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Abstract

We consider the approximation of d-dimensional weighted integrals of certain isotropic
functions. We are mainly interested in cases where d is large. We show that the conver-
gence rate of quasi-Monte Carlo for the approximation of these integrals isO(

√
log n/n).

Since this is a worst case result, compared to the expected convergence rate O(n−1/2)
of Monte Carlo, it shows the superiority of quasi-Monte Carlo for this type of inte-
gral. This is much faster than the worst case convergence, O(logd n/n), of quasi-Monte
Carlo.

1991 Mathematics Subject Classification: 65D30, 65D32.
Key words and phrases: Multi-dimensional integration, quadrature, Monte Carlo meth-
ods, low discrepancy sequences, quasi-Monte Carlo methods.

1 Introduction

The Monte Carlo method (MC) is frequently used for multi-dimensional integration. The
expected error of MC, using n integrand evaluations, is of order n−1/2 independent of the
dimension. However, this convergence is not fast, and a large number of evaluations may be
necessary.

Quasi-Monte Carlo (QMC) methods evaluate the integrand at deterministic points in
contrast to MC methods, which use random points. The deterministic points are, roughly
speaking, uniformly spread because they belong to low discrepancy sequences. The Koksma-
Hlawka inequality states that the worst case QMC error for multivariate integration is of
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order logd n/n, where n is the number of integrand evaluations and d is the dimension. A sim-
ilar bound for the average error of multi-dimensional integration is shown by Woźniakowski
[18]. Niederreiter [6], and Drmota and Tichy [3] are authoritative references on low discrep-
ancy sequences, their properties, and their applications to numerical integration.

The concern about the QMC error is that logd n/n becomes huge when n is fixed and d is
large as sometimes happens in practice. This has contributed to the belief that QMC methods
should not be used for high-dimensional problems [1]. However, tests by Paskov and Traub
[12] and Paskov [13] showed that QMC methods can be very effective for high-dimensional
integrals arising in computational finance. They used QMC methods to approximate 360-
dimensional integrals required for pricing a collateralized mortgage obligation. Other papers
reporting the success of QMC methods for problems in finance include [4, 7, 10]. A survey
of the state of the art may be found in Chapter 4 of the monograph by Traub and Werschulz
[17].

One of the hypotheses advanced to explain the success of QMC methods is that the
financial problems are non-isotropic since some dimensions can be far more important than
others. In a recent paper, Sloan and Woźniakowski [14] used this fact to obtain a possible
theoretical explanation for the surprisingly good performance of QMC methods for problems
in finance.

Papageorgiou and Traub [11] used QMC-GF, a QMC method using points from the gener-
alized Faure1 sequence [15], for a model isotropic problem suggested by a physicist B. Keister
[5]. Their tests on high dimensional instances of this problem (d ranging from 25 to 100)
showed the superiority of QMC-GF over MC and over Keister’s proposed quadrature rules.
Tests on the same problem by Novak et al [9] showed that QMC-GF performs extremely
well compared to NEW [8], an interpolatory algorithm for multi-dimensional integration of
smooth functions.

In this paper we prove that the worst case speed of convergence of QMC for a class of
isotropic functions (which includes the ones tested in [11]) is of order

√
log n/n. Thus, QMC

has two advantages over MC for this class of integrals:

• QMC converges as
√

log n/n while MC converges as n−1/2.

• The worst case error of QMC is O(
√

log n/n) while only the expected error of MC is
O(n−1/2).

We summarize the remainder of this paper. For the reader’s benefit we briefly list certain
properties of low discrepancy sequences in the second section. The problem is formulated in
the third section and fast convergence is proven in the last section.

