23), (24), (27), (28) we obtain that the expected error of the algorithm
λ̃(q), described in (21), is bounded from above by a quantity proportional to

m−1 + n−1k−1/2 + n−1m−1/2 + n−2. (29)

The cost of this algorithm is equal to nd evaluations of q at deterministic points, plus k
evaluations involving q (i.e., evaluations of (q− q̄)û2

q̄), plus a number of arithmetic operations
proportional to nd +md logm+ k times a constant that depends on d.

Taking m−1 = ε and observing that we can take k = nd without changing the order of
magnitude of the cost of the algorithm, expression (29) becomes

ε+ n−(d+2)/2 + n−1ε1/2 + n−2. (30)

The number of evaluations of q is proportional to nd and the number of arithmetic operations
is proportional to nd + ε−d log ε−1 times a constant that depends on d.

The cost of approximating q by q̄ is proportional to nd. It is worth noting that this is
the dominant part of the algorithm cost. Indeed, even though we can approximate the first
integral of (21) with high accuracy using Monte Carlo with O(nd) function evaluations, the
advantages of this approximation are lost when n−(d+2)/2 = O(n−2) since the eigenvalue error
depends on O(n−2) as seen in (30).

Therefore when d ≤ 2, we get error of order ε with ε−2d/(d+2) function evaluations, while
for d > 2 we get error of order ε with ε−d/2 function evaluations. In both cases the number
of arithmetic operations is proportional to ε−d log ε−1 times a constant that depends on d.

We summarize the results of this section in the following theorem.

Theorem 3.2.

Ω(ε−2d/(d+2)) = nran(ε) = O(ε−max(2/3,d/2)),

Ω(ε−2d/(d+2)) = compran(ε) = O(c ε−max(2/3,d/2) + ε−d log ε−1),

where the asymptotic constants depend on d.

When d > 2 we do not have matching upper and lower bounds for nran(ε) and improving
the upper bound is an open problem at this time. One possibility would be to use a pertur-
bation formula of higher order of accuracy. On the other hand, we see that if we consider
functions that have continuous and bounded mixed partial derivatives up to order r then
our approach yields that

Ω(ε−2d/(2r+d)) = nran(ε) = O(ε−max(2d/(2r+d),d/(2r))),

which extends the range of values of d to 1 ≤ d ≤ 2r for which we do have matching upper
and lower bounds.

15

4 Quantum Algorithms

A quantum algorithm applies a sequence of unitary transformations to an initial state, and
the final state is measured. See [3, 8, 15, 19] for the details of the quantum model of
computation. We briefly summarize this model to the extent necessary for this paper.

The initial state |ψ0〉 is a unit vector of the ν-fold tensor product Hilbert space Hν =
C2 ⊗ · · · ⊗ C2, for some appropriately chosen integer ν, where C2 is the two dimensional
space of complex numbers. The dimension of Hν is 2ν . The number ν denotes the number
of qubits used in quantum computation.

The final state |ψ〉 is also a unit vector of Hν and is obtained from the initial state |ψ0〉
by applying a number of unitary 2ν × 2ν matrices, i.e.,

|ψ〉 := UTQYUT−1QY · · ·U1QYU0|ψ0〉. (31)

Here, U0, U1, . . . , UT are unitary matrices that do not depend on the input function q. The
unitary matrix QY with Y = [q(t1), . . . , q(tn)] is called a quantum query and depends on n
(with n ≤ 2ν ,) function evaluations of q computed at some non-adaptive points ti ∈ Id. The
quantum query QY is the only source of information about q. The integer T denotes the
number of quantum queries we choose to use.

At the end of the quantum algorithm, a measurement is applied to its final state |ψ〉. The
measurement produces one of M outcomes, where M ≤ 2ν . Outcome j ∈ {0, 1, . . . ,M − 1}
occurs with probability pY (j), which depends on j and the input Y . Knowing the outcome j,
we compute an approximation λ̂Y (j) of the smallest eigenvalue on a classical computer.

We now define the error in the quantum setting. In this setting, we want to approximate
the smallest eigenvalue λ(q) with a probability p > 1

2
. For simplicity, we take p = 3

4
in the rest

of this section. As is common for quantum algorithms, we can achieve an ε-approximation
with probability arbitrarily close to 1 by repeating the original quantum algorithm, and by
taking the median as the final approximation.

The local error of the quantum algorithm with T queries that computes λ̂Y (j) for the
function q ∈ Q and the outcome j ∈ {0, 1, . . . ,M − 1} is defined by

e(λ̂Y , T) = min

{
α :

∑
j: |λ(q)−λ̂Y (j)| ≤α

pY (j) ≥ 3
4

}
.

