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AbstractHigh-dimensional integrals are usually solved with Monte Carlo algorithms althoughtheory suggests that low discrepancy algorithms are sometimes superior. We reporton numerical testing which compares low discrepancy and Monte Carlo algorithms onthe evaluation of �nancial derivatives. The testing is performed on a CollateralizedMortgage Obligation (CMO) which is formulated as the computation of ten integralsof dimension up to 360.We tested two low discrepancy algorithms (Sobol and Halton) and two randomizedalgorithms (classical Monte Carlo and Monte Carlo combined with antithetic variables).We conclude that for this CMO the Sobol algorithm is always superior to the otheralgorithms. We believe that it will be advantageous to use the Sobol algorithm formany other types of �nancial derivatives.Our conclusion regarding the superiority of the Sobol algorithm also holds when arather small number of sample points are used, an important case in practice.We have built a software system called FINDER for computing high dimensionalintegrals. Routines for computing Sobol points have been published. However, weincorporated major improvements in FINDER and we stress that the results reportedhere were obtained using this software.The software system FINDER runs on a network of heterogeneous workstationsunder PVM 3.2 (Parallel Virtual Machine). Since workstations are ubiquitous, this isa cost-e�ective way to do very large computations fast. The measured speedup is atleast :9N for N workstations, N � 25. The software can also be used to compute highdimensional integrals on a single workstation.
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1 IntroductionHigh-dimensional integrals are usually solved with Monte Carlo algorithms. Vast sums arespent annually on these algorithms.Theory [21], [43] suggests that low discrepancy algorithms are sometimes superior toMonte Carlo algorithms. However, a number of researchers, [14], [19], [20], report thattheir numerical tests show that this theoretical advantage decreases with increasing dimen-sion. Furthermore, they report that the theoretical advantage of low discrepancy algorithmsdisappears for rather modest values of the dimension, say, d � 30.We decided to compare the e�cacy of low discrepancy and Monte Carlo algorithms onthe valuation of �nancial derivatives. We use a Collateralized Mortgage Obligation (CMO),provided to us by Goldman Sachs, with ten bond classes (tranches) which is formulated asthe computation of ten integrals of dimension up to 360. The reasons for choosing this CMOis that it has fairly high dimension and that each integrand evaluation is very expensivemaking it crucial to sample the integrand as few times as possible. We believe that ourconclusions regarding this CMO will hold for many other �nancial derivatives.The low discrepancy sample points chosen for our tests are Sobol and Halton points. Wecompared the algorithms based on these points with the classical Monte Carlo algorithm andalso with the classical Monte Carlo algorithm combined with antithetic variables. We referto the latter as the antithetic variables algorithm. See Section 7 for a discussion of why thisalgorithm was tested.An explanation of our terminology is in order here. Low discrepancy points are sometimesreferred to as quasi-random points. Although in widespread use, we believe the latter termto be misleading since there is nothing random about these deterministic points. We preferto use the terminology low discrepancy or deterministic.We assume the �nance problem has been formulated as an integral over the unit cube in ddimensions. We have built a software system called FINDER for computing high dimensionalintegrals. FINDER runs on a heterogeneous network of workstations under PVM 3.2 (ParallelVirtual Machine). Since workstations are ubiquitous, this is a cost-e�ective way to do largecomputations fast. Of course, FINDER can also be used to compute high dimensionalintegrals on a single workstation. The software system FINDER is available and interestedreaders should contact the author.A routine for generating Sobol points is given in [28]. However, major improvementshave been incorporated in FINDER. We emphasize that the results reported in this paperwere obtained using FINDER. One of the improvements was developing the table of primitivepolynomials and initial direction numbers for dimensions up to 360.This paper is based on software construction and testing which began in the Fall of 1992.4



Preliminary results were presented to a number of New York City �nancial houses in the Fallof 1993 and the Spring of 1994. A January, 1994 article in Scienti�c American discussed thetheoretical issues and reported that \Preliminary results obtained by testing certain �nanceproblems suggest the superiority of the deterministic methods in practice." Further resultswere reported at a number of conferences including [24], [38], [39]. An \extended abstract"of this paper was published in Fall, 1995 [26]. A slightly di�erent version of this paperappeared as a Columbia University Technical Report in October, 1994.We summarize our main conclusions regarding the evaluation of this CMO. The conclu-sions may be divided into three groups.I. Deterministic and Monte Carlo AlgorithmsThe Sobol algorithm consistently outperforms the Monte Carlo algorithm. The Sobolalgorithm consistently outperforms the Halton algorithm. In particular,� The Sobol algorithm converges signi�cantly faster than the Monte Carlo algorithm;� The convergence of the Sobol algorithm is smoother than the convergence of the MonteCarlo algorithm. This makes automatic termination easier for the Sobol algorithm;� Using our standard termination criterion, see Section 6, the Sobol algorithm terminates2 to 5 times faster than the Monte Carlo algorithm often with smaller error;� The Monte Carlo algorithm is sensitive to the initial seed.II. Sobol, Monte Carlo, and Antithetic Variables AlgorithmsThe Sobol algorithm consistently outperforms the antithetic variables algorithm, which inturn, consistently outperforms the Monte Carlo algorithm. In particular,� These conclusions also hold when a rather small number of sample points are used, animportant case in practice. For example, for 4000 sample points, the Sobol algorithmrunning on a single Sun-4 workstation achieves accuracies within range from one partin a thousand to one part in a million, depending on the tranche, within a couple ofminutes;� Statistical analysis on the small sample case further strengthens the case for the Sobolalgorithm over the antithetic variables algorithm. For example, to achieve similarperformances with con�dence level 95%, the antithetic variables algorithm needs from7 to 79 times more sample points than the Sobol algorithm, depending on the tranche.In a similar comparison, the Monte Carlo algorithm needs from 27 to 607 times moresample points than the Sobol algorithm depending on the tranche. These speedups aremeasured conservatively, see Section 9; 5



� Statistical analysis for a large number of sample points (1,000,000 points) shows thatthe superiority of the Sobol algorithm is greater than for a small number of points.For example, to achieve similar performances with con�dence level 95%, the antitheticvariables algorithm needs from 16 to 230 times more sample points than the Sobolalgorithm, depending on the tranche. In a similar comparison, the Monte Carlo al-gorithm needs from 110 to 1769 times more sample points than the Sobol algorithmdepending on the tranche. These speedups are measured conservatively, see Section 9;� The antithetic variables algorithm is sensitive to the initial seed. However, convergenceof the antithetic variables algorithm is less jagged than convergence of the Monte Carloalgorithm.III. Network of Workstations All the algorithms bene�t by being run on a network ofworkstations. In particular,� For N workstations, the measured speedup is at least 0:9N , where N � 25;� A substantial computation which took seven hours on a Sun-4 workstation took twentyminutes on the network of 25 workstations.We emphasize that we do not claim that the Sobol algorithm is always superior to theMonte Carlo algorithm. We do not even claim that it is always superior for �nancial deriva-tives. After all, the test results reported here are only for one particular CMO. However,we do believe it will be advantageous to use the Sobol algorithm for many other types of�nancial derivatives.2 The Monte Carlo AlgorithmIn this section, we give a brief discussion of the theory underlying the Monte Carlo algorithmfor the problem of multivariate integration. For more details, see for example, [11], [12], [15],and [34].We now present the classical Monte Carlo algorithm. For brevity, we refer to it as theMonte Carlo algorithm. Let t1; : : : ; tn be n randomly selected points which are independentand uniformly distributed overD = [0; 1]d, the d dimensional unit cube. Consider a functionf from the space L2(D) of L2-integrable functions. The problem is to approximately computeI(f) = ZD f(x)dx6



