
New Results on Deterministic Pricing of Financial Derivatives�A. Papageorgiou and J.F. TraubyDepartment of Computer ScienceColumbia UniversityCUCS-028-96Monte Carlo simulation is widely used to price complex �nancial instruments. Recenttheoretical results and extensive computer testing indicate that deterministic methods maybe far superior in speed and con�dence. Simulations using the Sobol or Faure points areexamples of deterministic methods. For the sake of brevity, we refer to a deterministicmethod using the name of the sequence of points which the method uses, e.g., Sobolmethod.In this paper we test the generalized Faure sequence due to Tezuka [T95]. We also testa modi�ed Sobol method; this includes further improvements from those in [PT95]. Wecompare these two low discrepancy deterministic methods with basic Monte Carlo.We summarize our conclusions regarding the valuation of a Collateralized MortgageObligation which we divide into three groups. Similar results hold for other �nancialinstruments such as asian options.I. Deterministic and Monte Carlo Methods.Deterministic methods beat Monte Carlo by a wide margin. In particular,� Both the generalized Faure and modi�ed Sobol methods converge signi�cantly fasterthan Monte Carlo.� The generalized Faure method always converges at least as fast as the modi�edSobol method and frequently faster.� The Monte Carlo method is sensitive to the initial seed.II. Small Number of Sample Points.Deterministic methods outperform Monte Carlo for a small number of sample points. Inparticular,� Deterministic methods attain small error with a small number of points.� Presented at \Mathematical Problems in Finance,"Institute for Advanced Study, Princeton, NJ, April15, 1996yThis work was supported in part by NSF and AFOSR.



� For the hardest CMO tranche, generalized Faure achieves accuracy 10�2 with 170points, while modi�ed Sobol uses 600 points. On the other hand, the Monte Carlomethod requires 2700 points for the same accuracy.� Monte Carlo tends to waste points due to clustering, which severely compromisesits performance when the sample size is small.III. Speedup.The advantage of deterministic methods over Monte Carlo is further ampli�ed as the sam-ple size and the accuracy demands grow. In particular,� Deterministic methods are 20 to 50 times faster than Monte Carlo even with mod-erate sample sizes (2000 deterministic points or more).� When high accuracy is desired, deterministic methods can be 1000 times faster thanMonte Carlo.Valuing �nancial derivatives may be formulated via paths or as a high dimensionalintegral. For simplicity we will restrict ourselves to the integral formulation and, withoutloss of generality (see Paskov [P96]), as an integral over the unit cube in d dimensions.For most �nance problems the integral cannot be analytically computed; we have tosettle for a numerical approximation. The basic Monte Carlo method obtains this ap-proximation by computing the arithmetic mean of the integrand evaluated at randomlychosen points. More precisely, only pseudo-random points can be generated on a digitalcomputer and these are used in lieu of random points. There are sophisticated variationsof this basic method; whenever we refer to Monte Carlo in this paper we will always meanthe basic version.If pseudo-random points from a 
at distribution are plotted in two dimensions (seeFigure 1) there are regions where no sample points occur and regions where the pointsare more concentrated. This is clearly undesirable. Random point samples are wasted dueto clustering. Indeed, Monte Carlo simulations with very small sample sizes cannot betrusted. It would be desirable to place our sample points as uniformly as possible, whichis the idea behind low discrepancy sequences. Discrepancy is a measure of deviation fromuniformity; hence low discrepancy points are desirable. Figure 2 shows a plot of certainlow discrepancy points in two dimensions.A low discrepancy method approximates the integral by computing the arithmetic meanof the integrand evaluated at low discrepancy points. Low discrepancy sequences havebeen extensively studied; see Paskov [P96] for the formal de�nition of discrepancy andan extensive bibliography. In contrast to the Monte Carlo method which uses random (or2



pseudo-random) points, low discrepancy methods use deterministic points. These methodsare sometimes said to be quasi-random.In 1992 the conventional wisdom was that although theory suggested that low discrep-ancy methods were sometimes superior to Monte Carlo, this theoretical advantage wasnot seen for high dimensional problems. Traub and a Ph.D. student, Spassimir Paskov,decided to compare the e�cacy of low discrepancy and Monte Carlo methods on the val-uation of �nancial derivatives. They used a Collateralized Mortgage Obligation (FannieMae REMIC Trust 1989-23) provided by Goldman Sachs with ten tranches requiring theevaluation of ten 360-dimensional integrals. The values of the tranches depend on theinterest rate and prepayment models. Details can be found in Paskov [P96].Paskov and Traub used a particular low discrepancy sequence due to Sobol. They mademajor improvements in the Sobol points and showed that the improved Sobol methodconsistently outperformed Monte Carlo; see Paskov and Traub [PT95] and Paskov [P96]for details.Software Construction and testing of low discrepancy deterministic methods for pricing�nancial derivatives was begun at Columbia University in the Fall of 1992. Preliminaryresults were shared with a number of New York City �nancial houses in the Fall of 1993and the Spring of 1994. The �rst published announcement was a January 1994 article inScienti�c American; Traub and Wo�zniakowski [TW94]. See Paskov and Traub [PT95]for a more detailed history.In September 1995 IBM announced a product called the Deterministic SimulationBlaster (see also [IBM95]) which uses a low discrepancy deterministic method. Thecompany claimed a very large improvement over Monte Carlo. However, the method forchosing the sample points and the methodology for calculating the speedup have not beenrevealed by the time of our writing this article (March 1996). IBM has repeatedly acknowl-edged that the use of low discrepancy methods to price �nancial derivatives was pioneeredat Columbia University.We have built a software system called FINDER for computing high dimensional inte-grals. FINDER has modules for generating generalized Faure and modi�ed Sobol points.We emphasize that major improvements in generalized Faure points and Sobol points,which cannot be found in the published literature, have been put in FINDER. Indeed, anumber of �nancial institutions have informed us that they could not replicate our resultsusing, for example, the Sobol point generator found in Press et al. [Pr92]. As further im-provements in low discrepancy methods are discovered they will be added to our software.FINDER may be obtained from Columbia University.3