This can be equivalently rewritten as

e(λ̂Y , T) = min
A: µ(A)≥3

4

max
j∈A

∣∣λ(q)− λ̂Y (j)
∣∣,

where A ⊂ {0, 1, . . . ,M − 1} and µ(A) =
∑

j∈A pY (j).

The worst probabilistic error of a quantum algorithm λ̂ with T queries for the Sturm-
Liouville eigenvalue problem is defined by

equant(λ̂, T) = sup

{
e(λ̂Y , T) : Y = [q(t1), . . . , q(tn)], ti ∈ [0, 1]d, for q ∈ Q

}
. (32)

16

We define the query complexity nquery(ε) of a quantum algorithm by

nquery(ε) = min{T : ∃ λ̂ such that equant(λ̂, T) ≤ ε }. (33)

Moreover, since we will be dealing with two types of queries, bit queries and power queries,
we will be using the notation nbit−query(ε) and npower−query(ε), respectively, to label the query
complexity by the type of queries used.

In principle, quantum algorithms may have many measurements applied between se-
quences of unitary transformations of the form presented above. However, any algorithm
with many measurements and a total of T quantum queries can be simulated by a quantum
algorithm with only one measurement at the end, for details see e.g., [15].

Classical algorithms in floating or fixed point arithmetic can also be written in the form
of (31). Indeed, all classical bit operations can be simulated by quantum computations,
see e.g., [4]. Classically computed function values will correspond to bit queries, which we
discuss in the next section.

We formally use the real number model of computation [25]. Since our eigenvalue problem
is well conditioned and properly normalized, we obtain practically the same results in floating
or fixed point arithmetic. More precisely, it is enough to use O(log ε−1) mantissa bits, and
the cost of bit operations in floating or fixed point arithmetic is of the same order as the
cost in the real number model multiplied by a power of log ε−1.

Hybrid algorithms, which are combinations of classical and quantum algorithms, can be
viewed as finite sequences of algorithms of the form (31) and can be expressed as one quantum
algorithm of the form (31), see [15, 16]. Consequently, when proving lower bounds it suffices
to consider only algorithms of the form (31). For upper bounds it is sometimes convenient to
distinguish between classical and quantum computations and charge their costs differently.
The cost of classical computations is defined in the previous section. The cost of quantum
computations is defined as the sum of the number of quantum queries multiplied by the cost
of a query, plus the number of quantum operations other than queries. It is also important
to indicate how many qubits are used by the quantum algorithm.

4.1 Bit Queries

Quantum queries are important in the complexity analysis of quantum algorithms. A quan-
tum query corresponds to a function evaluation in classical computation. By analogy with
the complexity analysis of classical algorithms, we analyze the cost of quantum algorithms in
terms of the number of quantum queries that are necessary to compute an ε-approximation
with probability 3

4
. Clearly, this number is a lower bound on the quantum complexity, which

is defined as the minimal total cost of a quantum algorithm that solves the problem.
Different quantum queries have been studied in the literature. Probably the most com-

monly studied query is the bit query as used in Grover’s search algorithm [14]. For a Boolean
function f : {0, 1, . . . , 2m − 1} → {0, 1}, the bit query is defined by

Qf |j〉|k〉 = |j〉|k ⊕ f(j)〉.

Here ν = m + 1, |j〉 ∈ Hm, and |k〉 ∈ H1 with ⊕ denoting addition modulo 2. For real
functions q the bit query is constructed by taking the most significant bits of the function

17

evaluated at some points tj. More precisely, as in [15], the bit query for the function q has
the form

Qq|j〉|k〉 = |j〉|k ⊕ β(q(τ(j)))〉,

where the number of qubits is now ν = m′ + m′′ and |j〉 ∈ Hm′ , |k〉 ∈ Hm′′ with some
functions β : [0, 1] → {0, 1, . . . , 2m′′ − 1} and τ : {0, 1, . . . , 2m′ − 1} → Id, and ⊕ denotes
addition modulo 2m′′

. Hence, we compute q at tj = τ(j) ∈ Id and then take the m′′ most
significant bits of q(tj) by β(q(tj)), for details and a possible use of ancilla qubits see again
[15].

The quantum amplitude amplification algorithm of Brassard et al. [7] computes the mean
of a Boolean function defined on the set ofN elements with accuracy ε and probability 3

4
using

of order min{N, ε−1} bit queries. Modulo multiplicative factors, it is an optimal algorithm,
in terms of the number of bit queries.