using function evaluations at randomly chosen points. The classical Monte Carlo algorithmis given by I(f) � Un(f) = Un(f ; t1; : : : ; tn) = 1n nXi=1 f(ti): (1)The main idea underlying the Monte Carlo algorithm for multivariate integration is to replacea continuous average by a discrete average over randomly selected points.The expected value of the estimate Un(f ; t1; : : : ; tn) as a function of the random variablest1; t2; : : : ; tn is E(Un(f ; t1; : : : ; tn)) = I(f):The expected error of the Monte Carlo algorithm for a function f is de�ned byEn(f) = �ZDn (I(f)� Un(f))2 dt1 : : : dtn�1=2 :It is well known that En(f) = �(f)pn ;where the variance �2(f) of f is de�ned as�2(f) = ZD (f(t)� I(f))2 dt = I(f2)� I2(f):Clearly, by reducing the variance of the integrand the expected error would also decrease.In fact, this is the main idea underlying the various variance reduction techniques which areoften used in combination with the Monte Carlo algorithm. Examples of variance reductiontechniques are importance sampling, control variates, antithetic variables, see for example[15]. Antithetic variables will be discussed in Section 7.Let B(L2(D)) denote the unit ball of L2(D). The expected error of the Monte Carlo algo-rithm with respect to the class B(L2(D)) is measured for the worst function f in B(L2(D)),ewor�MCn (B(L2(D)) = supf2B(L2(D))En(f):It can be easily concluded that ewor�MCn (B(L2(D)) = n�1=2: (2)Since the rate of convergence is independent of d and the Monte Carlo algorithm is ap-plicable to a very broad class of integrands, its advantages for high dimensional integration7



are clear. Nevertheless, the Monte Carlo algorithm has several serious de�ciencies, see forexample, [21] and [36]. We mention just three of them here. Even though the rate of conver-gence is independent of the dimension, it is quite slow. Furthermore, there are fundamentalphilosophical and practical problems with generating independent random points; instead,pseudorandom numbers are used, see [16] and [41]. Finally, the Monte Carlo algorithm pro-vides only probabilistic error bounds, which is not a desirable guarantee for problems wherehighly reliable results are needed.3 Low Discrepancy Deterministic AlgorithmsIn an attempt to avoid the de�ciencies of the Monte Carlo algorithm, many deterministicalgorithms have been proposed for computing high dimensional integrals for functions be-longing to various subsets of L2(D), see e.g. [21], [22], [40], [43], [23], and [37]. One classof such deterministic algorithms is based on low discrepancy sequences. First, we de�nediscrepancy, which is a measure of deviation from uniformity of a sequence of points in D.Then, very brie
y, we give the theoretical basis of the low discrepancy sequences to be usedas sample points for computing multivariate integrals. For more detailed description andtreatment of these results, see [21].For t = [t1; : : : ; td] 2 D, de�ne [0; t) = [0; t1)� � � � � [0; td): Let �[0;t) be the characteristic(indicator) function of [0; t). For z1; : : : ; zn 2 D, de�neRn(t; z1; : : : ; zn) = 1n nXk=1�[0;t)(zk) � t1t2 � � � td:The L2 (or L1) discrepancy of z1; : : : ; zn, is de�ned as the L2 (or L1) norm of the functionRn(� ; z1; : : : ; zn), i.e.,kRn(� ; z1; : : : ; zn)k2 = �ZDR2n(t; z1; : : : ; zn) dt�1=2 ;kRn(� ; z1; : : : ; zn)k1 = supt2D jRn(t; z1; : : : ; zn)j:Roth, [29] and [30], proves thatinfz1;:::;zn kRn(� ; z1; : : : ; zn)k2 = �(n�1(log n)(d�1)=2): (3)Of special interest for numerical integration are in�nite low discrepancy sequences fzkgin which the de�nition of zk does not depend on the speci�c value of the number of points n.8



Examples of such in�nite sequences are the Halton [9] and Sobol [33] sequences. For thereader's convenience, we give a short description of both these sequences later in this section.The following bounds hold for the Halton and the Sobol sequenceskRn(�; z1; : : : ; zn)k2 � kRn(�; z1; : : : ; zn)k1 = O  (log n)dn ! : (4)This is the best upper bound known and it is widely believed that it is sharp for thesesequences, see [21].We stress that the constants in the bounds (3) and (4) depend on the dimension d andgood estimates of these constants are not known. Bounds with known constants and nindependent of d are studied in [42] and [44].Sequences satisfying the upper bound in (4) are known as low discrepancy sequences orquasi-random sequences. We will refer to them as low discrepancy sequences or deterministicsequences.Clearly, the idea behind the low discrepancy sequences is for any rectangular [0; t) thefraction of the points within [0; t) to be as \close" as possible to its volume. That way, thelow discrepancy sequences cover the unit cube as \uniformly" as possible by reducing gapsand clustering of points. This idea is illustrated in Figure 1 and Figure 2.We now state the theoretical bases for the use of low discrepancy sequences as samplepoints for multivariate integration. Let V (f) <1 be the variation of f on D in the sense ofHardy and Krause, see [21], and let fzkg be a low discrepancy sequence. The Koksma-Hlawkainequality guarantees that�����I(f)� 1n nXk=1 f(zk)����� � V (f) kRn(� ; z1; : : : ; zn)k1: (5)Upper bounds in terms of L2 discrepancy have also been proven, see [21]. Therefore, (4) and(5) provide a worst case assurance for the use of low discrepancy sequences as sample pointsfor numerical integration of functions with bounded variation in the sense of Hardy andKrause. Furthermore, we stress that the deterministic algorithms, based on low discrepancysequences, have better rates of convergence than the Monte Carlo algorithm.In addition, low discrepancy sequences also have good properties in the average casesetting. Indeed, let F = Cd be the class of real continuous functions de�ned on D andequipped with the classical Wiener sheet measure w. That is, w is Gaussian with mean zeroand covariance kernel Rw de�ned asRw(t; x) def= ZCd f(t)f(x)w(df) = min(t; x) def= dYj=1min(tj; xj);9
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where t = (t1; : : : ; td); x = (x1; : : : ; xd) for t; x 2 D:De�ne xk = 1� zk; k = 1; 2; : : : ;where fzkg is a low discrepancy sequence. We approximate the integral of f from Cd by thearithmetic mean of its values at xk,I(f) = ZD f(t)dt � Un(f) = 1n nXk=1 f(xk); 8f 2 Cd:Wo�zniakowski [43] relates the average case error of Un(f) with the L2 discrepancy,ZCd(I(f)� Un(f))2w(df) = ZD R2n(t; z1; : : : ; zn)dt: (6)Thus, (3), (4), and (6) provide an average case assurance for the use of the sequence fxkgas a set of sample points for numerical integration of the functions in Cd equipped with theclassical Wiener sheet measure. Using the identity �[0;t)(zk) = �(1�t;1](xk) and Proposition2.4 in [21], we conclude that if fzkg is a low discrepancy sequence then fxkg is also a lowdiscrepancy sequence.3.1 Halton PointsWe give a short description of the Halton low discrepancy sequence.Let p1; p2; : : : ; pd be the �rst d prime numbers. Any integer k � 0 can be uniquelyrepresented as k = Pdlogkei=0 aipij with integers ai 2 [0; pj � 1]: The radical inverse function �pjis de�ned as �pj(k) = dlog keXi=0 aip�i�1j : (7)The Halton d-dimensional points are de�ned aszk = (�p1(k); �p2(k); : : : ; �pd(k)); k � 0:3.2 Sobol PointsWe give a short description of the Sobol low discrepancy sequence.Assume �rst that d = 1. A one-dimensional Sobol sequence is generated as follows. Fori = 1; 2; : : : ; w; let vi = mi=2i be a sequence of binary fractions with w bits after the binary11



