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1 IntroductionMonte Carlo simulation is widely used to value complex �nancial instruments. Vast sumsare spent annually on these methods.Monte Carlo methods use random (or more precisely, pseudo-random) points. If we plota moderate number of pseudo-random points in two dimensions, we observe regions wherethere are no points, see e.g. [5]. Rather than using pseudo-random points, it seems attractiveto choose points which are as uniformly distributed as possible. There is a notion in numbertheory called discrepancy which measures the deviation of a set of points in d dimensionsfrom uniformity. Although the question of which point set in d dimensions have the lowestdiscrepancy is open, various low discrepancy point sets are known.We compared the e�cacy of low discrepancy methods with Monte Carlo methods onthe valuation of �nancial derivatives. We use a Collateralized Mortgage Obligation (CMO),provided to us by Goldman Sachs, with ten bond classes (tranches) which is formulated asthe computation of ten integrals of dimension up to 360. The reasons for choosing this CMOis that it has fairly high dimension and that each integrand evaluation is very expensivemaking it crucial to sample the integrand as few times as possible. We believe that ourconclusions regarding this CMO will hold for many other �nancial derivatives.The low discrepancy sample points chosen for our tests are Sobol and Halton points. Wecompared the methods based on these points with the classical Monte Carlo method andalso with the classical Monte Carlo method combined with antithetic variables.An explanation of our terminology is in order here. Low discrepancy points are sometimesreferred to as quasi-random points. Although in widespread use, we believe the latter termto be misleading since there is nothing random about these deterministic points. We preferto use the terminology low discrepancy or deterministic.We assume the �nance problem has been formulated as an integral over the unit cube in ddimensions. We have built a software system called FINDER for computing high dimensionalintegrals. FINDER runs on a heterogeneous network of workstations under PVM 3.2 (ParallelVirtual Machine). Since workstations are ubiquitous, this is a cost-e�ective way to do largecomputations fast. Of course, FINDER can also be used to compute high dimensionalintegrals on a single workstation.A routine for generating Sobol points is given in [4]. However, we incorporated majorimprovements in FINDER and we stress that the results reported in this paper were obtainedusing FINDER. One of the improvements was developing the table of primitive polynomialsand initial direction numbers for dimensions up to 360.This paper is based on two years of software construction and testing. Preliminaryresults were presented to a number of New York City �nancial houses in the Fall of 19932



and the Spring of 1994. A January, 1994 article in Scienti�c American [5] discussed thetheoretical issues and reported that \Preliminary results obtained by testing certain �nanceproblems suggest the superiority of the deterministic methods in practice." Further resultswere reported at a number of conferences in the summer and fall of 1994. A June, 1994article in Business Week [1] indicates the possible superiority of low discrepancy sequences.Details on the CMO, the numerical methods, and the test results are presented in [3].Here we limit ourselves to stating our main conclusions and indicating typical results. Forbrevity, we shall refer to the method which uses Sobol points as the Sobol method.We summarize our main conclusions regarding the evaluation of this CMO. The conclu-sions may be divided into three groups.A. Deterministic and Monte Carlo MethodsThe Sobol method consistently outperforms the Monte Carlo method. The Sobol methodconsistently outperforms the Halton method. In particular,� The Sobol method converges signi�cantly faster than the Monte Carlo method;� The convergence of the Sobol method is smoother than the convergence of the MonteCarlo method. This makes automatic termination easier for the Sobol method;� Using our standard termination criterion the Sobol method terminates 2 to 5 timesfaster than the Monte Carlo method often with smaller error;� The Monte Carlo method is sensitive to the initial seed.B. Sobol, Monte Carlo, and Antithetic Variables MethodsThe Sobol method consistently outperforms the antithetic variables method, which in turn,consistently outperforms the Monte Carlo method. In particular,� These conclusions also hold when a rather small number of sample points are used, animportant case in practice. For example, for 4000 sample points, the Sobol methodrunning on a single Sun-4 workstation achieves accuracies within range from one partin a thousand to one part in a million, depending on the tranche, within a couple ofminutes;� Statistical analysis on the small sample case further strengthens the case for the Sobolmethod over the antithetic variables method. For example, to achieve similar perfor-mances with con�dence level 95%, the antithetic variables method needs from 7 to 79times more sample points than the Sobol method, depending on the tranche;3



