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Abstract

We study the approximation of d-dimensional integrals. We present sufficient condi-
tions for fast quasi-Monte Carlo convergence. They apply to isotropic and non-isotropic
problems and, in particular, to a number of problems in computational finance. We
show that the convergence rate of quasi-Monte Carlo is of order n−1+p{log n}−1/2

with
p ≥ 0. This is a worst case result. Compared to the expected rate n−1/2 of Monte
Carlo it shows the superiority of quasi-Monte Carlo.

1 Introduction

Many applications, for instance, in finance and in physics, require the calculation of high
dimensional integrals. The Monte Carlo method is frequently used to approximate them.
Its expected error is of order n−1/2 and for functions with uniformly bounded variances the
expected error is independent of the dimension. Since its convergence is not fast, a large
number of evaluations may be necessary.

Quasi-Monte Carlo methods use deterministic samples at points that belong to low dis-
crepancy sequences and approximate the integrals by the arithmetic average of n function
evaluations. According to the Koksma-Hlawka inequality their worst case error is of order
logd n/n, where d denotes the dimension [7]. A similar bound was shown for the average
error of high dimensional integration by Woźniakowski [18].

Since logd n/n becomes huge when n is fixed and d is large, as sometimes happens in
practice, traditionally, there has been a certain degree of concern about quasi-Monte Carlo.
However, tests by Paskov and Traub in [12, 13] and quite a few others, e.g., [1, 2, 3, 5, 8, 10],
have shown that quasi-Monte Carlo methods are very effective for very high dimensional
integrals in computational finance. In these tests the observed error is about n−1. A survey
of the state of the art may be found in the monograph by Traub and Werschulz [17].
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Sloan and Woźniakowski [14] were the first to derive a class of functions for which the
worst case error of quasi-Monte Carlo is of order n−1/p, p ∈ [1, 2], and does not depend on d.
Without going into the details of their paper, we mention that they considered non-isotropic
integration problems by assuming that the behavior of the functions in the successive di-
mensions is moderated by different weights.

Quasi-Monte Carlo methods have also been found effective for isotropic problems, where
all integration variables are equally important. Papageorgiou and Traub [11] tested quasi-
Monte Carlo using an isotropic integral from physics and found that it converged faster than
Monte Carlo. Later, Papageorgiou [9] showed that the quasi-Monte Carlo error is of order√

log n/n for a certain class of isotropic integrals, which includes the example of [11].
Explaining the surprisingly good performance of quasi-Monte Carlo for other high dimen-

sional integrals and, in particular, for integrals arising in finance, is a challenging problem.
In this paper we present sufficient conditions for fast quasi-Monte Carlo convergence.

They can be used in the study of isotropic and non-isotropic problems, and, specifically, in
the study of a number of problems in finance.

In particular, we study quasi-Monte Carlo in the worst case for a number of different
function classes. We show that its convergence is

O(n−1+p{log n}−1/2

) = O(n−1+o(1)),

where p ≥ 0 is a constant that depends on the class definition, and the factor in the big O
notation is independent of d.

Since this is a worst case result, and since this convergence is faster than the expected
rate n−1/2 of Monte Carlo it shows the superiority of quasi-Monte Carlo for the integration
of functions from our classes.

Finally, we consider some applications in finance. We show how they can be analyzed
using the conditions of our framework, and the corresponding quasi-Monte Carlo convergence
rates.

2 Problem Definition

We consider the approximation of a weighted high-dimensional integral of the form

Id,g(f) =

∫
Rd

f(g(x))φd(x) dx, (1)

where d is the dimension, φd(x) = (2π)−d/2e−‖x‖
2/2 is a Gaussian weight. We assume that

g : Rd → R is a given continuous function, and f : R → R such that Id,g(f) < ∞.
In a recent paper [9] we studied the approximation of the integral∫

Rd

f(‖x‖)e−‖x‖2 dx,

for a function f such that ess sup{|f ′(r)| : r ∈ R} ≤ M , M > 0, where ‖ · ‖ denotes the
Euclidean norm. We found that the quasi-Monte Carlo error is O(

√
log n/n). The last
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integral corresponds to g(x) = ‖x‖, x ∈ Rd. In this paper we extend the results of [9] for
more general g and other classes of functions f .

We will assume that the function g is such that the probability measure defined by

µ(A) =

∫
Rd

1A(g(x))φd(x) dx, A ∈ B(R), (2)

is equivalent to the Lebesgue measure. Then the integral (1) can be reduced by a change
of variable to a one-dimensional integral, which sometimes can be solved analytically. We
do not do this because we want to study the performance of quasi-Monte Carlo methods for
d-dimensional integration.

Without using (2), we have the equivalent integral over the cube [0, 1]d,

Id,g(f) =

∫
Rd

f(g(x))φd(x) dx =

∫
[0,1]d

f(g(Φ−1(t1), . . . , Φ
−1(td))) dt,

where Φ is the cumulative normal distribution function with mean zero and variance one,

Φ(y) =
1√
2π

∫ y

−∞
e−s2/2 ds, y ∈ [−∞,∞]. (3)

For any deterministic points ti = (ti1, . . . , tid) ∈ (0, 1)d, i = 1, . . . , n, we define the points
xi = (xi1, . . . , xid) ∈ Rd, i = 1, . . . , n, by xij = Φ−1(tij), j = 1, . . . , d, i = 1, . . . , n. Then we
approximate the integral (1) by the quasi-Monte Carlo method

Id,g,n(f) =
1

n

n∑
i=1

f(g(xi)). (4)

We study the error and the convergence rate of the method Id,g,n under the following
conditions.