1The generalized Faure and the Sobol’ low discrepancy sequences are included in FINDER, a Columbia
University software system, and are available to researchers upon request by writing the author.
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2 Low Discrepancy Sequences

Discrepancy is a measure of deviation from uniformity of a sequence of points. In particular,
the discrepancy of n points x1, . . . , xn ∈ [0, 1]d, d ≥ 1, is defined by

D(d)
n = D(d)(x1, . . . , xn) = sup

E

∣∣∣∣A(E;n)

n
− λ(E)

∣∣∣∣ ,
where the supremum is taken over all the subsets of [0, 1]d of the form E = [0, t1)×· · ·×[0, td),
0 ≤ tj ≤ 1, 1 ≤ j ≤ d, λ denotes the Lebesgue measure, and A(E;n) denotes the number
of the xj that are contained in E. A detailed analysis of low discrepancy sequences can be
found in [3, 6, 15] and in the references therein.

A sequence x1, x2, . . . of points in [0, 1]d is a low discrepancy sequence if

D(d)
n ≤ c(d)

(log n)d

n
, ∀n > 1,

where the constant c(d) depends only on the dimension d.
The Koksma-Hlawka inequality establishes a relation between low discrepancy sequences

and multivariate integration; see [6]. If f is a real function defined on [0, 1]d of bounded
variation V (f) in the sense of Hardy and Krause, then for any sequence x1, . . . , xn ∈ [0, 1)d

we have ∣∣∣∣∣
∫

[0,1]d
f(x) dx− 1

n

n∑
i=1

f(xi)

∣∣∣∣∣ ≤ V (f)D(d)
n .

So far, we have discussed the discrepancy of a sequence of points with respect to the
Lebesgue measure. We briefly discuss the case where the uniformity of a sequence is assessed
with regard to a probability measure µ and introduce some notation that we will use later.
We assume that the support of µ is R+ and that µ is absolutely continuous with respect to
the Lebesgue measure.

For n > 1, let xi ∈ R+, i = 1, . . . , n, be any given points. Define the difference between
the empirical distribution (approximating µ using the points xi) and the measure µ by

Rµ(E) =
A(E;n)

n
− µ(E), E ⊂ R+,

where A(E;n) denotes the number of xi contained in E and does not depend on µ but
depends only on the points xi. The discrepancy of the points xi, i = 1, . . . , n, with respect
to the probability measure µ is defined by

Dµ,n = Dµ,n(x1, . . . , xn) = sup
E
|Rµ(E)|,

where the supremum is taken over all sets of the form E = [0, x), x ∈ R+.
For x ≥ 0 we use the notation:

µ(x) = µ([0, x))

Rµ(x) =

∑n
i=1 1[0,x)(xi)

n
− µ(x) =

∑n
i=1 1[0,µ(x))(µ(xi))

n
− µ(x)

3



where 1A denotes the characteristic function of a set A. Thus, given a low discrepancy
sequence (with respect to the Lebesgue measure) ti ∈ [0, 1], i = 1, 2, . . . , the sequence
xi = µ−1(ti) ∈ R+, i = 1, 2, . . . , has discrepancy Dµ,n, with respect to the measure µ, and

satisfies Dµ,n(x1, . . . , xn) = D
(1)
n (t1, . . . , tn), n > 1. For brevity, when d = 1 we will write Dn

instead of D
(1)
n .

3 Problem Formulation

We consider the approximation of a weighted high-dimensional integral of the form

Id(f) =

∫
Rd

f(‖x‖)e−‖x‖2 dx, (1)

where d is the dimension, f : R → R, and ‖ · ‖ denotes the Euclidean norm in Rd. We also
assume that f is such that the integral (1) is well defined and f ′ exists a.e.

The integral (1) can be reduced, via a change of variable, to a one-dimensional integral,
which can often be solved analytically, e.g., f = cos. We do not do this because we want
to assess the performance of QMC methods for d-dimensional integration. In [11], the
empirical convergence rate of QMC is proportional to n−1, as if it sees that this is really
a one-dimensional problem. In contrast, the empirical convergence rate of MC remains
proportional to n−1/2; it does not see that the problem is really one-dimensional.