� The antithetic variables method is sensitive to the initial seed. However, convergenceof the antithetic variables method is less jagged than convergence of the Monte Carlomethod.C. Network of Workstations All the methods bene�t by being run on a network ofworkstations. In particular,� For N workstations, the measured speedup is at least 0:9N , where N � 25;� A substantial computation which took seven hours on a Sun-4 workstation took twentyminutes on the network of 25 workstations.We emphasize that we do not claim that the Sobol method is always superior to the MonteCarlo method. We do not even claim that it is always superior for �nancial derivatives. Afterall, the test results reported here are only for one particular CMO. However, we do believe itwill be advantageous to use the Sobol method for many other types of �nancial derivatives.2 Numerical MethodsThe idea underlying the Monte Carlo method is to replace the integral of f(x), which is acontinuous average, by a discrete average over randomly chosen points. More precisely, letD denote the d dimensional unit cube. We approximateZD f(x)dxby 1n nXi=1 f(ti):It is well known that if one chooses n points from a 
at distribution, then the expected erroris En(f) = �(f)pn ;where �2(f) denotes the variance of f .The Monte Carlo method has the advantage that the expected error is independent ofdimension but su�ers from the disadvantage that the rate of convergence is only proportionalto n�1=2. This motivates the search for methods which converge faster.4



Low discrepancy methods also approximate the integral of f(x) by a discrete average.However, this time the average is taken over low discrepancy points. A number of lowdiscrepancy point sets are known. Here we con�ne ourselves to Sobol or Halton points.Roughly speaking both have the property that the rate of convergence is proportional to(log n)d=n. See [2] for the theory of low discrepancy points and references to the literature.The n�1 factor in the convergence formula for low discrepancy points may be contrastedwith the n�1=2 convergence of Monte Carlo and suggests that low discrepancy methods aresometimes superior to Monte Carlo methods. However, a number of researchers reportthat this advantage decreases with increasing dimension. Furthermore, they report that thetheoretical advantage of low discrepancy methods disappear for rather modest values of thedimension, say, d � 30.However, these conclusions are based on mathematical problems speci�cally constructedfor testing purposes or for certain problems arising in physics. As we shall see, tests on 360dimensional integrals arising from a CMO lead to very di�erent conclusions.3 The Finance ProblemWe tested a Collateralized Mortgage Obligation (CMO) provided to us by Goldman Sachs.This CMO consists of ten tranches which derive their cash 
ows from an underlying pool ofmortgages. The cash 
ows received from the pool of mortgages are divided and distributed toeach of the tranches according to a set of prespeci�ed rules. The cash 
ows consist of interestand repayment of the principal. The technique of distributing the cash 
ows transfers theprepayment risk among di�erent tranches. We stress that the amount of obtained cash 
owswill depend upon the future level of interest rates. Our problem is to estimate the expectedvalue of the sum of present values of future cash 
ows for each of the tranches.The underlying pool of mortgages has a thirty-year maturity and cash 
ows are obtainedmonthly. This leads to 360 cash 
ows and hence to integration in 360 dimensions. Theprecise mathematical formulation for this CMO may be found in Section 5 of [3].4 Software System for Computing High DimensionalIntegralsTheory suggests that the low discrepancy deterministic methods provide an interesting al-ternative to the Monte Carlo method for computing high dimensional integrals. We havedeveloped and tested a distributed software system for computing multivariate integrals on5