Definition 2.1. Let x0, γ and β be given positive numbers. Assume that the function g is
such that the tails of the measure µ satisfy:

1− µ(x) ≤ γe−βx2

, x ≥ x0, (5)

µ(−x) ≤ γe−βx2

, x ≥ x0, (6)

where µ(x) := µ(−∞, x), x ∈ R.
Let F1 be the class of functions f : R → R, such that Id,g(f) < ∞, f is absolutely

continuous, f ′ exists a.e., and{∫
R

[f ′(x)]
2
e−α|x| dx

}1/2

≤ M,

where M and α are given positive numbers.
Let F2 be the class of functions defined in the same way as F1 with the exception that the

condition above is replaced by

ess sup
{
|f ′(x)|e−α|x| : x ∈ R

}
≤ M.
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Definition 2.2. Let x0, γ, β and δ be given positive numbers. Assume that the function g is
such that the tails of the measure µ satisfy:

1− µ(x) ≤ γe−β(log(δx))2 , x ≥ x0, (7)

µ(−x) ≤ γe−β(log(δx))2 , x ≥ x0. (8)

In this case, the tails of µ are qualitatively different than before. They decay proportionally
to x−β log x. This is much slower than the decay of the tails of the normal distribution [16].

Let F3 be the class of functions f : R → R, such that Id(f) < ∞, f is absolutely
continuous, f ′ exists a.e., and ∫

R
|f ′(x)| dx ≤ M,

where M is a given positive number.
Let F4 be the class of functions defined in the same way as F3 with the exception that the

above condition is replaced by

ess sup {|f ′(x)| : x ∈ R} ≤ M.

3 Low Discrepancy Sequences

We briefly discuss low discrepancy sequences. Discrepancy is a measure of uniformity of a
sequence of points. The discrepancy of n points x1, . . . , xn ∈ [0, 1]d, d ≥ 1, is defined by

D(d)
n = D(d)(x1, . . . , xn) = sup

E

∣∣∣∣A(E; n)

n
− λ(E)

∣∣∣∣ ,

where the supremum is taken over all subsets of [0, 1]d of the form E = [0, t1)× · · · × [0, td),
λ denotes the Lebesgue measure, and A(E; n) is the number of the xj that are contained in
E. A detailed study of low discrepancy sequences can be found in [4, 7, 15].

A sequence x1, x2, . . . of points in [0, 1]d is a low discrepancy sequence if

D(d)
n ≤ c(d)

logd n

n
, ∀n > 1,

where c(d) depends only on the dimension d.
The Koksma-Hlawka inequality establishes a relation between low discrepancy sequences

and multivariate integration [7]. If f is a real function, defined on [0, 1]d, of bounded variation
V (f) in the sense of Hardy and Krause, then for any sequence x1, . . . , xn ∈ [0, 1)d we have∣∣∣∣∣

∫
[0,1]d

f(x) dx− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ≤ V (f)D(d)
n .

In the above, the uniformity of a sequence is assessed with respect to the Lebesgue
measure on the cube [0, 1]d. However, the discrepancy of a sequence can be considered with
respect to any probability measure µ.
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We introduce some definitions and notation that we will use in the rest of this paper. Let
µ be a probability measure on R. For n > 1, let xi ∈ R, i = 1, . . . , n, be any points. Define
the difference between the empirical distribution (approximating µ using the points xi) and
the measure µ by

Rµ(E) =
A(E; n)

n
− µ(E), E ⊂ R,

where A(E; n) is the number of the xi contained in E and does not depend on µ but depends
only on the points xi. The discrepancy of the points xi, i = 1, . . . , n, with respect to µ is
defined by

Dµ,n = Dµ,n(x1, . . . , xn) = sup
E
|Rµ(E)|,

where the supremum is taken over all sets of the form E = (−∞, x), x ∈ R.
For x ∈ R and xi ∈ R, i = 1, . . . , n, we use the notation

Rµ(x; x1, . . . , xn) =
1

n

n∑
i=1

1(−∞,x)(xi)− µ(x).

When µ is equivalent to the Lebesgue measure, µ ∼ λ, as in this paper, or when it is
absolutely continuous with respect to the Lebesgue measure, µ � λ, and supported on an
interval, as in [9], we can derive a low discrepancy sequence with respect to µ from a low
discrepancy sequence with respect to the Lebesgue measure.

Indeed, given a low discrepancy sequence (with respect to the Lebesgue measure) ti ∈
[0, 1], i = 1, 2, . . . , the sequence xi = µ−1(ti) ∈ R, i = 1, 2, . . . , has discrepancy Dµ,n with

respect to the measure µ, and satisfies Dµ,n(x1, . . . , xn) = D
(1)
n (t1, . . . , tn), n > 1. For brevity,

when d = 1 we write Dn instead of D
(1)
n .

4 Quasi-Monte Carlo Error

In this section we derive the quasi-Monte Carlo error. Given a sample set consisting of
function evaluations at points xi ∈ Rd, i = 1, . . . , n, we will show that the error depends on
the discrepancy Dµ,n, with respect to µ, of the points g(xi) ∈ R, i = 1, . . . , n.

Lemma 4.1. Consider the integral ( 1) and assume that either the conditions of Definition
2.1 or those of Definition 2.2 are satisfied. Let xi ∈ Rd, i = 1, . . . , n, be any points, n ≥ 1.
Then for f ∈ Fi, i = 1, . . . , 4, we have

Id,g(f)− Id,g,n(f) =

∫
R

Rµ(x)f ′(x) dx,

where Rµ(x) = Rµ(x; g(x1), . . . , g(xn)), x ∈ R.