This algorithm can be also used to approximate the mean of a real function f : Id → R
with |f(x)| ≤M , x ∈ Id, see [15, 20]. More precisely, if we want to approximate

SN(f) :=
1

N

N−1∑
j=0

f(xj)

for some xj ∈ Id and N , then the amplitude amplification algorithm QSN(f) approximates
SN(f) such that

|SN(f)−QSN(f)| ≤ ε with probability 3
4

(34)

using of order min(N,Mε−1) bit queries, min(N,Mε−1) log N quantum operations, and
log N qubits.

We begin by showing a lower bound for the query complexity, nbit−query(ε), of the eigen-
value problem. We do this by first estimating the bit query complexity, nbit−query(ε, INTFc),
of the weighted integration problem (16) in the class Fc, as defined in (15), and then reducing
the eigenvalue problem to the integration problem.

From [20] we have
nbit−query(ε, INTFc) = O(ε−d/(d+1)).

Consider now any quantum algorithm that solves the integration problem with error ε and
probability at least 3

4
, using k bit queries.

Let h(x1, . . . , xd) = α
∏d

j=1 hj(xj) for (x1, . . . , xd) ∈ Id, where hj(x) = x2(1 − x)2, x ∈
[0, 1], and h(x1, . . . , xd) = 0 for (x1, . . . , xd) ∈ Rd \Id. Here, α is a constant such that h ∈ F1,
where F1 is defined by (15) with c = 1. For each j = 1, . . . , d and i = 0, . . . , n − 1, let
hi,j(x) = hj(n(x− i/n)). Then the support of hi,j is [i/n, (i+ 1)/n].

We obtain nd functions on Id. Each function is defined by

hi1,...,id(x1, . . . , xd) =
α

n

d∏
j=1

hij ,j(xj),

and its support is the cube
∏d

j=1[ij/n, (ij + 1)/n], ij = 0, . . . , n− 1.

18

For notational convenience we re-index these functions, in any desirable way, and denote
them by g`, ` = 0, . . . , nd − 1 (i.e., g` = hi1,...,id .) Thus ‖g`‖∞ ≤ n−1 and assuming that
c� n−1 we have g` ∈ Fc. Then∫

Id

g`(x) dx = n−d−1

∫
Id

h(x) dx, ` = 0, . . . , nd − 1.

Consider now any boolean function B : {0, 1, . . . , nd−1} → {0, 1} and define the function

fB(x) =
nd−1∑
`=0

B(`)g`(x), x ∈ Id.

Then fB ∈ Fc and ∫
Id

fB(x) dx =

∫
Id
h(x) dx

n

1

nd

nd−1∑
`=0

B(`).

Thus, computing the Boolean mean is reduced to computing the integral of fB. From [18]
we know that k < nd bit queries yield error Ω(k−1) in the approximation of the Boolean
mean. Therefore, by setting k = βnd, β ∈ (0, 1), we obtain that the error in approximating
the integral of fB is Ω(n−(d+1)). Hence, for error ε we need k = Ω(ε−d/(d+1)) bit queries.
Using the upper bound of [20] we obtain

nbit−query(ε, INTFc) = Θ(ε−d/(d+1)).

This complexity bound remains valid if c depends on ε and c(ε) → 0, as ε→ 0, but not very
fast. Therefore, when c(ε)ε−1/(d+1) →∞ as ε→ 0, the bit query complexity for integration
in the class Fc(ε) is Θ(ε−d/(d+1)).

Now that we have the bit query complexity for integration, we reduce the eigenvalue prob-
lem to integration and obtain a lower bound for the bit query complexity of the eigenvalue
problem. This is done in exactly the same way as for classical deterministic and randomized
algorithms. In particular, using equation (14) we see that any algorithm approximating λ(q̃)
can be used to derive an algorithm that solves the integration problem S(f) defined in (16),
and f = q̃ + δ − 1/2 belongs to the class Fc (15). We omit the details since we have already
presented this argument twice. Therefore, solving the eigenvalue problem with error ε and
probability at least 3

4
implies that we can solve the integration problem with error O(ε) and

probability at least 3
4
. Consequently the bit query complexity nbit−query(ε) of the eigenvalue

problem is at least as large as the bit query complexity of the integration problem. We have
proved the following theorem.

Theorem 4.1.
nbit−query(ε) = Ω(ε−d/(d+1)).