point, where 0 < mi < 2i are odd integers. The numbers vi are called direction numbers.Assume for a moment that they are already generated; we will discuss their generation later.In Sobol's original algorithm, a one-dimensional Sobol sequence is generated byxk = b1v1 � b2v2 � � � � � bwvw; k � 0where k = Pdlogkei=0 bi2i is the binary representation of k and � denotes a bit-by-bit exclusive-or operation. For example, k = 3 is 11 in base 2. If v1 = 0:1 and v2 = 0:11 thenb1v1 � b2v2 = 0:1 � 0:11 = 0:01:Antonov and Saleev [2] suggest a shu�ing of the original Sobol sequence which preservesgood convergence properties and which can be generated much faster. This version of theSobol sequence is used here.The sequence of direction numbers vi is generated by a primitive polynomial, see [16]and [33], with coe�cients in the �eld Z2 with elements f0; 1g. Consider, for example, theprimitive polynomial P (x) = xn + a1xn�1 + : : :+ an�1x+ 1of degree n in Z2[x]. Then the direction numbers are obtained from the following recurrenceformula vi = a1vi�1 � a2vi�2 � � � � � an�1vi�n+1 � vi�n � (vi�n=2n); i > n;where the last term vi�n is shifted right n places. The initial numbers v1 = m1=2; : : : ; vn =mn=2n are such that mi is odd and 0 < mi < 2i for i = 1; 2; : : : ; n.Consider now an arbitrary d � 1. Let P1; P2; : : : ; Pd be d primitive polynomials in Z2[x].Denote by fxikg1k=1 the sequence of one-dimensional Sobol points generated by the polynomialPi. Then the sequence of d-dimensional Sobol points is de�ned asxk = (x1k; x2k; : : : ; xdk):4 Software System for Computing High DimensionalIntegrals4.1 AlgorithmsThe theory presented in the previous sections suggests that the low discrepancy deterministicalgorithms provide an interesting alternative to the Monte Carlo algorithm for computing12



high dimensional integrals. We have developed and tested a distributed software systemfor computing multivariate integrals on a network of workstations. The deterministic algo-rithms and the Monte Carlo algorithm are implemented. The software utilizes the followingsequences of sample points:� Halton points;� Sobol points;� Uniformly distributed random points.The user can choose the sequence of sample points from a menu. The software is writtenin a modular way so other kinds of deterministic and random number generators can beeasily added. One or several multivariate functions de�ned over the unit cube of up to 360variables can be integrated simultaneously. The number of variables could be extended aswell.A routine for generating Sobol points is given in [28]. However, we have made majorimprovements and we stress that the results reported in this paper were obtained usingFINDER and not the routine in [28]. One of the improvements was developing the table ofprimitive polynomials and initial direction numbers for dimensions up to 360.The software uses various kinds of random number generators. More speci�cally, therandom number generators ran1 and ran2 from the �rst edition of Numerical Recipes [27],and RAN1 and RAN2 from the second edition of Numerical Recipes [28] are used becauseof their wide availability and popularity. All of the above random number generators arebased on linear congruential generators with some additional features. For more details onthese random number generators we refer to [27] and [28].4.2 SystemsSince workstation clusters and networks provide cost-e�ective means to perform large-scalecomputation, we have built and debugged a software system under PVM 3.2 (Parallel VirtualMachine) for computing multivariate integrals. This system runs on a heterogeneous networkof machines. PVM is a software package that allows a network of heterogeneous Unixcomputers to be used as a single large parallel computer. Thus large computational problemscan be solved by using the aggregate power of many computers.A master/slave model is used as the programming paradigm for computing multivariateintegrals. In this model, the master program spawns and directs some number of slaveprocesses. Each of the slave processes generates a sequence of sample points speci�ed by13



the master and evaluates the integrand at those points. A partial sum of integrand valuesis returned to the master by each of the slave processes. The master combines partial sumsas speci�ed by an algorithm, computes an approximate value of the integral, and checks atermination criterion. If the termination criterion is not satis�ed, the master spawns a newround of computations. This process continues until the termination criterion is satis�edor some prespeci�ed upper bound of the number of sample points is reached. At the end,the master returns the �nal result of computation and timing information. In addition, themaster process keeps information about each spawned process. If some host dies, the masterreallocates its job to some other host.In a multiuser network environment the load balancing method can be one of the mostimportant factors for improving the performance. A dynamic load balancing method is used.Namely, the Pool of Tasks paradigm is especially suited for a master/slave program. In thePool of Tasks method the master program creates and holds the \pool" and sends out tasksto slave programs as they become idle. The fact that no communication is required betweenslave programs and the only communication is to the master makes our integration problemsuitable for the Pool of Tasks paradigm.5 Finance (CMO) ProblemWe now consider a �nance problem which is a typical Collateralized Mortgage Obligation(CMO). A CMO consists of several bond classes, commonly referred to as tranches, whichderive their cash 
ows from an underlying pool of mortgages. The cash 
ows received fromthe pool of mortgages are divided and distributed to each of the tranches according to aset of prespeci�ed rules. The cash 
ows consist of interest and repayment of the principal.The technique of distributing the cash 
ows transfers the prepayment risk among di�erenttranches. This results in �nancial instruments with varying characteristics which might bemore suitable to the needs and expectations of investors. For more details on CMOs, werefer to [5]. We stress that the amount of obtained cash 
ows will depend upon the futurelevel of interest rates. Our problem is to estimate the expected value of the sum of presentvalues of future cash 
ows for each of the tranches.We now give some of the details related to the studied CMO and the way it is reduced tothe problem of multivariate integration. The CMO1 consists of ten tranches. Denote themby A, B, C, D, E, G, H, J, R, Z. Throughout this section, we describe results on tranche A inmore details. Results for other tranches are similar unless stated explicitly. The underlyingpool of mortgages has a thirty-year maturity and cash 
ows are obtained monthly. This1It is labeled as \Fannie Mae REMIC Trust 1989-23".14