Proof: The error of a quasi-Monte Carlo method approximating the integral of a differen-
tiable function is shown in [7, Ch. 2]. We proceed in a similar way. For n, d ≥ 1 and xi ∈ Rd,
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i = 1, . . . , n we have∫
Rd

f(g(x))φd(x) dx− 1

n

n∑
i=1

f(g(xi))

=

∫
R

f(t)µ′(t) dt− 1

n

n∑
i=1

f(g(xi))

=

∫ 1

0

f(µ−1(t)) dt− 1

n

n∑
i=1

f(g(xi))

=

∫ 1

0

h(s) ds− 1

n

n∑
i=1

h(si), h = f ◦ µ−1, si = µ(g(xi))

=

∫ 1

0

R(t)h′(t) dt, R(t) =
1

n

n∑
i=1

1[0,t)(si)− t

=

∫ 1

0

R(t)
df(z)

dz

∣∣∣∣
z=µ−1(t)

(
µ−1

)′
(t) dt

=

∫ 1

0

R(t)
df(z)

dz

∣∣∣∣
z=µ−1(t)

dµ−1(t)

=

∫
R

f ′(x)R(µ(x)) dx

=

∫
R

f ′(x)Rµ(x) dx,

and this completes the proof.

We remark that one can derive an equivalent lemma for the quasi-Monte Carlo error
when µ is absolutely continuous with respect to the Lebesgue measure and its support is an
interval, e.g., (0,∞). In this case, the domain of integration in the right hand side of the
error equation is not R but is the support of µ.

For a class of functions F we define the worst case error of the method Id,g,n by

e(Id,g,n, f) = |Id,g(f)− Id,g,n(f)|, f ∈ F,

e(Id,g,n, F ) = sup
f∈F

e(Id,g,n, f).

Proposition 4.1. For the classes of functions Fi, i = 1, . . . , 4, under the conditions of
Definition 2.1 and Definition 2.2, the error of the method Id,g,n in ( 4) satisfies

e(Id,g,n, Fi) = sup
f∈Fi

∫
R
|f ′(x)Rµ(x)| dx, i = 1, . . . , 4,
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and

e(Id,g,n, F1) ≤ M

{∫
R

eα|x|R2
µ(x) dx

}1/2

,

e(Id,g,n, F2) ≤ M

∫
R

eα|x||Rµ(x)| dx,

e(Id,g,n, F3) ≤ M sup
x∈R

|Rµ(x)| = MDµ,n,

e(Id,g,n, F4) ≤ M

∫
R
|Rµ(x)| dx.

Proof: From Lemma 4.1 we have e(Id,g,n, Fi) ≤ supf∈Fi

∫
R |f

′(x)Rµ(x)| dx, i = 1, . . . , 4. For
f ∈ Fi we consider a corresponding function w such that w′(x) = f ′(x) · sign(f ′(x)Rµ(x))
a.e., where sign(x) = ±1 when x ≥ 0 and x < 0, respectively. Then w′(x)Rµ(x) ≥ 0 a.e., w
is absolutely continuous and w ∈ Fi, which allows us to conclude

e(Id,g,n, Fi) = sup
f∈Fi

∫
R
|f ′(x)Rµ(x)| dx, i = 1, . . . , 4.

The remaining inequalities are straightforward. The first one is obtained using the def-
inition of F1 and applying the Cauchy-Schwarz inequality to the above integral, while the
second, third and fourth inequalities follow from the definition of F2, F3, and F4, respec-
tively.

Corollary 4.1. If µ � λ and is supported on a bounded or semi-bounded interval, then
Proposition 4.1 holds by replacing the domain of integration by the support of µ, supp(µ).
Moreover, when supp(µ) is bounded Proposition 4.1 implies

e(Id,g,n, Fi) = O(Dµ,n), i = 1, . . . , 4.

We have seen that the quasi-Monte Carlo error depends on the discrepancy, Dµ,n =
Dµ,n(g(x1), . . . , g(xn)), of the points g(xi), xi ∈ Rd, i = 1, . . . , n, with respect to the measure
µ. Selecting the points xi in a way that Dµ,n is minimized will lead to small quasi-Monte
Carlo error. We use this in deriving the convergence of quasi-Monte Carlo in the next section.
We can construct the points xi ∈ Rd, i = 1, . . . , n for which Dµ,n is minimized when µ is
known. Otherwise, we know their existence.

There is another practical reason for which Dµ,n is important. When µ is known, for
any given sample xi ∈ Rd, i = 1, . . . , n, it is easy to compute the value of Dµ,n. Then we
can use its value along with the conditions about the decay of the tails of µ (see equations
(5), (6) in Definition 2.1, and equations (7), (8) in Definition 2.2) to estimate the integrals
of Proposition 4.1 from above. Therefore, we can estimate the quasi-Monte Carlo error and
assess the quality of any sample.

7



5 Speed of Convergence

We now proceed to derive the convergence rate of the method (4) for the respective classes
of functions. We have already made it clear that the error depends on the discrepancy of the
sequence g(xi), i = 1, . . . , n, with respect to the measure µ. It also depends on the properties
of the tails of the distribution µ. The convergence rates, and the respective constant factors
in the error estimates, that we obtain in this section hold for integration problems defined by
any function g for which the corresponding distribution µ has tails satisfying the conditions
(5), (6) of Definition 2.1, or (7), (8) of Definition 2.2.

Recall that we assumed throughout the paper that µ is equivalent to the Lebesgue mea-
sure on R. However, in view of Corollary 4.1 the results obtained here apply also to the case
where supp(µ) is an interval.