To derive a quantum algorithm for the eigenvalue problem we can slightly modify the
randomized algorithm we presented previously. The third and last step of the randomized
algorithm approximates a weighted integral using Monte Carlo. The quantum algorithm will

19

approximate that integral using the amplitude amplification algorithm [7]. In particular the
quantum algorithm approximates the first two terms on the right hand side of equation (20)
by

λ̃(q) := λ̂(q̄) + φ((q − q̄)û2
q̄), (35)

where, just as before, q̄ approximates q with error O(n−1), λ̂(q̄) := λ̂(Mh(q̄)), h = (m+1)−1,
while φ((q − q̄)û2

q̄) is the result of the amplitude amplification algorithm with T bit queries
as applied in [20] for the approximation of the integral of (q − q̄)û2

q̄ in (20).
Since ‖(q− q̄)û2

q̄‖∞ = O(n−1), with probability 3
4

the error of (35) is bounded from above
by

|λ(q̄)− λ̂(q̄)|+O((nT)−1) + ‖uq̄ − ûq̄‖L2O(n−1) +O(n−2),

where the second term is the error of the quantum algorithm φ; see also (34). We have seen
that |λ(q̄)− λ̂(q̄)| = O(m−1) and ‖uq̄ − ûq̄‖L2 = O(m−1/2). This yields an error proportional
to

m−1 + (nT)−1 + n−1m−1/2 + n−2.

The algorithm uses nd evaluations of q at deterministic points, plus a number of classical
operations proportional to nd + md logm times a constant that depends on d. The algo-
rithm also uses T bit queries involving q, plus of order log2 T + d logm quantum operations,
excluding the cost of queries, for the details see [7, 19]. Note that log2 T operations are
sufficient for the quantum implementation of the Fourier transform used in the amplitude
amplification algorithm. The number of qubits is of order log T + d logm.

Setting m−1 = ε2 and T = O(nd), we get that the error of our algorithm is bounded from
above by a quantity proportional to

ε2 + n−(d+1) + n−1ε+ n−2.

Note that when d ≥ 2 we do not necessarily have to take as many as O(nd) queries, since
reducing the integration error does not reduce the upper bound of the algorithm error which
still depends on n−2. However, taking T = O(nd) does not change the order of magnitude
of the cost of the algorithm. The dominant component of the cost of the algorithm is the
nd classical function evaluations required for the approximation of q by q̄. Finally, setting
n = ε−1/2 yields error O(ε).

Theorem 4.2. The eigenvalue problem can be solved with probability 3
4

and error O(ε) by
the hybrid algorithm (35). This algorithm uses

• ε−d/2 classical function evaluations,

• ε−2d log ε−1 (times a constant that depends on d) classical arithmetic operations,

• ε−d/2 bit queries,

• d2 log2 ε−1 (times a constant independent of d) quantum operations, excluding queries,
(mostly used for the quantum implementation of the Fourier transform,)

• and a number of qubits proportional to d log ε−1

20

We see that the number of bit queries used by this algorithm matches the bit query
complexity only when d = 1. Perhaps, as in the case of the randomized algorithm, we can
improve this situation and obtain matching upper and lower bounds for the number of bit
queries using a perturbation formula with higher order terms. This is an open question at
this time. Nevertheless, even if this question has a positive answer, the number of arithmetic
operations will remain exponential in d, and this is also true for the deterministic and
randomized algorithms we have seen, because all of them solve a matrix eigenvalue problem
and the size of the matrix is exponential in d.

We can solve the eigenvalue problem with cost (number of queries plus other operations)
that is not exponential in d using a quantum algorithm without any classical components.
The details of the algorithm will become apparent after we discuss, in the next section,
a quantum algorithm that solves the eigenvalue problem using a different type of queries,
called power queries. This algorithm is based on phase estimation [19], a quantum algorithm
approximating an eigenvalue of a Hermitian matrix, which solves the problem with O(log ε−1)
power queries. Each of the power queries can be approximated by bit queries using the
Trotter formula [19] and phase kick-back [8]. The number of bit queries required for the
approximation of each power query is a polynomial in ε−1 and its degree is independent of d.
In particular, the degree of this polynomial only depends on the norm of the matrix whose
eigenvalue is sought, which is independent of d, and on the accuracy demand ε. We have
the following theorem whose proof we postpone to the next section.

Theorem 4.3. Phase estimation applied for the approximation of the smallest eigenvalue
of Mε(q) achieves error O(ε) with probability at least 3

4
using a number of bit queries

proportional to ε−6 log2 ε−1. The initial state for phase estimation is the eigenvector of
Mε(0) = −∆ε that corresponds to its smallest eigenvalue. The algorithm uses a number
of quantum operations, excluding bit queries, proportional to d ε−6 log4 ε−1 and a number of
qubits proportional to d log ε−1. Consequently,

nbit−query(ε) = O(ε−6 log2 ε−1).