We obtain an equivalent integral over the cube [0, 1]d. We have

Id(f) =

∫
Rd

f(‖x‖)e−‖x‖2 dx = 2−d/2
∫
Rd

f(‖y‖/
√

2)e−‖y‖
2/2 dy (2)

= πd/2
∫
Rd

f(‖y‖/
√

2)
e−‖y‖

2/2

(2π)d/2
dy = πd/2

∫
[0,1]d

f

√√√√ d∑
j=1

(φ−1)2(tj)/2

 dt,

where φ is the cumulative normal distribution function with mean 0 and variance 1,

φ(u) =
1√
2π

∫ u

−∞
e−s

2/2 ds, u ∈ [−∞,∞].

Let ti = (ti1, . . . , tid) ∈ [0, 1]d, i = 1, . . . , n, be any deterministically chosen sample
points. Let xi = (xi1, . . . , xid) ∈ Rd, be such that xij = φ−1(tij), j = 1, . . . , d, i = 1, . . . , n.
We approximate the integral (1) by the QMC method

Id,n(f) =
πd/2

n

n∑
i=1

f(‖xi‖/
√

2). (3)

We derive the error equation and the convergence rate of the method Id,n for the following
class of functions.
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Definition 1. F is the class of functions f : R → R, such that Id(f) < ∞, f is absolutely
continuous, f ′ exists a.e., and

ess sup {|f ′(r)| : r ∈ R} ≤M,

where M is a constant.

The examples originally considered by Keister [2, 5] and later by Papageorgiou and Traub
[11], and Novak et al [9] belong to F since f = cos. The example f(r) = (1 + r2)1/2 in [2, 9]
also belongs to F .

4 Speed of Convergence

In this section we derive the error and the convergence rate of the method (3) for the integral
(1) in the class F . We have

Id(f) = 2−d/2
∫
Rd

f(‖x‖/
√

2)e−‖x‖
2/2 dx (4)

= cd2
−d/2

∫ ∞
0

f(r/
√

2)rd−1e−r
2/2 dr

= πd/2
∫ ∞

0

f(r/
√

2)µ′(r)dr,

where cd = 2πd/2/Γ(d/2) and µ′(·) is the density function of the distribution µ of r = ‖x‖,
x ∈ Rd. Note that r2 = ‖x‖2 follows the chi-square distribution; see [16] for the relationship
between µ and the chi-square distribution.

First we consider integrals with Gaussian weights and derive the error of a method that
uses the average of n function evaluations, at arbitrary points, to approximate them. Then
we show the error of the method Id,n in the class F , and derive certain auxiliary inequalities
for the measure µ. We conclude the section by showing that for a particular choice of the n
sample points the convergence of the method Id,n is O(

√
log n/n).

Lemma 1. Let h : R → R, d ≥ 1, be a function such that
∫
Rd
h(‖x‖)e−‖x‖2 dx < ∞, h is

absolutely continuous, and h′ exists a.e. Let xi ∈ Rd, i = 1 . . . , n be any points, n ≥ 1. Then∫
Rd

h(‖x‖)e
−‖x‖2/2

(2π)d/2
dx− 1

n

n∑
i=1

h(‖xi‖) =

∫ ∞
0

Rµ(r)h′(r) dr,

where µ is defined in (4) and Rµ(r) = 1
n

∑n
i=1 1[0,r)(‖xi‖)− µ(r), r ∈ R+.