implies 360 cash 
ows. The monthly cash 
ows are divided and distributed according tosome prespeci�ed rules. The actual rules for distribution are rather complicated and aregiven in details in the prospectus describing the �nancial product.For 1 � k � 360, denote byC � the monthly payment on the underlying pool of mortgages;ik � the appropriate interest rate in month k;wk � the percentage prepaying in month k;a360�k+1 � the remaining annuity after month k:Recall that the remaining annuity ak is given byak = 1 + v0 + � � �+ vk�10 ; k = 1; 2; : : : ; 360;with v0 = 1=(1 + i0) and i0 the current monthly interest rate. In the notation above, C anda360�k+1 are constants; ik and wk are stochastic variables to be determined below.We now describe the interest rate model. Assume that the interest rate ik is of the formik = K0e�k ik�1 = Kk0 i0 e�1+���+�k ;where f�kg360k=1 are independent normally distributed random variables with mean 0 andvariance �2, and K0 is a given constant. In our case �2 = 0:0004 is chosen.Suppose that the prepayment model wk, as a function of ik, is computed aswk = wk(�1; : : : ; �k) = K1 +K2 arctan(K3ik +K4)= K1 +K2 arctan(K3Kk0 i0 e�1+���+�k +K4);where K1;K2;K3;K4 are given constants.The cash 
ow in month k; k = 1; 2; : : : ; 360; isMk = Mk(�1; : : : ; �k)= C(1� w1(�1)) � � � (1 � wk�1(�1; : : : ; �k�1))(1� wk(�1; : : : ; �k) + wk(�1; : : : ; �k)a360�k+1):This cash 
ow is distributed to the tranches according to the rules of the CMO underconsideration. Let Gk;T (�1; : : : ; �k) be the portion of the cash 
ow Mk for month k directedto the tranche T . The form of the function Gk;T is very complex. Here, it su�ces to say thatit is a continuous function which is a composition of min functions and smooth functions.By min function we mean a function which is the minimum of two functions.15



To �nd the present value of the tranche T for month k, Gk;T (�1; : : : ; �k) has to be multi-plied by the discount factoruk(�1; : : : ; �k�1) = v0v1(�1) � � � vk�1(�1; : : : ; �k�1);with vj(�1; : : : ; �j) = 11 + ij(�1; : : : ; �j) = 11 +Kj0i0e�1+���+�j ; j = 1; 2; : : : ; 359:Summing up the present values for every month k; k = 1; 2; : : : ; 360; for tranche T will giveus the present value PVT ,PVT (�1; : : : ; �360) = 360Xk=1Gk;T (�1; : : : ; �k)uk(�1; : : : ; �k�1):We want to compute the expected value E(PVT ) = E(PVT (�1; : : : ; �360)). By change ofvariables, it is easy to see thatE(PVT ) = Z[0;1]360 PVT (y1(x1); : : : ; y360(x360)) dx1 � � � dx360;where yi = yi(xi) is implicitly given byxi = 1p2�� Z yi�1 e�t2=(2�)dt: (8)Therefore, our problem is reduced to a problem of computing ten multivariate integrals overthe 360-dimensional unit cube. We stress that after generating a point (x1; : : : ; x360) in the360-dimensional unit cube, the point (y1; : : : ; y360) has to be computed by �nding the valueof the inverse normal cumulative distribution function at each xk; k = 1; 2; : : : ; 360. We usesoftware available through NETLIB to compute the points (y1; : : : ; y360). Then the functionvalues PVT (y1; : : : ; y360) are computed for all tranches T .We now discuss some of the smoothness properties of the integrand PVT , where T is oneof the tranches. Since the change of variables in (8) is based on smooth functions we mayrestrict our discussion to PVT as a function of y1; : : : ; y360. Recall thatPVT (y1; : : : ; y360) = 360Xk=1Gk;T (y1; : : : ; yk)uk(y1; : : : ; yk�1):16



Clearly, uk is a smooth function. As mentioned before, Gk;T is a composition of min functionsand smooth functions. That is why we believe that the function PVT has �nite variation inthe sense of Hardy and Krause and, that is why we decided to use low discrepancy sequencesfor these type of integrands. Of course, it would be desirable to have a good bound on thevariation of PVT . Unfortunately, due to the complex form of PVT , this is a very di�culttask.As reported in the Introduction, it is widely believed that the theoretical advantage of lowdiscrepancy sequences degrades with increase of dimension and low discrepancy sequencesare e�ective, in general, only for d � 30. Although the CMO problem is apparently ofdimension 360, some of the tranches are of lower dimension. To understand the performanceof the di�erent algorithms for the CMO problem it is important to know the dimensions ofthe various tranches.The integrand PVT of tranche T depends on the cash 
ows Gk;T . The cash 
ow Gk;T hasan important property. If the tranche T is retired at month kT , i.e., the whole principal ispaid o�, then Gk;T is zero for month k > kT . More precisely,Gk;T (�1; : : : ; �k) = 0 8k > kT = kT (�1; : : : ; �kT )with �1; : : : ; �k corresponding to a particular interest rate scenario.We checked computationally that kT is typically smaller than 360. We generated n =3; 000; 000 random sample points and determined the maximum kT for each tranche T.These numbers are reported in Table 1. As we see, the dimension of only one tranche is 360.However, for the other tranches, the dimension is still high.The concept of the dimension of a tranche can be further relaxed. Intuitively, if thedependence of PVT is negligible on the variables xk+1; xk+2; : : : ; x360 then only the �rst kvariables x1; x2; : : : ; xk contribute substantially to the integral of PVT . This concept ofe�ective dimension can be de�ned rigorously as follows.Let f be a function with domain [0; 1]d and let " > 0. The e�ective dimension K(") of fis the smallest integer k 2 [1; d ] such that�����Z[0;1]k f(x1; : : : ; xk; 0; : : : ; 0) dx1 � � � dxk � Z[0;1]d f(x)dx����� � " �����Z[0;1]d f(x)dx����� :We apply this de�nition of e�ective dimension to the ten tranches of the CMO problem.Clearly, the e�ective dimension is a function of ". What value of " should we choose? In17



Tranche Maximum of kTA 189B 250C 278D 298E 309G 77H 91J 118R 360Z 167Table 1: The maximum of the numbers kT obtained by generating 3,000,000 random samplepoints for each tranche of the CMO problempractice, the CMO problem does not have to be solved with high accuracy, see also thediscussion in Section 8, and so we choose " = 0:001. We checked computationally that thevalues of the integrals of all tranches are about a106 with a 2 [2; 42]. Hence by taking" = 0:001 we introduce an absolute error which is on the order of several thousand dollars.We estimateKT (") for " = 0:001, where KT (") denotes the e�ective dimension of trancheT. To compute KT (") we need a fairly accurate approximation of the integral I(PVT ) =R[0;1]360 PVT (x)dx. We approximate I(PVT ) by using 20,000,000 sample points as explainedin Section 8. Using these results we approximately compute the e�ective dimensions for eachof the tranches. The results are summarized in Table 2. As we see, the e�ective dimension,although smaller, is still high for most of the tranches.6 Comparison of the Deterministic and Monte CarloalgorithmsWe now present the results of extensive testing of the deterministic and Monte Carlo algo-rithms for the CMO problem. For the reader's convenience, the results are summarized in anumber of graphs.Figure 3 shows the results for tranche A of Sobol, Halton, and Monte Carlo runs withtwo randomly chosen initial seeds. The pseudorandom generator RAN2 from [28] is used to18