Consider the sample points xi ∈ Rd, i = 1, . . . , n, and let l = min1≤i≤n{g(xi)} and
u = max1≤i≤n{g(xi)}. Using x0 > 0 (see Definition 2.1 and Definition 2.2) we define l∗ =
min{−x0, l}, u∗ = max{x0, u}, and r∗ = max{−l∗, u∗}. Then

|Rµ(−x)| = µ(−x), and |Rµ(x)| = 1− µ(x), ∀ x > r∗. (9)

We use this fact in Lemma 5.1 and in Lemma 5.2 below.

Lemma 5.1. Assume that the tails of µ satisfy ( 5) and ( 6). For any h ∈ (0, 1) and
r ≥ max {(α + 1)/(2hβ), r∗}, α, β > 0, we have∫

R
R2

µ(x)eα|x| dx ≤
∫ r

−r

R2
µ(x)eα|x| dx + (γ + 1)eαr

{
[µ(−r)]2−h + [1− µ(r)]2−h

}
.

Proof: For h ∈ (0, 1), r ≥ r∗ and α, β > 0 we have∫ −r

−∞
µ2(x)eα|x| dx ≤ [µ(−r)]2−h

∫ −r

−∞
[µ(x)]he−αx dx

≤ (γ + 1)[µ(−r)]2−h

∫ −r

−∞
e−(hβx2+αx) dx, since γh ≤ γ + 1,

= (γ + 1)eα2/(4hβ)[µ(−r)]2−h

∫ −r

−∞
e−hβ(x+α/(2hβ))2 dx

= (γ + 1)eα2/(4hβ)[µ(−r)]2−h

∫ −r+α/(2hβ)

−∞
e−hβy2

dy

=
γ + 1√

2hβ
eα2/(4hβ)[µ(−r)]2−h

∫ −
√

2hβ(r−α/(2hβ))

−∞
e−t2/2 dt

=
γ + 1√

2hβ
eα2/(4hβ)[µ(−r)]2−h

∫ ∞

√
2hβ(r−α/(2hβ))

e−t2/2 dt

<
γ + 1

2hβ
eα2/(4hβ)[µ(−r)]2−h e−hβ(r−α/(2hβ))2

r − α/(2hβ)

= (γ + 1)[µ(−r)]2−h e−hβr2+αr

2hβr − α
,
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where the last inequality is obtained using the estimate in [16, p. 175] for the tail of the
normal distribution, i.e.,

1− Φ(y)

Φ′(y)
< y−1, y > 0,

where Φ is given in (3).
For r ≥ max{(α + 1)/(2hβ), r∗} and since e−hβr2 ≤ 1 we obtain∫ −r

−∞
µ2(x)eα|x| dx ≤ (γ + 1)[µ(−r)]2−heαr. (10)

Similarly, we derive an upper bound for
∫ ∞

r
[1− µ(x)]2eαx dx. Since γh ≤ γ + 1 we have∫ ∞

r

[1− µ(x)]2eαx dx ≤ (γ + 1)[1− µ(r)]2−h

∫ ∞

r

e−hβx2+αx dx

= (γ + 1)eα2/(4hβ)[1− µ(r)]2−h

∫ ∞

r

e−hβ(x−α/(2hβ))2 dx

= (γ + 1)eα2/(4hβ)[1− µ(r)]2−h

∫ ∞

r−a/(2hβ)

e−hβy2

dy

=
γ + 1√

2hβ
eα2/(4hβ)[1− µ(r)]2−h

∫ ∞

√
2hβ(r−α/(2hβ))

e−t2/2dt

<
γ + 1

2hβ
eα2/(4hβ)[1− µ(r)]2−h e−hβ(r−α/(2hβ))2

r − α/(2hβ)

= (γ + 1)[1− µ(r)]2−h e−hβr2+αr

2hβr − α
,

where the last inequality is obtained using the estimate in [16] for the tail of the normal
distribution as before.

Thus for r ≥ max{(α + 1)/(2hβ), r∗} and since e−hβr2 ≤ 1 we obtain∫ ∞

r

[1− µ(x)]2eαx dx ≤ (γ + 1)[1− µ(r)]2−heαr. (11)

Combining (9), (10) and (11) completes the proof.

Proposition 5.1. Assume that the tails of µ satisfy the conditions ( 5) and ( 6). Then for
n ≥ max{c[1−µ(x0)]

−1, c[µ(−x0)]
−1, (4γ)−1e(α+1)2/β} there exist deterministic points xi ∈ R,

i = 1, . . . , n, for which{∫
R

R2
µ(x)eα|x| dx

}1/2

≤ c1

√
2(4γ + 1)(α−1 + γ + 1) n−1+

3α+1
4

{β log(4γn)}−1/2

,

where c1 = max{c, 1} and c ≥ 1/2 is a constant such that the discrepancy Dµ,n(x1, . . . , xn) ≤
c/n. Moreover, for the specific choice xi = µ−1 [(2i− 1)/(2n)], i = 1, . . . , n, the inequality
holds with c = 1/2 and c1 = 1.
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Proof: Let ti ∈ [0, 1), i = 1, . . . , n, be n numbers with discrepancy Dn = c/n, where c ≥ 1/2
is a constant. For instance, these numbers can be n terms of a low discrepancy sequence or
a (t,m, 1)-net. It is shown in [7, Ch. 2] that the discrepancy of these points is given by

Dn =
1

2n
+ max

1≤i≤n

∣∣∣∣t(i) − 2i− 1

2n

∣∣∣∣ ,

where t(1) ≤ · · · ≤ t(i) ≤ · · · ≤ t(n) denotes the ordered sequence of points.
This implies that the discrepancy of the sequence

τi =


ti + (4n)−1 if ti < (4n)−1

ti − (4n)−1 if ti > 1− (4n)−1

ti otherwise
, i = 1, . . . , n,

cannot exceed c/n, its minimum term satisfies τ(1) > (4n)−1 and its maximum term satisfies
τ(n) < 1− (4n)−1. Hence, without loss of generality, we assume that t(1) ≥ (4n)−1 and that
t(n) ≤ 1− (4n)−1.