a network of workstations. The software also runs on a single workstation. The softwareutilizes the following sequences of sample points:� Halton points;� Sobol points;� Uniformly distributed random points.The user can choose the sequence of sample points from a menu. The software is writtenin a modular way so other kinds of deterministic and random number generators can beeasily added. One or several multivariate functions de�ned over the unit cube of up to 360variables can be integrated simultaneously.A routine for generating Sobol points is given in [4]. However, we have made majorimprovements and we stress that the results reported in this paper were obtained usingFINDER and not the routine in [4]. One of the improvements was developing the table ofprimitive polynomials and initial direction numbers for dimensions up to 360.The software permits the use of various random number generators. In particular, RAN1and RAN2 from [4] are used because of their wide availability and popularity.5 Comparison of Deterministic andMonte Carlo Meth-odsWe now present a selection of the results of extensive testing of the deterministic and MonteCarlo methods for the CMO. For the reader's convenience, the results are summarized in anumber of graphs.Figure 1 shows the results for one of the ten tranches (tranche A) of Sobol, Halton,and Monte Carlo runs with two randomly chosen initial seeds. Throughout this section, wedescribe results on tranche A in more details. Results for other tranches are similar unlessstated explicitly. The pseudorandom generator RAN2 from [4] is used to generate randomsample points for the Monte Carlo runs.It is striking how typical this �gure is of the vast amount of data we collected. Wesummarize our conlusions.� The Monte Carlo method is sensitive to the initial seed;� The deterministic methods, especially the Sobol method, converge signi�cantly fasterthan the Monte Carlo method; 6
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Figure 1: Sobol and Halton runs for tranche A and two Monte Carlo runs using RAN2� The convergence of the deterministic methods, especially of the Sobol method, issmoother than the convergence of the Monte Carlo method. This makes automatictermination easier for the Sobol method; see the discussion below;� The Sobol method outperforms the Halton method.Figure 2 plots the same Sobol and Halton runs versus the arithmetic mean of twentyMonte Carlo runs. The twenty Monte Carlo runs use twenty di�erent randomly chosen ini-tial seeds. We stress that the number of sample points on the x-axis is correct only for thedeterministic methods. The actual number of sample points for the averaged Monte Carlo7



graph is twenty times the number of sample points on the x-axis. The results of the deter-ministic methods and the averaged Monte Carlo result are approximately the same. Afterroughly the �rst 50,000 integrand evaluations, the behaviour of the deterministic methodsand average Monte Carlo is roughly the same even though we are using 20 times more randomthan deterministic points.In Figure 3, an automatic termination criterion is applied to Sobol, Halton, and threeMonte Carlo runs. We choose a standard automatic termination criterion. Namely, when twoconsecutive di�erences between consecutive approximations using 10; 000 i; i = 1; 2; : : : ; 100,sample points become less than some threshold value for all of the tranches of the CMO,the computational process is terminated. With the threshold value set at 250, the Sobol runterminates at 160,000 sample points, the Halton run terminates at 700,000 sample points,and the three Monte Carlo runs terminate at 410,000, 430,000, and 780,000 sample points,respectively. Hence, the Sobol run terminates 2 to 5 times faster than the Monte Carlo runs.We stress that even though the Sobol method terminates faster, it is often more accuratethan the Monte Carlo method. Details may be found in [3].6 Antithetic VariablesAn important advantage of Monte Carlo and deterministic methods is that they can beutilized very generally. This is important in a number of situations:� If a �nancial house has a book with a wide variety of derivatives, it is advantageous touse methods which do not need to be tuned to a particular derivative;� If a new derivative has to be priced, then there is no immediate opportunity to tailora variance reduction technique to a particular integrand.Variance reduction techniques are commonly used in conjuction with Monte Carlo meth-ods. Although variance reduction techniques can be very powerful, they can require con-siderable analysis before being applied. We will therefore limit ourselves here to just onevariance reduction technique; antithetic variables. The advantage of antithetic variables isthat it can be easily utilized. Tests reveal that it is superior to the Monte Carlo methodfor our CMO problem. We emphasize that antithetic variables is not a palliative; it can beinferior to the Monte Carlo method.Figure 4 is analogous to Figure 1. It compares the results of Sobol, Halton, and antitheticvariables runs with two randomly chosen initial seeds. The data graphed in Figure 4 is typicalof our results. From these results we conclude that for this CMO:8
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Figure 2: Sobol and Halton runs for tranche A and an average of twenty Monte Carlo runsusing RAN2 9
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Figure 3: Automatic termination criterion applied to Sobol, Halton, and three Monte Carloruns using RAN2 for tranche A 10
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Figure 4: Sobol and Halton runs for tranche A and two antithetic variables runs using RAN2� The Sobol method consistently outperforms the antithetic variables method;� Convergence of the antithetic variables method is less jagged than the convergence ofthe Monte Carlo;� The antithetic variables method consistently outperforms the Monte Carlo method.Further results regarding antithetic variables may be found in [3].11