4.2 Power Queries

In this section, we consider power queries as they have been described in [21]. For some
problems, a quantum algorithm can be written in the form

|ψ〉 := UT W̃TUT−1W̃T−1 · · ·U1W̃1U0|ψ0〉. (36)

Here U1, . . . , UT denote unitary matrices independent of the function q just as before, whereas
the unitary matrices W̃j are of the form controlled-Wj, see [19, p. 178]. Then Wj = W pj for
an n × n unitary matrix W that depends on the input of the computational problem, and
for some non-negative integers p1, . . . , pT . Without loss of generality we assume that n is
a power of two. Let {|yk〉} be orthonormalized eigenvectors of W , so that W |yk〉 = αk|yk〉
with the corresponding eigenvalue αk, where |αk| = 1 and αk = eiλk with λk ∈ [0, 2π) for
k = 1, 2, . . . , n. For the unit vectors |x`〉 = α`|0〉 + β`|1〉 ∈ C2, ` = 1, 2, . . . , r, the quantum

query W̃j is defined as

W̃j |x1〉|x2〉 · · · |xr〉|yk〉 = |x1〉| · · · |xj−1〉
(
αj|0〉+ βje

ipjλk |1〉
)
|xj+1〉 · · · |xr〉|yk〉. (37)

21

Hence, W̃j is a 2ν × 2ν unitary matrix with ν = r + log n. We stress that the exponent pj

only affects the power of the complex number eiλk .
W̃j is called a power query since it is derived from powers of W . Power queries have

been successfully used for a number of problems including the phase estimation problem, see
[8, 19]. The phase estimation algorithm approximates an eigenvalue of a unitary operator W
using a good approximation [1] of the corresponding eigenvector as part of the initial state.
The powers of W are defined by pi = 2i−1. Therefore, phase estimation uses queries with
W1 = W , W2 = W 2, W3 = W 22

, . . . , Wm = W 2m−1
. It is typically assumed, see [8], that

we do not explicitly know W but we are given quantum devices that perform controlled-W ,
controlled-W 2, controlled-W 22

, and so on.
For our eigenvalue problem, we discretize the operator Lq on a grid with mesh size h, as

we did when we were discussing deterministic algorithms. We obtain an md × md matrix
Mh(q), with h = (m+ 1)−1, that is symmetric positive definite. Then we define the matrix

W = exp (iγMh(q)) with i =
√
−1 and a positive γ, (38)

which is unitary since Mh(q) is symmetric.

Using the powers of W we obtain the matrices W̃j used in (36). Accordingly, we modify

the query definition in equation (31) by assuming, as in [19, Ch. 5], that for each j the W̃j

is one quantum query. Hence for algorithms that can be expressed in the form (36), the
number of power queries is T , independently of the powers pj.

With the understanding that the number of queries T is defined differently in this section
than before the error equant(λ̂, T) of the algorithm (36) is given by (32). Similarly, the power
query complexity npower−query(ε) is defined by (33).

We now exhibit a quantum algorithm with power queries that approximates λ(q) with
error O(ε). Consider W defined by (38) with γ = 1/(2d), i.e.,

W = exp

(
1

2d
iMh(q)

)
. (39)

The eigenvalues of W are eiλj(Mh(q))/(2d), with λj(Mh(q)) being the eigenvalues of the md×md

matrix Mh(q). Without loss of generality we assume that m is a power of two. These
eigenvalues can be written as e2πiϕj , where

ϕj = ϕj(Mh(q)) =
1

4dπ
λj(Mh(q))

are called phases. We are interested in estimating the smallest phase ϕ1(Mq), which belongs
to (0, 1) since λ1(Mh(q)) ∈ [dπ2, dπ2 + 1]. We denote the eigenvector of Mh(q) and W that
corresponds to λj(Mh(q)) by zj(Mh(q)), with ‖zj(Mh(q))‖2 = 1, j = 1, . . . ,md, indexed in
non-decreasing order of eigenvalues.

Phase estimation, see [19, Section 5.2], is a quantum algorithm that approximates the
phase ϕ1(Mq). Clearly, to compute an ε-approximation of λ1(Mh(q)), it is enough to compute
an ε/(4dπ)-approximation of ϕ1(Mh(q)). The initial state of phase estimation algorithm is
|0〉⊗b|z1〉, where b is related to the accuracy of the algorithm and will be determined later,
while |z1〉 = |z1(Mh(q))〉. It is helpful to think of two registers holding the initial state. The

22

top register is b qubits long and holds |0〉⊗b, while the bottom register holds the eigenvector
|z1〉.