Consider xi ∈ R such that µ(xi) = ti, i = 1, . . . , n. Let u = u(n) = max1≤i≤n{xi},
l = l(n) = min1≤i≤n{xi}. Since |Rµ(x)| ≤ Dn = c/n, ∀ x ∈ R, we have

(4n)−1 ≤ µ(l) ≤ cn−1

(4n)−1 ≤ 1− µ(u) ≤ cn−1.

Since n ≥ c max{[1−µ(x0)]
−1, [µ(−x0)]

−1} we have µ(l) ≤ cn−1 ≤ µ(−x0) and 1−µ(u) ≤
cn−1 ≤ 1−µ(x0). (Note that µ(−x0) 6= 0 6= 1−µ(x0) because µ is equivalent to the Lebesgue
measure.) Thus, u,−l ≥ x0 > 0.

Let q = m(x) = γe−βx2
for some x > 0. Then, it is easy to verify that the inverse of m

is given by

m−1(q) =
{
β−1 log(γ/q)

}1/2
, 0 < q ≤ γ.

Observe that m and m−1 are decreasing functions, therefore, the above inequalities and
equations (5) and (6) imply m−1[(4n)−1] ≥ m−1[1−µ(u)] ≥ u and m−1[(4n)−1] ≥ m−1[µ(l)] ≥
l.

Let r = r(n) = m−1[(4n)−1]. Clearly r ≥ r∗ = max{−l, u}. Assume that n is sufficiently
large so that the remaining condition of Lemma 5.1 is satisfied for some h ∈ (0, 1), i.e.,
r ≥ (α + 1)/(2hβ). Then∫

R
R2

µ(x)eα|x| dx ≤
∫ r

−r

R2
µ(x)eα|x| dx + (γ + 1)eαr

{
[µ(−r)]2−h + [1− µ(r)]2−h

}
≤

( c

n

)2
∫ r

−r

eα|x| dx + 2(γ + 1)
( c

n

)2−h

eαr

=
( c

n

)2 2

α
(eαr − 1) + 2(γ + 1)

( c

n

)2−h

eαr

≤ 2c2
1(α

−1 + γ + 1)

(
1

n

)2−h

eαr, c1 = max{c, 1}.
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Using the condition r ≥ (α + 1)/(2hβ), see Lemma 5.1, we define h by

h =
α + 1

2β

{
β−1 log(4γn)

}−1/2
=

α + 1

2
{β log(4γn)}−1/2 .

Thus n ≥ (4γ)−1e(α+1)2/β implies h ≤ 1/2.
We will now estimate eαr. We have

eαr = exp
{
αm−1[(4n)−1]

}
= exp

{
α
√

β−1 log(4γn)
}

= exp
{

αβ−1/2 log(4γn)1/(log(4γn))1/2
}

= (4γn)α/
√

β log(4γn)

≤ (4γ + 1)nα/
√

β log(4γn),

where the last inequality holds for n ≥ (4γ)−1eα2/β.
Hence,∫
R

R2
µ(x)eα|x| dx ≤ 2c2

1(4γ + 1)(α−1 + γ + 1) n−2 n(α+1){β log(4γn)}−1/2/2 nα{β log(4γn)}−1/2

= 2c2
1(4γ + 1)(α−1 + γ + 1) n−2+

3α+1
2

{β log(4γn)}−1/2

,

which completes the proof.

Remark 5.1. If µ � λ and its support is a semi-bounded interval as in [9], i.e., supp(µ) =
(−∞, z) or supp(µ) = (z,∞), for some z ∈ R, then it is possible that either µ(−x0) = 0 or
µ(x0) = 1. In such a case, we can slightly modify the statement of Proposition 5.1 and its
proof.

In particular, when µ(−x0) = 0 and µ(x0) 6= 1 it suffices to require n ≥ max{c[1 −
µ(x0)]

−1, (4γ)−1e(α+1)2/β}, and in the proof we need to consider only the maximum term u.
Similarly, when µ(−x0) 6= 0 and µ(x0) = 1 we require n ≥ max{c[µ(−x0)]

−1, (4γ)−1e(α+1)2/β},
and in the proof we need to consider only the minimum term l. In either case, we partition
supp(µ) into two intervals, using u or l, and estimate

∫
supp(µ)

R2
µ(x)eα|x| dx by estimating the

resulting two integrals. The bound of Proposition 5.1 follows easily.
Similar considerations apply to the remaining parts of this paper.