Proof : Niederreiter [6] exhibits the error of a quasi-Monte Carlo method approximating
the integral of a differentiable function. We apply a similar technique. For n, d ≥ 1 consider
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xi ∈ Rd, i = 1, . . . , n. Then∫
Rd

h(‖x‖)e
−‖x‖2/2

(2π)d/2
dx− 1

n

n∑
i=1

h(‖xi‖)

=

∫ ∞
0

h(r)µ′(r) dr − 1

n

n∑
i=1

h(‖xi‖)

=

∫ 1

0

h(µ−1(t)) dt− 1

n

n∑
i=1

h(‖xi‖)

=

∫ 1

0

g(t) dt− 1

n

n∑
i=1

g(si), si = µ(‖xi‖), g = h ◦ µ−1

=

∫ 1

0

R(t)g′(t) dt, R(t) =
1

n

n∑
i=1

1[0,t)(si)− t

=

∫ 1

0

R(t)
dh(z)

dz

∣∣∣∣
z=µ−1(t)

(µ−1)′(t) dt

=

∫ 1

0

R(t)
dh(z)

dz

∣∣∣∣
z=µ−1(t)

dµ−1(t)

=

∫ ∞
0

R(µ(r))h′(r) dr

=

∫ ∞
0

Rµ(r)h′(r) dr,

which completes the proof. �
In the proof of the Lemma 1 we have used the quantity Rµ(r) = R(µ(r)), r ∈ R+, which is

bounded from above by the discrepancy Dn of the points µ(‖xi‖), i = 1, . . . , n. This suggests
that good sample points can be obtained by appropriately transforming one-dimensional low
discrepancy sequences as we will see below.

We now turn our attention to the integral Id. For each f ∈ F , we define the error of the
method Id,n(f) by

e(Id,n, f) = |Id(f)− Id,n(f)|.
We also define the worst case error of this method in the class F by

e(Id,n) = sup
f∈F

e(Id,n, f).

Accordingly, the quantity e(Id,1, f) is the error we obtain using a sample of size 1. This
quantity can also be viewed as the initial error of the method Id,n(f) when n > 1.

Lemma 2. For f ∈ F , the method Id,n approximates the integral Id with error

e(Id,n, f) =
πd/2√

2

∣∣∣∣∫
R+

Rµ(r)f ′(r/
√

2) dr

∣∣∣∣ ,
where µ is defined in (4), Rµ(r) = 1

n

∑n
i=1 1[0,r)(‖xi‖) − µ(r), and xi ∈ Rd, i = 1, . . . , n are

arbitrary but fixed sample points.
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Proof : The proof follows from Lemma 1 by setting h(·) = πd/2f(·/
√

2). �

Theorem 1. For the class of functions F , the error of the method (3) satisfies

e(Id,n) =
e(Id,1)

ρ(‖x1‖)

∫
R+

|Rµ(r)| dr,

where ρ(‖x1‖) =
∫
R+
|1[0,r)(‖x1‖)− µ(r)| dr, and xi ∈ Rd, i = 1, . . . , n are arbitrary but fixed

sample points.

Proof : Using Lemma 2 and by considering a function f ∈ F such that |f ′| = M and
Rµ(r)f ′(r/

√
2) ≥ 0 we derive e(Id,n). Similarly, we derive e(Id,1) and the proof follows. �

We proceed to obtain bounds for 1 − µ(r), r > 0, on which the value of the quantity∫
R+
|Rµ(r)| dr depends. We have

1− µ(r) =

∫ ∞
r

µ′(y) dy =

∫ ∞
0

µ′(r + y) dy = cd(2π)−d/2
∫ ∞

0

(r + y)d−1e−(r+y)2/2 dy

= γdr
d−1e−r

2/2

∫ ∞
0

(y
r

+ 1
)d−1

e−rye−y
2/2 dy, γd = cd(2π)−d/2

≤ γdr
d−1e−r

2/2

∫ ∞
0

e−wye−y
2/2 dy, w = r − d− 1

r
, and r2 ≥ d ≥ 1

≤ γdr
d−1e−r

2/2w−1,

where the last inequality holds by virtue of the fact that
∫∞

0
e−yz dy = z−1, z > 0, and

e−y
2/2 ≤ 1. Since r2 ≥ d ≥ 1, we conclude that w−1 ≤ d/r (for d = 1 the above expression

holds for w = r ≥ 1) and that

1− µ(r) ≤ dγdr
d−2e−r

2/2 = d
µ′(r)

r
, r ≥

√
d ≥ 1. (5)

