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Monte Carlo simulation is widely used to price complex financial instruments. Recent
theoretical results and extensive computer testing indicate that deterministic methods may
be far superior in speed and confidence. Simulations using the Sobol or Faure points are
examples of deterministic methods. For the sake of brevity, we refer to a deterministic
method using the name of the sequence of points which the method uses, e.g., Sobol
method.

In this paper we test the generalized Faure sequence due to Tezuka [T95]. We also test
a modified Sobol method; this includes further improvements from those in [PT95]. We
compare these two low discrepancy deterministic methods with basic Monte Carlo.

We summarize our conclusions regarding the valuation of a Collateralized Mortgage
Obligation which we divide into three groups. Similar results hold for other financial
instruments such as asian options.

I. Deterministic and Monte Carlo Methods.

Deterministic methods beat Monte Carlo by a wide margin. In particular,

e Both the generalized Faure and modified Sobol methods converge significantly faster
than Monte Carlo.

o The generalized Faure method always converges at least as fast as the modified
Sobol method and frequently faster.

e The Monte Carlo method is sensitive to the initial seed.

II. Small Number of Sample Points.
Deterministic methods outperform Monte Carlo for a small number of sample points. In

particular,

e Deterministic methods attain small error with a small number of points.
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e For the hardest CMO tranche, generalized Faure achieves accuracy 102 with 170
points, while modified Sobol uses 600 points. On the other hand, the Monte Carlo
method requires 2700 points for the same accuracy.

o Monte Carlo tends to waste points due to clustering, which severely compromises

its performance when the sample size is small.

IT1. Speedup.
The advantage of deterministic methods over Monte Carlo is further amplified as the sam-

ple size and the accuracy demands grow. In particular,

o Deterministic methods are 20 to 50 times faster than Monte Carlo even with mod-
erate sample sizes (2000 deterministic points or more).
o When high accuracy is desired, deterministic methods can be 1000 times faster than

Monte Carlo.

Valuing financial derivatives may be formulated via paths or as a high dimensional
integral. For simplicity we will restrict ourselves to the integral formulation and, without

loss of generality (see Paskov [P96]), as an integral over the unit cube in d dimensions.

For most finance problems the integral cannot be analytically computed; we have to
settle for a numerical approximation. The basic Monte Carlo method obtains this ap-
proximation by computing the arithmetic mean of the integrand evaluated at randomly
chosen points. More precisely, only pseudo-random points can be generated on a digital
computer and these are used in lieu of random points. There are sophisticated variations
of this basic method; whenever we refer to Monte Carlo in this paper we will always mean

the basic version.

If pseudo-random points from a flat distribution are plotted in two dimensions (see
Figure 1) there are regions where no sample points occur and regions where the points
are more concentrated. This is clearly undesirable. Random point samples are wasted due
to clustering. Indeed, Monte Carlo simulations with very small sample sizes cannot be
trusted. It would be desirable to place our sample points as uniformly as possible, which
is the idea behind low discrepancy sequences. Discrepancy is a measure of deviation from
uniformity; hence low discrepancy points are desirable. Figure 2 shows a plot of certain
low discrepancy points in two dimensions.

A low discrepancy method approximates the integral by computing the arithmetic mean
of the integrand evaluated at low discrepancy points. Low discrepancy sequences have
been extensively studied; see Paskov [P96] for the formal definition of discrepancy and

an extensive bibliography. In contrast to the Monte Carlo method which uses random (or
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pseudo-random) points, low discrepancy methods use deterministic points. These methods
are sometimes said to be quasi-random.

In 1992 the conventional wisdom was that although theory suggested that low discrep-
ancy methods were sometimes superior to Monte Carlo, this theoretical advantage was
not seen for high dimensional problems. Traub and a Ph.D. student, Spassimir Paskov,
decided to compare the efficacy of low discrepancy and Monte Carlo methods on the val-
uation of financial derivatives. They used a Collateralized Mortgage Obligation (Fannie
Mae REMIC Trust 1989-23) provided by Goldman Sachs with ten tranches requiring the
evaluation of ten 360-dimensional integrals. The values of the tranches depend on the
interest rate and prepayment models. Details can be found in Paskov [P96].

Paskov and Traub used a particular low discrepancy sequence due to Sobol. They made
major improvements in the Sobol points and showed that the improved Sobol method
consistently outperformed Monte Carlo; see Paskov and Traub [PT95] and Paskov [P96]

for details.

Software Construction and testing of low discrepancy deterministic methods for pricing
financial derivatives was begun at Columbia University in the Fall of 1992. Preliminary
results were shared with a number of New York City financial houses in the Fall of 1993
and the Spring of 1994. The first published announcement was a January 1994 article in
Scientific American; Traub and Wozniakowski [TW94]. See Paskov and Traub [PT95]
for a more detailed history.