Tranche KT (")A 131B 175C 212D 239E 261G 42H 63J 84R 338Z 114Table 2: The approximate values of KT (") for " = 0:001generate random sample points for the Monte Carlo runs. Figure 3 exhibits behavior thatis common in all our comparisons of the Sobol algorithm with the Monte Carlo algorithm.For the Halton algorithm see the discussion at the end of this section.� The Monte Carlo algorithm is sensitive to the initial seed;� The deterministic algorithms, especially the Sobol algorithm, converge signi�cantlyfaster than the Monte Carlo algorithm;� The convergence of the deterministic algorithms, especially of the Sobol algorithm, issmoother than the convergence of the Monte Carlo algorithm. This makes automatictermination easier for the Sobol algorithm; see the discussion below;� The Sobol algorithm outperforms the Halton algorithm.Figure 4 shows the same Sobol and Halton runs but a di�erent random number generator,namely ran1 from [27], is used to generate four Monte Carlo runs using four randomlychosen initial seeds. The plot again exhibits sensitivity of the Monte Carlo algorithm to theinitial seed. The plot also indicates that there are some problems with this random numbergenerator since the Monte Carlo results seem to lie on horizontal lines when the numberof sample points exceeds 300,000 and it seems unlikely that they will converge to the samevalue. This claim is also supported by the fact that the same e�ect has been observed forsixteen additional Monte Carlo runs. We assume that is why ran1 has been replaced by a19
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Figure 3: Sobol and Halton runs for tranche A and two Monte Carlo runs using RAN220
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Figure 4: Sobol and Halton runs for tranche A and four Monte Carlo runs using ran1di�erent random number generator in [28]. Figure 4 is included to show that the results canbe a�ected by the poor performance of the random number generator.Figure 5 plots the same Sobol and Halton runs versus the arithmetic mean of twentyMonte Carlo runs using RAN2 from [28]. We stress that the number of sample points on thex-axis is correct only for the deterministic algorithms. The actual number of sample pointsfor the averaged Monte Carlo graph is twenty times the number of sample points on thex-axis. The results of the deterministic algorithms and the averaged Monte Carlo result areapproximately the same. We thus conclude that to achieve similar performances, we haveto take about 20 times more random than deterministic sample points.In Figure 6, an automatic termination criterion is applied to Sobol, Halton, and three21
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Figure 5: Sobol and Halton runs for tranche A and an average of twenty Monte Carlo runsusing RAN2 22



Monte Carlo runs using RAN2 from [28] as the pseudorandom generator. We choose astandard automatic termination criterion. Namely, when two consecutive di�erences betweenconsecutive approximations using 10; 000 i; i = 1; 2; : : : ; 100, sample points become lessthan some threshold value for all of the tranches of the CMO, the computational process isterminated. With the threshold value set at 250, the Sobol run terminates at 160,000 samplepoints, the Halton run terminates at 700,000 sample points, and the three Monte Carlo runsterminate at 410,000, 430,000, and 780,000 sample points, respectively. Hence, the Sobolrun terminates 2 to 5 times faster than the Monte Carlo runs.We also stress that even though the Sobol algorithm terminates faster, the result is moreaccurate than two of the results achieved by the Monte Carlo algorithm. In Section 8, weshow that the value of the integral for tranche A by using 20,000,000 sample points is aboutm = 14; 865; 801. Using this value of m, we compute the absolute error for each of the resultsat the point of termination:� The error of 160,000 Sobol sample points is 379;� The error of 700,000 Halton sample points is 69;� The error of 410,000 random sample points with initial seed 1 is 1,298;� The error of 430,000 random sample points with initial seed 1147902781 is 2,177;� The error of 780,000 random sample points with initial seed 1508029952 is 180.Automatic termination criteria are often used in computational practice. It is of interestto study the relation between the threshold value and the actual error of approximation. SeePaskov [25] for the approximation of linear operators in the average case setting assumingthat arbitrary linear continuous functionals can be computed. It is proved that standardtermination criteria work well. The corresponding problem for approximation of linear op-erators in the average case setting with information consisting only of function values is stillopen.We stress that the conclusions observed in this section for the Monte Carlo and Sobolalgorithms hold also for the rest of the tranches. Although, the Halton algorithm performsbetter than the Monte Carlo algorithm for tranche A and a few other tranches it does notperform well for most of them. Therefore our emphasis for the remainder of this section willbe on Sobol rather than Halton points. 23
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Figure 6: Automatic termination criterion applied to Sobol, Halton, and three Monte Carloruns using RAN2 for tranche A 24



7 Antithetic VariablesAs already mentioned in Section 2, the expected error of the classical Monte Carlo algorithmdepends on the variance of the integrand. Therefore by reducing the variance of the inte-grand the expected error would also decrease. Various variance reduction techniques such asimportance sampling, control variates, antithetic variables and others, see for example [15],are often used with the classical Monte Carlo algorithm.For the low discrepancy algorithms, the error bound depends on the variation of theintegrand, see Section 3. Therefore the error bound will be decreased by reducing of thevariation. Reducing the variation of the integrand has not been studied as extensively asreducing the variance. See, however, [4], [17], [20], and [36]. This is a major area for furtherresearch.An important advantage of the classical Monte Carlo algorithm and of the deterministicalgorithms studied here, is that they can be utilized very generally. This is important in anumber of situations:� If a �nancial house has a book with a wide variety of derivatives, it is advantageous touse algorithms which do not need to be tuned to a particular derivative;� If a new derivative has to be priced, then there is no immediate opportunity to tailora variance reduction technique to a particular integrand.Although variance reduction techniques can be very powerful, they can require consider-able analysis before being applied. We will therefore limit ourselves here to just one variancereduction technique; antithetic variables. The advantage of antithetic variables is that itcan be easily utilized. Tests reveal that it is superior to the classical Monte Carlo algorithmfor our CMO problem. We emphasize that antithetic variables is not a palliative; it can beinferior to the classical Monte Carlo algorithm.For brevity, we refer to the antithetic variables variance reduction technique combinedwith the Monte Carlo algorithm as the antithetic variables algorithm. This algorithm isbased on the identityZD f(x)dx = ZD g(x)dx; where g(x) = 12 (f(x) + f(1 � x)) for f 2 L2(D):Clearly, if the variance �2(g) of g is much smaller than the variance �2(f) of f then theMonte Carlo algorithm for g will have much smaller expected error.We must, of course, remember that the cost of one evaluation of g is equal to the cost oftwo function evaluations of f . Hence, the antithetic variables algorithm is preferable to the25