7 Small Number of Sample PointsResults for a small number of points are sometimes of special importance for people whoevaluate CMOs and other derivative products. They need methods which can evaluate aderivative in a matter of minutes. Rather low accuracy, on the order of 10�2 to 10�4, is oftensu�cient. The integrands are complicated and computationally expensive. Furthermore,many may have to be evaluated on a daily basis with limited computational resources, suchas workstations.We therefore compare the performance of the Sobol method with Monte Carlo and an-tithetic variables for 4000 sample points. This leads to reasonable results and takes lessthan a couple of minutes of workstation CPU time. We believe that comparable results mayhold for other mortgage-backed securities and interest rate derivatives. We drop the Haltonmethod from consideration in this section since it is outperformed by both the Monte Carloand antithetic variables methods for 4000 sample points. Sometimes computational speed isparamount. It would therefore also be of interest to study smaller number of points.Our methodology was as follows. For each of the ten tranches we computed 20 approxi-mate answers using the Monte Carlo method with 20 random initial seeds. For each tranchewe also computed an approximation using Sobol points. We also computed the relative er-rors of all these approximations. To compute the relative errors we needed estimates of thetrue answers. We obtained these using antithetic variables with 20,000,000 points.The results are summarized in Table 1. We say a method wins if it has a smaller relativeerror. (Recall we are �xing the number of samples at 4000.) Sobol points win for everytranche. In total, the Sobol method wins 177 times out of 200 cases; that is almost 90% ofthe time.Table 2 exhibits the result of comparing the Sobol method with the antithetic variablesmethod. The Sobol method wins for 8 of the tranches, ties for 1, and loses for 1. In total,Sobol wins almost 70% of the time.The Sobol method achieves accuracies ranging from one part in a thousand to one partin a million, depending on the tranche. It takes about 103 seconds to compute the Sobolresults and about 113 seconds to compute the antithetic variables results for all ten tranchesrunning on a Sun-4 workstation.8 Closing RemarksWe performed statistical analysis for the case of a small number of sample points. Method-ology and results are reported in Section 9 of [3]. Here we con�ne ourselves to mentioning12



Tranche Monte Carlo SobolA 3 17B 0 20C 3 17D 3 17E 2 18G 0 20H 0 20J 0 20R 8 12Z 4 16Table 1: Number of \wins" of the Monte Carlo method and the Sobol methodTranche Antithetic variables SobolA 9 11B 1 19C 6 14D 10 10E 11 9G 2 18H 3 17J 2 18R 8 12Z 9 11Table 2: Number of \wins" of the antithetic variables method and the Sobol method13



just one conclusion.� Statistical analysis on the small sample case further strengthens the case for the Sobolmethod over the antithetic variables method. For example, to achieve similar perfor-mances with con�dence level 95%, the antithetic variables method needs from 7 to 79times more sample points than the Sobol method, depending on the tranche.In closing, we suggest some directions for future work:� Compare the performance of low discrepancy and Monte Carlo methods on other �-nancial derivatives;� Test the performance of other known low discrepancy sequences on various derivatives;� As mentioned in Section 7, results for a small number of samples are often of specialinterest in �nance. It would be attractive to design new deterministic sequences whichare very uniformly distributed for a small number of points;� Characterize analytic properties of classes of �nancial derivatives and design new meth-ods tuned to these classes;� Study error reduction techniques for deterministic methods;� There are numerous open theoretical problems concerning high dimensional integrationand low discrepancy sequences. We believe that their solution will aid in the design ofbetter methods for �nance problems.AcknowledgmentsWe are grateful to Goldman Sachs for providing the �nance problem. We appreciate help anddiscussions with S. Baker, A. Belur, B. Bojanov, T. Boult, P. Cheah, J. Davis, S. Heinrich, P.Karasinski, J. Langsam, N. Marinovich, P. Niculescu, E. Novak, D. Schutzer, B. Shukhman,I. M. Sobol, V. Temlyakov, S. Tezuka, J. Tilley, I. Vanderhoof, T. Warnock, A. Werschulz,R. Wertz, and H. Wo�zniakowski. 14
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