Abrams and Lloyd [1] showed that phase estimation can still be used even if the eigen-
vector |z1〉 is replaced by a good approximation |ψ〉. More precisely, expanding |ψ〉 in the
basis of the eigenvectors |zj〉, the initial state takes the form

|0〉⊗b|ψ〉 = |0〉⊗b

md−1∑
k=0

dk|zk〉.

The success probability of the algorithm depends on |d1|2, the square of the projection of |ψ〉
onto |z1〉.

Omitting the details, which are not important in the analysis here and can be found
in [1, 21], a measurement of the top register of the final state of phase estimation, with
probability at least

8

π2
|d1|2,

will produce an index j ∈ [0, 2b − 1] such that∣∣∣∣ j2b
− ϕ1(Mh(q))

∣∣∣∣ ≤ 1

2b
.

The cost of phase estimation is equal to b power queries, plus a number of operations propor-
tional to b2 + d logm, plus the cost for preparing the initial state |ψ〉. The number of qubits
used is b+d logm. We remark that the O(b2) operations are for the quantum implementation
of the (inverse) Fourier transform used in phase estimation [19].

Taking into account that the matrix eigenvalue approximates λ(q) with error O(h), where
h = (m+ 1)−1, we obtain that ∣∣∣∣λ(q)− 4djπ

2b

∣∣∣∣ ≤ 4dπ

2b
+O(h).

Therefore, it suffices to set h = ε and b = log ε−1 to obtain error O(ε) in the approxi-
mation of λ(q). Under these conditions, the cost of the algorithm is equal to log ε−1 power
queries, plus a number of operations proportional to log2 ε−1, plus the cost of preparing the
initial state. Recall that we want to implement a good approximation |ψ〉 of |z1〉 leading to
success probability at least 3

4
.

Consider the eigenvector corresponding to the smallest eigenvalue when q = 0. Denote
this eigenvector by |z1(Mε(0))〉, Mε(0) = −∆ε. Then |z1(Mε(0))〉 = |z(1)

1 〉⊗d, i.e., |z1(Mε(0))〉
is the tensor product of the eigenvectors of the ε−1 × ε−1 matrix of the corresponding one-
dimensional problem (i.e., when d = 1) [12]. Each |z(1)

1 〉 can be implemented using the
Fourier transform with a number of operations proportional to log2 ε−1, see [19, p. 209] and
[9, 28] for more details. Therefore, we can implement |z1(Mε(0))〉 with cost proportional to
d log2 ε−1.

Now consider any q ∈ Q. Since we know that the eigenvalues of Mε(q) are well separated
(18), using |z1(Mε(0))〉 as an approximate eigenvector we find that the square of its projection

23

onto z1(Mε(q)) satisfies [29, p. 173]

|〈z1(Mε(q))|z1(Mε(0))〉|2 ≥ 1− 1

(3π2 − 2)2
.

Define the initial state of phase estimation using

|ψ〉 := |z1(Mε(0))〉

to obtain that |d1|2 ≥ 1− (3π2 − 2)−2 which leads to a success probability

8

π2
|d1|2 ≥

8

π2

(
1− 1

(3π2 − 2)2

)
≥ 3

4
.

We have proved the following theorem.

Theorem 4.4. The eigenvalue problem can be solved with error O(ε), and probability at least
3
4
, by discretizing Lq and then approximating the smallest eigenvalue of the resulting matrix
Mε(q) by phase estimation that uses power queries. The initial state of phase estimation
uses the eigenvector of Mε(0) = −∆ε that corresponds to its smallest eigenvalue. The cost
of the algorithm is proportional to

• log(ε−1) power queries,

• log2 ε−1 + d log ε−1 quantum operations,

• d log ε−1 qubits.

Let us now turn to the query complexity npower−query(ε). The previous theorem implies
that npower−query(ε) = O(log ε−1). Consider a function q ∈ Q such that q(x1, . . . , xd) =∑d

j=1 g(xj), where g ∈ C1([0, 1]) is non-negative and ‖g‖∞ ≤ 1 and ‖g′‖∞ ≤ 1. Then [23, p.
113] the eigenvalue problem (1), (2) has a separable solution which is obtained by solving
the Sturm-Liouville eigenvalue problem

−y′′(x) + g(x)y(x) = µy(x), x ∈ (0, 1)

y(0) = y(1) = 0.

Denoting the smallest eigenvalue of this problem by µ(g) we have

λ(q) = d µ(g).

Any algorithm that approximates λ(q) with error O(ε) also approximates µ(g) with error
O(ε). Using the power query lower bound for the Sturm-Liouville eigenvalue problem [5, 6],
we conclude any quantum algorithm with power queries that approximates λ(q) with error
O(ε) must use Ω(log ε−1) queries.