Tranche rA 2.82B 2.78C 3.09D 3.61E 4.70G 2.80H 2.81J 3.14R 1.55Z 2.50Table 3: The ratios r for the ten tranches of the CMOMonte Carlo algorithm only if the reduction of the variance is by at least a factor of two. Ingeneral, let r = �(f)p2 �(g):Then the expected error of the antithetic variables algorithm is r-times smaller than theexpected error of the Monte Carlo algorithm. Furthermore, the cost of both algorithms isabout the same. Since r can be smaller than one for some functions, the antithetic variablesvariance reduction technique, although simple to use, does not work in general and shouldbe used with care, see also [15].We tested the antithetic variables algorithm for the CMO problem with the ten tranches.Let fT be the integrand for tranche T . We approximately computed �(fT ), �(gT ), andrT = �(fT )=(p2 �(gT )) for all tranches T . The results for the ratios rT are given in Table 3.Hence, the antithetic variables algorithm has at least 1.55 and at most 4.70 smaller expectederror than the Monte Carlo algorithm for the ten tranches of the CMO. Therefore theantithetic variables algorithm works better than the Monte Carlo algorithm for the CMOproblem.We also tested the antithetic variables technique combined with Sobol points for theCMO problem. Since it did not perform as well as the Sobol algorithm we omit the results.We now present graphs of the results obtained for the deterministic and antithetic vari-ables algorithms for the CMO problem.Figure 7 is analogous to Figure 3 in Section 6. It shows the results of Sobol, Halton, and26
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Figure 7: Sobol and Halton runs for tranche A and two antithetic variables runs using RAN2antithetic variables runs with two randomly chosen initial seeds. Again, Figure 7 exhibitsthe sensitivity of the antithetic variables algorithm to the initial seed. However, as it shouldbe expected the antithetic variables algorithm works better than the Monte Carlo algorithm.That is why, the spread and the jaggedness of antithetic variables runs in Figure 7 are smallerthan the corresponding ones for Monte Carlo runs in Figure 3.Figure 8 plots the same Sobol and Halton runs versus the arithmetic mean of twentyantithetic variables runs using RAN2 from [28]. We stress that the number of sample pointson the x-axis is correct only for the deterministic algorithms. The actual number of samplepoints for the averaged antithetic variables graph is twenty times the number of samplepoints on the x-axis. Clearly, the Sobol and the averaged antithetic variables graphs are27



very close after 450,000 points.8 Small Number of Sample PointsIn this section we compare the performance of the deterministic algorithms with the MonteCarlo and antithetic variables algorithms for a small number of sample points. Results for asmall number of points are sometimes of special importance for people who evaluate CMOsand other derivative products. They need algorithms which can evaluate a derivative in amatter of minutes. Rather low accuracy, on the order of 10�2 to 10�4, is often su�cient. Theintegrands are complicated and computationally expensive. Furthermore, many may haveto be evaluated on a daily basis with limited computational resources, such as workstations.We must, therefore, limit ourselves to only a small number of sample points.In this section, by a small number of points we mean 4000 sample points. As we shall see,this still leads to reasonable results and takes less than a couple of minutes of workstationCPU time. We believe that this sample size may yield comparable results for other mortgage-backed securities and interest rate derivatives.We drop the Halton algorithm from consideration in this section since it is outperformedby both the Monte Carlo and antithetic variables algorithms for 4000 sample points.From now on, let f be the integrand for tranche A and letg(x) = 12 (f(x) + f(1 � x)) ; for x 2 D:Consider the twenty results U (1)MC(f); U (2)MC(f); : : : ; U (20)MC (f) (9)obtained by the Monte Carlo algorithm and the twenty resultsU (1)AV (g); U (2)AV (g); : : : ; U (20)AV (g) (10)obtained by the antithetic variables algorithm with di�erent initial seeds, each using 4,000f function evaluations. For 4000 Sobol points, we obtainedUS(f) = 14; 868; 261: (11)To compute the relative errors of all presented results, we need to know the true oralmost true value I(f) of the integral. In Section 7 we showed that the antithetic variables28



1.4845e+07

1.485e+07

1.4855e+07

1.486e+07

1.4865e+07

1.487e+07

1.4875e+07

1.488e+07

1.4885e+07

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

C
om

pu
te

d 
va

lu
e 

of
 th

e 
in

te
gr

al

Number of integrand values

sobol
halton

RAN2 average

Figure 8: Sobol and Halton runs for tranche A and an average of twenty antithetic variablesruns using RAN2 29



algorithm works better than the Monte Carlo algorithm for the CMO problem. That is whyit is reasonable to compute an approximationm to I(f) using 20,000,000 function evaluationswith the antithetic variables algorithm. For tranche A, we obtainI(f) � m = 14; 865; 801:We now compute the relative error for each of the results in (9), (10), and (11). InTable 4, we indicate how many times out of 20 the Sobol algorithm has a smaller relativeerror than the antithetic variables algorithm. As we see, the Sobol algorithm wins for 8 of thetranches, it ties for 1, and it loses for 1. However, for 5 of the tranches the Sobol algorithmwins decisively. In total, the Sobol algorithm wins 139 times and loses 61 times. Therefore,the antithetic variables algorithm sometimes performs better than the Sobol algorithm butin most cases it does not.In Table 5 we report the smallest and the largest relative errors of the twenty antitheticvariables runs in (10). The last column of Table 5 reports the relative errors for the Sobolalgorithm.Note that each of these runs performs very well since the relative error is always at most0.005. The Sobol algorithm performs even better; it achieves accuracies within range fromone part in a thousand to one part in a million, depending on the tranche. We add thatit takes approximately 103 seconds to compute the Sobol results and about 113 secondsto compute the antithetic variables results for the ten tranches; each algorithm uses 4000function evaluations and it is run on a Sun-4/630-M140 workstation.The results of comparison between the Monte Carlo and the Sobol algorithms are summa-rized in Table 6 and Table 7. As it can be expected, the performance of the Sobol algorithmversus the Monte Carlo algorithm is even better than the performance of the Sobol algorithmversus the antithetic variables algorithm. In this case, the Sobol algorithm wins decisivelyfor all tranches. In total, the Sobol algorithm wins 177 times and loses 23 times.9 Statistical AnalysisIn this section, we perform statistical analysis of the Monte Carlo and antithetic variablesalgorithms for a small number of points. We also compare these two randomized algorithmswith the Sobol algorithm.Again, we study tranche A. Consider the one thousand resultsU (1)MC(f); U (2)MC(f); : : : ; U (1000)MC (f) (12)30



Tranche Antithetic variables SobolA 9 11B 1 19C 6 14D 10 10E 11 9G 2 18H 3 17J 2 18R 8 12Z 9 11Table 4: Number of \wins" of the antithetic variables algorithm and the Sobol algorithmTranche The smallest error The largest error Sobol errorA 9.850831e-06 1.078310e-03 1.654482e-04B 1.684136e-06 8.965597e-04 1.766718e-06C 2.351182e-06 1.017674e-03 2.154940e-04D 3.762572e-06 8.231360e-04 2.626482e-04E 2.111560e-05 5.663271e-04 2.243416e-04G 1.179616e-06 1.677086e-04 7.305784e-06H 2.368361e-06 6.108946e-04 3.811441e-05J 6.517283e-06 7.988188e-04 3.172316e-05R 3.910856e-05 4.748614e-03 1.179118e-03Z 1.456121e-05 1.979723e-03 3.784033e-04Table 5: The smallest and the largest relative error of 20 antithetic variables results and therelative error of the Sobol result each using 4000 sample points31