Proposition 5.2. Assume that the tails of µ satisfy the conditions ( 5) and ( 6). Then for
n ≥ max{c[1−µ(x0)]

−1, c[µ(−x0)]
−1, (4γ)−1e(α+1)2/β} there exist deterministic points xi ∈ R,

i = 1, . . . , n, for which∫
R
|Rµ(x)|eα|x| dx ≤ 2c1(4γ + 1)(α−1 + γ + 1) n−1+

3α+1
2

{β log(4γn)}−1/2

,

where c1 = max{c, 1} and c ≥ 1/2 is a constant such that the discrepancy Dµ,n(x1, . . . , xn) ≤
c/n. Moreover, for the specific choice xi = µ−1 [(2i− 1)/(2n)], i = 1, . . . , n, the inequality
holds with c = 1/2 and c1 = 1.
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Proof: In a way similar to that of Lemma 5.1, for h ∈ (0, 1) and r ≥ max{(α+1)/(2hβ), r∗},
α, β > 0, we can show that∫

R
|Rµ(x)|eα|x| dx ≤

∫ r

−r

|Rµ(x)|eα|x| dx + (γ + 1)eαr
{
[µ(−r)]1−h + [1− µ(r)]1−h

}
.

The rest of the proof is almost identical to that of Proposition 5.1 and we omit it.

We now turn our attention to the case of Definition 2.2.

Lemma 5.2. Assume that the tails of µ satisfy ( 7) and ( 8). For any h ∈ (0, 1) and
r ≥ max

{
δ−1e1/(hβ), r∗

}
, β > 0, we have∫

R
|Rµ(x)| dx ≤

∫ r

−r

|Rµ(x)| dx + (γ + 1)r
{
[µ(−r)]1−h + [1− µ(r)]1−h

}
.

Proof: The proof is very similar to that of Lemma 5.1. For h ∈ (0, 1) and r ≥ r∗ we have∫ ∞

r

[1− µ(x)] dx ≤ (γ + 1)[1− µ(r)]1−h

∫ ∞

r

e−hβ(log(δx))2 dx, since γh ≤ γ + 1,

=
γ + 1

δ
[1− µ(r)]1−h

∫ ∞

log(δr)

e−hβy2+y dy

≤ (γ + 1)[1− µ(r)]1−h r

2hβ log(δr)− 1
,

where the last inequality is obtained in a way similar to that of Lemma 5.1 using the estimates
of [16] for the tails of the normal distribution.

Thus, for r ≥ max
{
δ−1e1/(hβ), r∗

}
we have∫ ∞

r

[1− µ(x)] dx ≤ (γ + 1)[1− µ(r)]1−hr.

Also ∫ −r

−∞
µ(x) dx ≤ (γ + 1)[µ(−r)]1−h

∫ −r

−∞
[µ(x)]h dx, since γh ≤ γ + 1,

= (γ + 1)[µ(−r)]1−h

∫ ∞

r

[µ(−x)]h dx

≤ (γ + 1)[µ(−r)]1−h r

2hβ log(δr)− 1
.

Thus, for r ≥ max
{
δ−1e1/(hβ), r∗

}
we have∫ −r

−∞
µ(x) dx ≤ (γ + 1)[µ(−r)]1−hr.

Combining the above with equation (9) completes the proof.
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Proposition 5.3. Assume that the tails of µ satisfy the conditions ( 7) and ( 8). Then for
n ≥ max

{
c[1− µ(x0)]

−1, c[µ(−x0)]
−1, (4γ)−1e1/β

}
there exist deterministic points xi ∈ R,

i = 1, . . . , n for which∫
R
|Rµ(x)| dx ≤ 2c1(γ + 2)(4γ + 1)δ−1n−1+2{β log(4γn)}−1/2

,

where c1 = max{c, 1} and c ≥ 1/2 is a constant such that the discrepancy Dµ,n(x1, . . . , xn) ≤
c/n. Moreover, for the specific choice xi = µ−1 [(2i− 1)/(2n)], i = 1, . . . , n, the inequality
holds with c = 1/2 and c1 = 1.

Proof: The proof is almost identical to that of Proposition 5.1 and we omit some of the
details. Once more, we assume that n ≥ c max{[1−µ(x0)]

−1, [µ(−x0)]
−1}. From Lemma 5.2

for h ∈ (0, 1), r ≥ max
{
δ−1e1/(hβ), r∗

}
, and by considering a low discrepancy sequence with

respect to µ with discrepancy c/n, c ≥ 1/2, we have∫
R
|Rµ(x)| dx ≤ 2c1(γ + 2)

(
1

n

)1−h

r, c1 = c + 1.

Let q = m(x) = γe−β(log(δx))2 for some x > 0. Then the inverse of m is given by

m−1(q) = δ−1e
√

β−1 log(γ/q), 0 < q ≤ γ.

Just like before, we define r = r(n) = m−1[(4n)−1] = δ−1e
√

β−1 log(4γn). Using the condi-
tion r ≥ δ−1e1/(hβ) we define h = {β log(4γn)}−1/2, and n ≥ (4γ)−1e1/β implies h < 1.

We further estimate r by carrying out the calculations in the expression for m−1[(4n)−1] ,

i.e., r ≤ (4γ + 1)n1/
√

β log(4γn), which holds for n ≥ (4γ)−1e1/β.
We combine everything to obtain∫

R
|Rµ(x)| dx ≤ 2c1(γ + 2)(4γ + 1)δ−1n−1+2{β log(4γn)}−1/2

,

which holds for n ≥ max
{
c[1− µ(x0)]

−1, c[µ(−x0)]
−1, (4γ)−1e1/β

}
.

For any choice of the sample points the quasi-Monte Carlo error is given in Proposition
4.1. For the different classes of functions, it depends either on the the discrepancy Dµ,n of

the sample points or on
{∫

R eα|x|R2
µ(x) dx

}1/2
, or on

∫
R eα|x||Rµ(x)| dx, or on

∫
R |Rµ(x)| dx.

In Proposition 5.1, Proposition 5.2 and Proposition 5.3 we have shown bounds for these
integrals. We summarize our results in the following theorem.