We used FINDER to price the CMO and to compare low discrepancy methods withMonte Carlo. Deterministic methods and Monte Carlo compute the arithmetic mean ofthe integrand evaluated at a number of points. Thus the di�erence in performance dependson the number of points that each method uses for the same accuracy. We observe theleast number of points that a method requires in order to achieve and maintain a relativeerror below a certain level, e.g., 10�2. The speedup of one method relative to anotheris the ratio of the least number of points required by the �rst method divided by theleast number of points required by the second method so that both methods maintain thesame level of accuracy. This de�nition of speedup is new. We study the convergence andthe error of a method throughout a simulation. We feel that this has advantages overspeedup calculations based only on error values at the end of a simulation. Note that ourde�nition of speedup is a more rigorous requirement than only computing the con�dencelevel of Monte Carlo.For �xed accuracy, extensive testing has shown that di�erent tranches require a di�erentnumber of points. We emphasize that deterministic methods beat Monte Carlo for everytranche. We report results using the residual tranche of the CMO as reference point sinceit is the most di�cult to price. The residual tranche depends on all the 360 monthlyinterest rates. If this tranche can be priced using a certain number of samples with a givenaccuracy, the same number of samples will yield at least the same accuracy for the rest ofthe tranches.Since pricing models for complicated derivatives are subject to uncertainty, �nancialhouses are often content with relative errors of one part in a hundred. Furthermore, ifthey wish to price a book of instruments it is critical to use a small number of samples.Deterministic methods achieve a relative error of one part in a hundred using a smallnumber of points. In �gures 3 and 4 we see that 170 generalized Faure points, 600 Sobolpoints, and 2700 Monte Carlo points are su�cient for a relative error equal to 10�2. Thus,a very small number of generalized Faure points yields an accurate price 16 times fasterthan Monte Carlo.A further reduction of the error by a factor of 20 (equal to 10�3=2) requires about16000 generalized Faure points, while it may require up to 800000 random points and thespeedup is up to 50. In general, samples using as few as 2000 generalized Faure points canprice the CMO 20 to 50 times faster than Monte Carlo.We discuss the convergence rates. For n generalized Faure points, n � 104, the error isproportional to n�0:82. This error estimate is very conservative since frequently a muchhigher convergence rate is attained. This is very superior to the n�0:5 expected Monte4



Carlo error.Monte Carlo exhibits a great sensitivity on the seed of the pseudo-random numbergenerator. Unless we are dealing with the result of a fairly long simulation we cannot havemuch con�dence. Very long simulations, needed for high accuracy in the Monte Carloestimate, yield a deterministic method speedup on the order of 1000.Generalized Faure points are better than Sobol points in the sense that they usuallyachieve the same accuracy 2:5 to 6:5 times faster. Another important advantage of thegeneralized Faure points is that they can be easily produced for very high dimensionalproblems. It is much more complicated to obtain the improved Sobol points that we havebeen using, in very high dimensions.We summarize our conclusions. Among the deterministic methods we have tested, theone based on generalized Faure points is the method of choice. Generalized Faure pointscan be produced e�ciently, at a cost similar to that required for random points, and asmall number of points su�ces to price the CMO. In contrast to some other determin-istic sequences generalized Faure points can be easily produced in very high dimensions.FINDER contains features that further improve the quality of the approximation obtainedby the generalized Faure method without any additional computational overhead. Finally,preliminary, but very encouraging results, indicate that generalized Faure points can e�-ciently price �nancial derivatives modeled in more than 1500 dimensions.In closing, we indicate our plans for future work.(1) Make further improvements in FINDER.(2) Compare the performance of low discrepancy and Monte Carlo methods on other�nancial derivatives.(3) Investigate the of low discrepancy methods for risk management.(4) Design new low discrepancy methods which are especially good for �nancial com-putations. References[IBM95] Truel P., From I.B.M., Help in Intricate Trading, The New York TimesSeptember 25 (1995).[PT95] Paskov, S.H. and Traub, J.F., Faster Valuation of Financial Derivatives, The Journal of Port-folio Management Fall (1995), 113{120.[P96] Paskov, S.H., New Methodologies for Valuing Derivatives, in \Mathematics of Derivative Secu-rities," edited by S. Pliska and M. Dempster, Isaac Newton Institute, Cambridge University Press,Cambridge, UK, 1996 (to appear).[Pr92] Press, W., Teukolsky, S., Wetterling, W. and Flannery, B., \Numerical Recipes in C," SecondEdition, Cambridge University Press, Cambridge, 1992.[T95] Tezuka, S., \Uniform Random Numbers: Theory and Practice," Kluwer Academic Publishers,Boston, 1995. 5
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6



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: 512 pseudo-random points
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Figure 2: 512 low discrepancy points
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Figure 3: Generalized Faure and Monte Carlo errors
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Figure 4: Generalized Faure and Sobol errors
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