Tranche Monte Carlo SobolA 3 17B 0 20C 3 17D 3 17E 2 18G 0 20H 0 20J 0 20R 8 12Z 4 16Table 6: Number of \wins" of the Monte Carlo algorithm and the Sobol algorithmTranche The smallest error The largest error Sobol errorA 3.339877e-05 2.633738e-03 1.654482e-04B 1.037307e-04 3.040330e-03 1.766718e-06C 3.329284e-05 3.341837e-03 2.154940e-04D 1.099033e-04 3.536105e-03 2.626482e-04E 7.673315e-05 3.665118e-03 2.243416e-04G 3.094756e-05 5.107036e-04 7.305784e-06H 9.123779e-05 1.454661e-03 3.811441e-05J 5.152820e-05 1.768061e-03 3.172316e-05R 3.564157e-05 9.429284e-03 1.179118e-03Z 5.896356e-05 3.749949e-03 3.784033e-04Table 7: The smallest and the largest relative error of 20 Monte Carlo results and the relativeerror of the Sobol result each using 4000 sample points32



obtained by the Monte Carlo algorithm and the one thousand resultsU (1)AV (g); U (2)AV (g); : : : ; U (1000)AV (g) (13)obtained by the antithetic variables algorithm with di�erent initial seeds, each using 4,000evaluations of f . Let mMC = 11000 1000Xi=1 U (i)MC(f) = 14; 864; 881;mAV = 11000 1000Xi=1 U (i)AV (g) = 14; 865; 749be the sample means, and letsMC = 1999 1000Xi=1 (U (i)(f)�mMC)2 = 216; 929; 148;sAV = 1999 1000Xi=1 (U (i)(g)�mAV )2 = 37; 331; 468be the sample variances of these one thousand Monte Carlo and antithetic variables results,respectively.According to the Central Limit Theorem, see e.g. [15], the distributions of Un(f) andUn(g) are normal for n ! 1 with the same mean RD f(x)dx = RD g(x)dx and variances�2(f)=n and �2(g)=n, respectively. To check how far we di�er from the normal distributionwe plot the density functions of these one thousand results, see Fig. 9 and Fig. 10, by usingthe statistical package S-Plus. We conclude that these are very good approximations of thenormal distribution.Further statistical analysis require the knowledge of the true value m of the integral. InSection 8, we showed that it is reasonable to assume that m � 14; 865; 801. We seek thenumber of antithetic variables runs, each using 4,000 sample points, which after averagingwould give an error � with probability �. This procedure is widely used in statistical analysis,see [13].That is, let �1; �2; : : : ; �k be the results for k antithetic variables runs each using 4,000f function evaluations. As already discussed, we may assume that they are approximatelynormally distributed with mean m and variance s = sAV . Hence we want to �nd k such thatP (�����1k kXi=1 �i �m����� � �) � 1� �:33
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Figure 9: Density function (continuous line) based on one thousand Monte Carlo resultseach using 4,000 sample points generated by RAN2 and the normal density function (dashedline) with mean mMC and variance sMC 34
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Note that the sum 1k Pki=1 �i is normally distributed with mean m and variance s=k, i.e.,standard deviation qs=k. To guarantee an error � with con�dence level 68%, i.e., with� = q2=� R 10 e�t2=2dt � 0:68269 which corresponds to one standard deviation from themean, we need to determine k1 such that qs=k1 = �. In this case,k1 = s=�2 = 37; 331; 468=�2: (14)To guarantee an error � with con�dence level 95%, i.e., with � = q2=� R 20 e�t2=2dt � 0:9545which corresponds to two standard deviations from the mean, we need to determine k2 suchthat 2qs=k2 = �. Therefore, in this case,k2 = 4s=�2 = 149; 325; 872=�2: (15)We now compare the performance of the Sobol algorithm with the antithetic variablesalgorithm. Since US(f) = 14868261 is the result for 4,000 Sobol points, the error in this caseis jUS(f) �mj = 2460:Set � = 2460: Due to (14), to achieve an error at most � of 4,000 Sobol points with con�dencelevel 68%, we need to obtain approximately 7 antithetic variables runs each using 4,000sample points and then to average them. Due to (15), to achieve error at most � withcon�dence level 95%, we need to obtain approximately 25 antithetic variables runs.Clearly, the above analysis depends on the assumption about the true answer of theintegral. Furthermore, one may argue that by chance the result from Sobol points mighthappen to be very close to the true answer. That is why we performed similar analysis forthe ten Sobol results that use n = 4; 100 � 20i, i = 0; 1; : : : ; 9, sample points and we set �as the worst error of the ten Sobol results for tranche A. Then 7 antithetic variables runsobtained before are replaced by 3 runs.Results for the other tranches are summarized in Table 8. We emphasize that the numberof antithetic variables runs are for the worst error of n Sobol points for n = 4; 100 � 20i,i = 0; 1; : : : ; 9: Hence, for a �xed i, the number of antithetic variables runs could be evenhigher than the corresponding number in Table 8. From Table 8 we conclude that we needfrom 7 to 79 antithetic variables runs each using 4,000 sample points to achieve an error withcon�dence level 95% comparable with the worst error of n Sobol points, n = 4100� 20i; i =0; 1; : : : ; 9.For the Monte Carlo algorithm, we proceed analogously. The results are summarized inTable 9. From Table 9 we conclude that we need from 27 to 607 Monte Carlo runs each36



Tranche with con�dence 68% with con�dence 95%A 3 10B 20 79C 4 15D 2 8E 2 7G 9 36H 7 27J 12 47R 4 15Z 2 8Table 8: Number of antithetic variables runs each using 4,000 random points needed toachieve the worst error of the n Sobol points with n = 4100 � 20i; i = 0; 1; : : : ; 9using 4,000 sample points to achieve an error with con�dence level 95% comparable with theworst error of n Sobol points, n = 4100 � 20i; i = 0; 1; : : : ; 9.Remark 1Similar statistical analysis may also be performed for a large number of sample points. Dueto the large computational cost of these simulations, we compare Sobol results with twentyantithetic variables results (instead of 1000 results as for a small number of sample points),each with di�erent initial seed and using 1,000,000 function evaluations. Results for alltranches are summarized in Table 10. We emphasize that the number of antithetic variablesruns are for the worst error of n Sobol points for n = 1; 050; 000 � 10; 000i, i = 0; 1; : : : ; 9:By comparing Table 8 and Table 10, we conclude that the superiority of the Sobolalgorithm over the antithetic variables algorithm for a large number of sample points isgreater than for a small number of sample points.Similar conclusion also holds for the Monte Carlo algorithm. Proceeding analogously, wesummarize the results of this comparison in Table 11.37



Tranche with con�dence 68% with con�dence 95%A 14 56B 153 607C 44 173D 35 137E 53 212G 64 255H 38 153J 67 266R 13 52Z 7 27Table 9: Number of Monte Carlo runs each using 4,000 random points needed to achieve theworst error of the n Sobol points with n = 4100 � 20i; i = 0; 1; : : : ; 9Tranche with con�dence 68% with con�dence 95%A 55 219B 58 230C 26 103D 27 108E 15 60G 8 32H 4 16J 5 18R 13 50Z 5 18Table 10: Number of antithetic variables runs each using 1,000,000 random points needed toachieve the worst error of the n Sobol points with n = 1; 050; 000 � 10; 000i; i = 0; 1; : : : ; 938