Combining the lower bound with the previous theorem leads to tight power query com-
plexity bounds.

24

Theorem 4.5.
npower−query(ε) = Θ(log ε−1).

We are now ready to prove the upper bound for the bit-query complexity of Theorem 4.3.
Proof of Theorem 4.3. We use phase estimation as in the proof of Theorem 4.4 but instead
of power queries we will use bit queries to approximate them. Recall equation (39), with
h = ε. The matrix Mε(q) has size md ×md with (m+ 1)−1 = ε. Its largest eigenvalue does
not exceed 4dε−2 + 1 [12, p. 268]. Therefore, we have ‖(2d)−1Mε(q)‖2 ≤ (4dε−2 + 1)/(2d).
For β = 4dε−2+1 we have ‖(2dβ)−1Mε(q)‖2 ≤ 1. Recall that (2dβ)−1Mε(q) = −(2dβ)−1∆ε+
(2dβ)−1Bε(q). For notational convenience define A1 = −(2dβ)−1∆ε and A2 = (2dβ)−1Bε(q).
Then ‖A1‖2 ≤ 1 and ‖A2‖2 ≤ 1.

Using the Trotter formula [19, p. 208] we have∥∥ei(A1+A2)/k − eiA1/keiA2/k
∥∥

2
≤ ck−2,

where c is a constant, (see also [17, 22] and the references therein). From (39) we have

WL = ei(A1+A2)βL for any L ∈ N

and therefore ∥∥∥WL −
(
eiA1/keiA2/k

)kβL
∥∥∥

2
≤ c

βL

k
. (40)

In phase estimation we require the maximum power of W to be of order ε−1. Setting
L = O(ε−1) in the equation above, we have that βL is of order ε−3. Thus for k proportional
to ε−3 log2 ε−1, the error in the approximation of the matrix exponential (40) is O(log−2 ε−1).

From [8] we know that using bit queries and phase kick-back we can obtain eiA2/k. Hence,
to approximate the O(log ε−1) power queries of phase estimation the algorithm we need a
total number of bit queries proportional to ε−6 log2 ε−1.

Since the eigenvalues and eigenvectors of −∆ε are known, each of the eiA1/k can be
implemented using the quantum Fourier transform with a number of quantum operations
proportional to d log2 ε−1. Thus the total number of quantum operations, excluding bit
queries, required to approximate all the power queries is proportional to d ε−6 log4 ε−1.

Using (40) to approximate the power queries only changes the success probability of
phase estimation [19, p. 195]. Since phase estimation uses of order log ε−1 power queries
and each is approximated with error O(log−2 ε−1) the success probability may be reduced
by a quantity proportional to log−1 ε−1. Therefore for ε sufficiently small, the probability
remains greater than or equal to 3

4
.

We conclude by addressing the qubit complexity of our problem. By qubit complexity we
mean the minimum number of qubits required for a quantum algorithm to achieve error ε.
We denote the qubit complexity by nqubit(ε). The qubit complexity is related to the classical
information complexity nwor(ε) by

nqubit(ε) = Ω(log nwor(ε)).

25

This is shown in [30] and it holds regardless of the type of queries used. Since, nwor(ε) =
Ω(ε−d) we get

nqubit(ε) = Ω(log ε−1).

On the other hand, phase estimation solves the problem with error O(ε) using a number
of qubits proportional to d log ε−1. We have proved the following theorem.

Theorem 4.6.
nqubit(ε) = Θ(log ε−1).

5 Acknowledgements

I am very grateful to A. Bessen for the extensive discussions we had and his insightful remarks
that significantly impoved this paper. I thank J. H. Lai, J. F. Traub and A. G. Werschulz
for their comments and suggestions.

References

[1] Abrams, D. S. and Lloyd, S. (1999), Quantum Algorithm Providing Exponential Speed
Increase for Finding Eigenvalues and Eigenvectors, Phys. Rev. Lett., 83, 5162–5165.

[2] Babuska, I. and Osborn, J. (1991), Eigenvalue Problems, in Handbook of Numerical
Analysis, Vol. II, P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam, 641–
787.

[3] Beals, R., Buhrman, H., Cleve, R., Mosca, R. and de Wolf, R. (1998), Quantum lower
bounds by polynomials, Proceedings FOCS’98, 352–361. Also http://arXiv.org/quant-
ph/9802049.

[4] Bernstein, E., and Vazirani, U. (1997), Quantum complexity theory, SIAM J. Comput-
ing, 26(5), 1411–1473.