Theorem 5.1. There exist deterministic points xi ∈ Rd, i = 1, . . . , n, such that the error of
the quasi-Monte Carlo method Id,g,n approximating the integral Id,g is bounded as follows:

e(Id,g,n, F1) ≤ Mc1

√
2(4γ + 1)(α−1 + γ + 1) n−1+

3α+1
4

{β log(4γn)}−1/2

, n ≥ n0,

e(Id,g,n, F2) ≤ 2Mc1(4γ + 1)(α−1 + γ + 1) n−1+
3α+1

2
{β log(4γn)}−1/2

, n ≥ n0,

e(Id,g,n, F3) ≤ Mcn−1, n ≥ 1,

e(Id,g,n, F4) ≤ 2Mc1(γ + 2)(4γ + 1)δ−1n−1+2{β log(4γn)}−1/2

, n ≥ n1,
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where n0 = k(α+1) and n1 = k(1) with k(s) = max
{

c[1− µ(x0)]
−1, c[µ(−x0)]

−1, (4γ)−1es2/β
}
,

c1 = max{c, 1} and c ≥ 1/2 is a constant such that the discrepancy Dµ,n(g(x1), . . . , g(xn)) ≤
c/n. Moreover, when g(xi) = µ−1 [(2i− 1)/(2n)], i = 1, . . . , n, the inequalities hold with
c = 1/2 and c1 = 1.

Proof: Let ti ∈ (0, 1), i = 1, . . . , n, be points with discrepancy c/n, c ≥ 1/2. For instance,
the ti may belong to a one dimensional low discrepancy sequence. The points zi = µ−1(ti) ∈
R, i = 1, . . . , n, have discrepancy Dµ,n = c/n with respect to the measure µ. Therefore,
there exist points xi ∈ Rd such that g(xi) = zi, i = 1, . . . , n, which can be used as sample
points.

Thus e(Id,g,n, F3) ≤ Mcn−1 is clearly true. The rest of the proof follows by combining
Proposition 4.1 with Proposition 5.1, Proposition 5.2 and Proposition 5.3.

Corollary 5.1. The results of Theorem 5.1 for the convergence rate of quasi-Monte Carlo
hold when the support of the measure µ, supp(µ), is a semi-bounded interval. Moreover,
when supp(µ) is bounded, we have

e(Id,g,n, Fi) = O(n−1), i = 1, . . . , 4.

Proof: The proof follows directly from Corollary 4.1.

6 Applications

In this section we show how our results apply to some of the problems in computational
finance. Assuming a standard lognormal model for asset prices [6] the value of a financial
derivative is the expected value of its payoff function with respect to the normal distribution.
Often this integral can be written in the form of equation (1), i.e., Id,g(f), for appropriately
chosen functions g : Rd → R and f : R → R.

Excluding constant factors, the price of a number of call options is given by the integral
of the function (

e
∑d

j=1 ajxj −K
)

+
,

aj ∈ R, K > 0, with respect to the normal distribution, where x+ = x if x ≥ 0, and is

zero otherwise. Roughly speaking, the quantity e
∑d

j=1 ajxj corresponds to the price of an
asset at some future time, and depends on d random market factors. The option payoff
is the amount, if any, by which the asset price exceeds a given amount K. The expected
payoff, i.e., the integral of the function above, is the value of the option. In particular,
the payoff functions of vanilla European options with the stock price monitored over d
intervals, forward options, compound options, and geometric mean options, and geometric
mean portfolio options, to name just a few, have this form. Boyle et al. [2] considered some
of these options in tests comparing Monte Carlo and quasi-Monte Carlo. Interest rate caplets
[6] under different interest rate models, e.g., Vasicek, Heath Jarrow Morton and others, also
have payoff functions of the above form.
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We can set g(x1, . . . , xd) =
∑d

j=1 ajxj. Since g is linear its distribution is normal with

mean zero and variance σ2 =
∑d

j=1 a2
j . Therefore, it is equivalent to the Lebesgue measure

on R, and the decay of its tails is consistent with the conditions (5), (6) of Definition 2.1
with x0 = 1, γ = (2πσ2)−1/2 and β = (2σ2)−1. We set f(x) = (ex − K)+. (We can deal
with put options by considering f(x) = (K − ex)+, K > 0.) In either case, the function f is
absolutely continuous and f ∈ F1 (or, f ∈ F2) with appropriately chosen α > 2 and M , for
example, with α = 3 and M =

√
2. Therefore, by Theorem 5.1 there exists a quasi-Monte

Carlo method with error
O(n−1+p{β log(4γn)}−1/2

),

with p = (3α + 1)/4 for F1 and p = (3α + 1)/2 for F2.
Moreover, since the distribution of g is known we can numerically calculate error bounds

for any quasi-Monte Carlo method (4), i.e., for any choice of the sample points. This is
accomplished by first computing how well the empirical distribution of the sample points
approximates the distribution of g, i.e., by computing the discrepancy Dµ,n, and then using
the result of this computation in combination with Proposition 4.1 to obtain an upper bound
for the error.

This procedure can provide insight and explain some of the differences in performance
resulting from various choices of low discrepancy sequences for this type of integration prob-
lems.