In September 1995 IBM announced a product called the Deterministic Simulation
Blaster (see also [IBM95]) which uses a low discrepancy deterministic method. The
company claimed a very large improvement over Monte Carlo. However, the method for
chosing the sample points and the methodology for calculating the speedup have not been
revealed by the time of our writing this article (March 1996). IBM has repeatedly acknowl-
edged that the use of low discrepancy methods to price financial derivatives was pioneered
at Columbia University.

We have built a software system called FINDER for computing high dimensional inte-
grals. FINDER has modules for generating generalized Faure and modified Sobol points.
We emphasize that major improvements in generalized Faure points and Sobol points,
which cannot be found in the published literature, have been put in FINDER. Indeed, a
number of financial institutions have informed us that they could not replicate our results
using, for example, the Sobol point generator found in Press et al. [Pr92]. As further im-

provements in low discrepancy methods are discovered they will be added to our software.

FINDER may be obtained from Columbia University.
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We used FINDER to price the CMO and to compare low discrepancy methods with
Monte Carlo. Deterministic methods and Monte Carlo compute the arithmetic mean of
the integrand evaluated at a number of points. Thus the difference in performance depends
on the number of points that each method uses for the same accuracy. We observe the
least number of points that a method requires in order to achieve and maintain a relative
error below a certain level, e.g., 1072. The speedup of one method relative to another
is the ratio of the least number of points required by the first method divided by the
least number of points required by the second method so that both methods maintain the
same level of accuracy. This definition of speedup is new. We study the convergence and
the error of a method throughout a simulation. We feel that this has advantages over
speedup calculations based only on error values at the end of a simulation. Note that our

definition of speedup s a more rigorous requirement than only computing the confidence

level of Monte Carlo.

For fixed accuracy, extensive testing has shown that different tranches require a different
number of points. We emphasize that deterministic methods beat Monte Carlo for every
tranche. We report results using the residual tranche of the CMO as reference point since
it is the most difficult to price. The residual tranche depends on all the 360 monthly
interest rates. If this tranche can be priced using a certain number of samples with a given
accuracy, the same number of samples will yield at least the same accuracy for the rest of

the tranches.

Since pricing models for complicated derivatives are subject to uncertainty, financial
houses are often content with relative errors of one part in a hundred. Furthermore, if
they wish to price a book of instruments it is critical to use a small number of samples.
Deterministic methods achieve a relative error of one part in a hundred using a small
number of points. In figures 3 and 4 we see that 170 generalized Faure points, 600 Sobol
points, and 2700 Monte Carlo points are sufficient for a relative error equal to 1072, Thus,
a very small number of generalized Faure points yields an accurate price 16 times faster
than Monte Carlo.

A further reduction of the error by a factor of 20 (equal to 107%/2) requires about
16000 generalized Faure points, while it may require up to 800000 random points and the
speedup is up to 50. In general, samples using as few as 2000 generalized Faure points can

price the CMO 20 to 50 times faster than Monte Carlo.

We discuss the convergence rates. For n generalized Faure points, n < 10*, the error is

—0.82

proportional to n . This error estimate is very conservative since frequently a much

higher convergence rate is attained. This is very superior to the n %% expected Monte
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Carlo error.

Monte Carlo exhibits a great sensitivity on the seed of the pseudo-random number
generator. Unless we are dealing with the result of a fairly long simulation we cannot have
much confidence. Very long simulations, needed for high accuracy in the Monte Carlo
estimate, yield a deterministic method speedup on the order of 1000.

Generalized Faure points are better than Sobol points in the sense that they usually
achieve the same accuracy 2.5 to 6.5 times faster. Another important advantage of the
generalized Faure points is that they can be easily produced for very high dimensional
problems. It is much more complicated to obtain the improved Sobol points that we have
been using, in very high dimensions.

We summarize our conclusions. Among the deterministic methods we have tested, the
one based on generalized Faure points is the method of choice. Generalized Faure points
can be produced efficiently, at a cost similar to that required for random points, and a
small number of points suffices to price the CMO. In contrast to some other determin-
istic sequences generalized Faure points can be easily produced in very high dimensions.
FINDER contains features that further improve the quality of the approximation obtained
by the generalized Faure method without any additional computational overhead. Finally,
preliminary, but very encouraging results, indicate that generalized Faure points can effi-
ciently price financial derivatives modeled in more than 1500 dimensions.

In closing, we indicate our plans for future work.

(1) Make further improvements in FINDER.

(2) Compare the performance of low discrepancy and Monte Carlo methods on other
financial derivatives.

(3) Investigate the of low discrepancy methods for risk management.

(4) Design new low discrepancy methods which are especially good for financial com-

putations.
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Figure 1: 512 pseudo-random points
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Figure 2: 512 low discrepancy points
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Figure 3: Generalized Faure and Monte Carlo errors
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Figure 4: Generalized Faure and Sobol errors
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