[5] Bessen, A. J. (2005), A lower bound for phase estimation, Physical Review A, 71(4),
042313. Also http://arXiv.org/quant-ph/0412008.

[6] Bessen, A. J. (2006), A lower bound for the Sturm-Liouville eigenvalue prob-
lem on a quantum computer, Journal of Complexity, 22(5), 660–675. Also
http://arXiv.org/quant-ph/04512109

[7] Brassard, G., Hoyer, P., Mosca, M., and Tapp, A. (2002), Quantum Amplitude Amplifi-
cation and Estimation in Contemporary Mathematics, Vol. 305, Am. Math. Soc., 53–74.
Also http://arXiv.org/quant-ph/0005055.

[8] Cleve, R., Ekert, A., Macchiavello, C. and Mosca, M. (1998), Quantum Algorithms
Revisited, Proc. R. Soc. Lond. A, 454, 339–354.

26

[9] Klappenecker, A. and Rötteler, M. (2001), Discrete Cosine Transforms on Quantum
Computers, http://arXiv.org/quant-ph/0111038.

[10] Courant, R. (1943), Variational Methods for the Solution of Problems of Equilibrium
and Variations, Bulletin American Mathematical Society, 49, 1–23.

[11] Courant, C. and Hilbert, D. (1989), Methods of Mathematical Physics, Vol. I, Wiley
Classics Library, Willey-Interscience, New York.

[12] Demmel, J. W. (1997), Applied Numerical Linear Algebra, SIAM, Philadelphia.

[13] Forsythe, G. E., and Wasow, W. R. (2004), Finite-Difference Methods for Partial Dif-
ferential Equations, Dover, New York.

[14] Grover, L. (1997), Quantum mechanics helps in searching for a needle in a haystack,
Phys. Rev. Lett., 79(2), 325–328. Also http://arXiv.org/quant-ph/9706033.

[15] Heinrich, S. (2002), Quantum Summation with an Application to Integration, J. Com-
plexity, 18(1), 1–50. Also http://arXiv.org/quant-ph/0105116.

[16] Heinrich, S. (2003), Quantum integration in Sobolev spaces, J. Complexity, 19, 19–42.

[17] Jahnke, T. and Lubich, C. (2000), Error bounds for exponential operator splitting, BIT,
40(4), 735–744.

[18] A. Nayak and F. Wu (1999), The quantum query complexity of approximating the
median and related statistics, Proceedings of the 31st Annual ACM Symposium on the
Theory of Computing (STOC), 384-393. LANL preprint quant-ph/9804066.

[19] Nielsen, M.A. and Chuang, I.L. (2000), Quantum Computation and Quantum Informa-
tion, Cambridge University Press, Cambridge, UK.

[20] Novak, E. (2001), Quantum complexity of integration, J. Complexity, 17, 2–16. Also
http://arXiv.org/quant-ph/0008124.

[21] Papageorgiou, A. and Woźniakowski, H. (2005), Classical and Quantum Complexity of
the Sturm-Liouville Eigenvalue Problem, Quantum Information Processing, 4, 87–127.
Also http://arXiv.org/quant-ph/0502054.

[22] Suzuki, M. (1992), General theory of higher-order decomposition of exponential operators
and symplectic integrators, Physics Letters A, 165, 387–395.

[23] Titschmarsh, E. C. (1958), Eigenfunction Expansions Associated with Second-Order
Differential Equations, Part B, Oxford University Press, Oxford, UK.

[24] Traub, J. F., Wasilkowski, G. W. and Woźniakowski, H. (1988), Information-Based
Complexity, Academic Press, New York.

[25] Traub, J. F. (1999), A continuous model of computation, Physics Today, May, 39–43.

27

[26] Weinberger, H. F. (1956), Upper and Lower Bounds for Eigenvalues by Finite Difference
Methods, Communications on Pure and Applied Mathematics, IX, 613–623.

[27] Weinberger, H. F. (1958), Lower Bounds for Higher Eigenvalues by Finite Difference
Methods, Pacific Journal of Mathematics, 8(2), 339–368.

[28] Wickerhauser, M. V. (1994), Adapted Wavelet Analysis from Theory to Software,
A. K. Peters, Wellesley.

[29] Wilkinson, J. H. (1965), The Algebraic Eigenvalue Problem, Oxford University Press,
Oxford, UK.

[30] Woźniakowski, H. (2006), The Quantum Setting with Randomized Queries for
Continuous Problems, Quantum Information Processing, 5(2), 83–130. Also
http://arXiv.org/quant-ph/060196.

28