It is interesting to observe that a slight modification of the payoff function yields f ∈ F3.
Indeed, ∫

Rd

(
e

∑d
j=1 ajxj −K

)
+

φd(x) dx =

∫
Rd

(
1−Ke−

∑d
j=1 ajxj

)
+

e
∑d

j=1 ajxjφd(x) dx

= e
∑d

j=1 a2
j/2 · (2π)−d/2

∫
Rd

(
1−Ke−

∑d
j=1 ajxj

)
+

e−
∑d

j=1(xj−aj)
2/2 dx1 . . . dxd

= eσ2/2 · (2π)−d/2

∫
Rd

(
1−Ke−

∑d
j=1 aj(xj+aj)

)
+

e−
∑d

j=1 x2
j/2 dx1 . . . dxd

= eσ2/2

∫
Rd

(
1−Ke−g(x)−σ2

)
+

φd(x) dx.

Then the function f(x) = (1−Ke−x−σ2
)+ belongs to F3 with M = 1.

By Theorem 5.1 there exists a quasi-Monte Carlo method with error

O(n−1),

and the discrepancy of the sample points used by this quasi-Monte Carlo method also satisfies

Dµ,n = O(n−1).

Recall that for the class F3, Proposition 4.1 shows that the quantity Dµ,n completely char-
acterizes the integration error because e(Id,g,n, F3) = O(Dµ,n). Therefore, it is even easier
than before to assess the quality of any given sample.

Observe that for our problem we considered g(x1, . . . , xd) =
∑d

j=1 ajxj and f(x) = (ex−
K)+. We could have used instead g(x1, . . . , xd) = e

∑d
j=1 ajxj , and f(x) = (x − K)+. The
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difference is that the distribution of g is now lognormal, it is supported on (0,∞), and f ∈ F4

with M = 1. It is possible to show that conditions (7) and (8) are satisfied for some β and
γ and then use Corollary 4.1 and Corollary 5.1 to obtain similar results.

We carry out such an analysis for a more general g by considering an arithmetic mean
option with a more complicated payoff function.

Arithmetic mean options are financial instruments whose payoff is based on the arithmetic
average of the stock price over a period within the option’s lifetime. The average stock price,
monitored over d equally spaced time intervals, is given by a function that has the form

g(x) =
d∑

j=1

aje
q

∑j
k=1 xk , x ∈ Rd,

where q > 0 and aj > 0, j = 1, . . . , d. Financial instruments based on the arithmetic
average of a stock price provide a payoff f(g(x)). We assume that f is absolutely continuous.
Examples are the arithmetic mean call option, where f(t) = (t −K)+ , and the arithmetic
mean put, where f(t) = (K − t)+. In either case, f ∈ F4 with M = 1. Pricing such
instruments requires the computation of

Id,g(f) =

∫
Rd

f(g(x))φd(x) dx.

Lemma 6.1. Let S =
∑d

j=1 aje
q

∑j
k=1 xk , q > 0, aj > 0, where the xj are independent random

variables and follow the normal distribution with mean zero and variance one, N(0, 1), j =
1, . . . , d. Consider the probability P (z) = Prob{S ≤ z}, z > 0. Then

1− P (z) ≤ d(2π)−1/2e−[q(d+1)]−2[log(z/a)]2/2,

for z ≥ a2ded max{q,1}, a = max1≤j≤d{aj}.

Proof:

Prob{S ≤ z} ≥ Prob

{
d∑

j=1

eq
∑j

k=1 xk ≤ za−1)

}
≥ Prob

{
xj ≤ q−1 log(ρ), ∀ j = 1, . . . , d

}
,

where ρ is the solution of the equation (ρd+1 − ρ)/(ρ− 1) = za−1.
Thus,

1− Prob{S ≤ z} ≤ 1− Φd(q−1 log(ρ)),

where Φ denotes the cumulative distribution function of N(0, 1). Let η = q−1 log(ρ), and as-
sume that z is sufficiently large so that η > 0 or, equivalently, ρ > 1. Let z/a ≥ 2ded max{q,1} >
1 then ρ > 1. Indeed, if we assume that ρ ≤ 1 then ρd ≤ ρ and dρ ≥ z/a ≥ 2ded max{q,1}.
This implies that ρ ≥ 2d/d > 1 which is a contradiction. Since ρ > 1 we have 2ρ ≥ d1/dρ ≥
(z/a)1/d which implies ρ ≥ emax{q,1} > 1.
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From [16, p. 175] we know that 1− Φ(y) ≤ (2π)−1/2e−y2/2y−1, y > 0, and, therefore, we
have [

1− (2π)−1/2e−y2/2y−1
]d

≤ Φd(y).

We can also show, by induction on d, that

1− [1− w]d ≤ dw, 0 < w < 1.

Since ρ ≥ emax{q,1} we have η ≥ 1 and (2π)−1/2e−η2/2η−1 < 1.
Combining the above we obtain

1− P (z) ≤ d(2π)−1/2e−η2/2η−1 ≤ d(2π)−1/2e−η2/2.

Also log(ρ− 1) ≥ 0 because ρ ≥ emax{q,1}. This implies

log(ρ) = (d + 1)−1 log

(
ρd+1

ρ− 1

)
+ (d + 1)−1 log(ρ− 1)

≥ (d + 1)−1 log

(
ρd+1 − ρ

ρ− 1

)
= (d + 1)−1 log(z/a).

Thus
1− P (z) ≤ d(2π)−1/2e−[q(d+1)]−2[log(z/a)]2/2,

for z ≥ a2ded max{q,1}.

The distribution of g defines the measure µ, see equation (2). Then µ � λ and it is
supported on (0,∞). By Lemma 6.1, it satisfies the conditions (7) and (8). The first part
of Corollary 5.1 implies the existence of a quasi-Monte Carlo method with error

O(n−1+2{β log(4γn)}−1/2

),

where β = [q(d + 1)]−2/2 and γ = d(2π)−1/2.
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