Tranche with con�dence 68% with con�dence 95%A 434 1735B 443 1769C 246 982D 350 1399E 331 1324G 62 245H 31 122J 44 176R 30 120Z 28 110Table 11: Number of Monte Carlo runs each using 1,000,000 random points needed to achievethe worst error of the n Sobol points with n = 1; 050; 000 � 10; 000i; i = 0; 1; : : : ; 910 Timing Results and Parallel Speedup for the CMOProblemSince workstation clusters and networks provide a cost-e�ective means to perform large-scalecomputation, we have built and debugged a distributed software system under PVM 3.2 forcomputing multivariate integrals on a network of workstations. PVM is a software packagethat allows a network of heterogeneous Unix computers to be used as a single large parallelcomputer. In this section we report the timing results of the di�erent generators on a singleworkstation. Then the speedup of the distributed on a network of workstations softwaresystem is also measured for the CMO problem.The CPU time in seconds for simultaneous evaluation of the ten tranches is given inTable 12 for Sobol, Halton, RAN2 from [28], RAN1 from [28], ran1 from [27], and ran2 from[27] generators. The real time in seconds, as should be expected, is slightly higher than theCPU time. It is given in the second column since it is later compared with the real time forthe network of workstations to derive the parallel speedup. These results have been obtainedon a single Sun-4/630-M140 at the Department of Computer Science, Columbia University.All programs have been compiled with the gcc v2.4 compiler with the highest level O2 ofoptimization. Clearly, the generator of Sobol points is the fastest one. However, we do notregard this as the most signi�cant reason for the use of Sobol points.39



Generator CPU time Real timeSobol 25634 25654Halton 29814 29881RAN2 31501 31607RAN1 28092 28126ran1 30911 30946ran2 28320 28332Table 12: Timing results in seconds for evaluation of the CMO using 1,000,000 sample pointson a single workstationSince the speed of the Sun-4/630-M140 is 4.2 MFLOPS, we note from the above tablethat it takes approximately 107,500 
oating point operations to generate one 360-dimensionalSobol point and to evaluate integrands for this problem. Since the cost of generating one360-dimensional Sobol point is signi�cantly smaller than the evaluation of the integrands,it takes about 100,000 
oating point operations to evaluate only integrands. Clearly, this isa rather rough estimate. We stress that some interest rate and prepayment models used inpractice are signi�cantly more complicated and more time-consuming to evaluate than theones considered in this paper.We now discuss the parallel speedup for the �nance problem achieved with the distributedon a network of workstations software system. The software system for computing multivari-ate integrals was tested on up to 25 SUN workstations and the timing results were measured.The random number generator RAN2 and the Sobol generator were used. The results aregiven in Table 13. We now compare the real time entry of RAN2 in Table 12 with entriesin Table 13. Let N be the number of workstations. In our case N is 5,10,15,20,25. Thespeedup for the �rst three entries is about 0:99N . Then it degrades slightly to 0:92N and0:9N for the fourth and the �fth entries, respectively. We stress that this degradation of theperformance is partially due to the fact that the last several machines added for the test,were slightly slower than the Sun-4/630-M140, which was used to measure the time on asingle workstation.Similar speedups are measured for the Sobol generator. The speedups for the �rst threeentries are 0:96N; 0:98N; 0:98N , respectively. The speedup for the last two entries is 0:91N .Therefore, networks of workstations are a cost-e�ective way to perform these compu-tations. The measured speedup for the parallel/distributed software system for both theMonte Carlo and deterministic algorithms is at least 0:9N for N � 25.40



Number of machines Real time for RAN2 Real time for Sobol5 6382 536010 3170 262515 2113 175020 1705 140825 1398 1125Table 13: Timing results in seconds for evaluation of the CMO using 1,000,000 sample pointsgenerated by RAN211 Discussion and Future DirectionsIn this section we present some thoughts about why the Sobol points are so successful. Weend with some directions for future research.We give two reasons which we believe explain, at least in part, the success of Sobol pointsin solving the CMO problem.First, let us assume that there are no prepayments. This implies that the cash 
ow fromthe underlying pool of mortgages for every month is constant. Due to the time value ofthe money this means that the present value of the cash 
ow is a decreasing function ofthe number of the month. In other words, the present value of the cash 
ow for earliermonths is greater than the present value of the cash 
ow for later months. The presenceof prepayments and rules of distribution to di�erent tranches will distort this monotonicityproperty. However, this property will be re
ected to some extent in the cash 
ows of the tentranches. It is a well-known property of the Sobol points2, see [33], that the low dimensionalcomponents are more uniformly distributed than the high dimensional components. Aspointed out by Sobol in [35], the Sobol points will be more e�cient for numerical integrationof functions for which the in
uence of the xj-th variable decreases as j increases. Since thisproperty also holds for many other �nancial derivatives we expect that the Sobol points willprovide a powerful alternative to the Monte Carlo and antithetic variables algorithms.Second, appropriate choices for the initial direction numbers increase the uniformity ofthe Sobol points in the 360-dimensional unit cube. We believe that our choices of the initialdirection numbers contributes to the successful performance of the Sobol points.The Halton algorithm did not perform as well as the Sobol algorithm. We believe that2Other low discrepancy sequences also satisfy this property, see [21]41



this behavior is due to the fact that the Halton points are less uniformly distributed thanthe Sobol points; especially in high dimensions and sample sizes of 1,000,000 or less, see also[18].We end this section by suggesting some directions for future work:� Compare the performance of low discrepancy and Monte Carlo algorithms on other�nancial derivatives;� Test the performance of other known low discrepancy sequences on various derivatives;� As mentioned in Section 8, results for a small number of samples are often of specialinterest in �nance. It would be attractive to design new deterministic sequences whichare very uniformly distributed for a small number of points;� Characterize analytic properties of classes of �nancial derivatives and design new al-gorithms tuned to these classes;� Study error reduction techniques for deterministic algorithms;� There are numerous open theoretical problems concerning high dimensional integrationand low discrepancy sequences; see [42] for some of them. We believe that their solutionwill aid in the design of better algorithms for �nance problems.AcknowledgmentsAn earlier report on this work was presented by Prof. J. Traub at the Bank of EnglandConference at the Isaac Newton Institute, Cambridge, U.K. in May 1995.I express my gratitude to I. Vanderhoof for his invaluable help, numerous discussions andsuggestions, and introducing me to Goldman Sachs.I also express my gratitude to J. Traub and H. Wo�zniakowski for numerous discussions,suggestions, and guidance on research and on the preparation of this paper.I would like to thank A. Belur for his help, advice, and cooperation in providing the�nance problem.I am also grateful to T. Boult and S. Baker for their numerous discussions and suggestionsduring the preparation of this paper.I appreciate discussions with N. Marinovich, J. Tilley, J. Langsam, P. Karasinski, D.Schutzer, B. Bojanov, S. Tezuka, A. Werschulz, I. M. Sobol, B. Shukhman, V. Temlyakov,S. Heinrich, E. Novak, and T. Warnock. 42
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