In a similar way we derive a lower bound for 1− µ(r). We have

1− µ(r) = γdr
d−1e−r

2/2

∫ ∞
0

(y
r

+ 1
)d−1

e−yre−y
2/2 dy

≥ γdr
d−1e−r

2/2

∫ ∞
0

e−yre−y
2/2 dy

≥ γdr
d−1e−r

2/2

(
1

r
− 1

r3

)
, r > 0, (6)

where the last inequality can be found in [16, p. 174].

Theorem 2. There exist deterministic points xi ∈ Rd, i = 1, . . . , n, for which the error of
the method Id,n for the integral Id is bounded as follows:

e(Id,n) ≤ e(Id,1)

ρ(ζ)

c

n

[√
2 log

(
d

Γ(d/2)
n

)
+ d

]
(1 + o(1)),

where c is a constant, ρ(ζ) =
∫
R+
|1[0,r)(ζ) − µ(r)| dr, and ζ = µ−1(1/2), i.e., e(Id,n) =

O(
√

log n/n).
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Proof : Let ti ∈ [0, 1), i = 1, . . . , n, be n numbers with discrepancy Dn = c/n, where
c ≥ 1/2 is a constant. For instance, these numbers can be n terms of a low discrepancy
sequence or a (t,m, 1)-net. It is shown in [6] that the discrepancy of these points is given by

Dn =
1

2n
+ max

1≤i≤n

∣∣∣∣t(i) − 2i− 1

2n

∣∣∣∣ ,
where t(1) ≤ · · · ≤ t(i) ≤ · · · ≤ t(n) denotes the ordered sequence of the points.

This implies that the discrepancy of the sequence

τi =

{
ti if ti < 1− (4n)−1

ti − (4n)−1 otherwise
, i = 1, . . . , n,

cannot exceed c/n and its maximum term satisfies τ(n) < 1− (4n)−1. Hence, without loss of
generality, we assume that t(n) < 1− (4n)−1.

Consider xi ∈ Rd such that µ(‖xi‖) = ti, i = 1, . . . , n. Let r∗ = r∗(n) = max1≤i≤n{‖xi‖},
assume that n is sufficiently large so that r∗2 > d ≥ 1 and consider the error equation of
Theorem 1. We have

e(Id,n)

e(Id,1)
=

1

ρ(‖x1‖)

∫
R+

|Rµ(r)| dr

≤ 1

ρ(ζ)

∫
R+

|Rµ(r)| dr,

because ρ(s) ≥ ρ(ζ), ∀s ∈ R+, for ζ = µ−1(1/2). Thus,

ρ(ζ)
e(Id,n)

e(Id,1)
≤
∫ r∗

0

|Rµ(r)| dr +

∫ ∞
r∗

[1− µ(r)] dr.

Since |Rµ(r)| ≤ c/n, r ∈ R+, we estimate the first term of the above equation by cr∗/n. We
estimate the second term using (5) and∫ ∞

r

|Rµ(z)| dz ≤
∫ ∞
r

[1− µ(z)] dz ≤ d[1− µ(r)], r ≥
√
d ≥ 1,

and 1− µ(r∗) ≤ c/n. Thus,

ρ(ζ)
e(Id,n)

e(Id,1)
≤ c

n
(r∗ + d).

Consider the function

q = g(r) = d
µ′(r)

r
= dγdr

d−2e−r
2/2, r >

√
d ≥ 1.

We estimate its inverse, g−1, by

h(q) =

{
2

[
log(adq

−1) +
d− 2

2
log log(adq

−1)

]}1/2

=
√

2 log(adq−1)(1 + o(1)),
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where ad = d/Γ(d/2). Indeed,

g(h(q)) =
dγd2

(d−2)/2

ad

{
log(adq

−1) +
d− 2

2
log log(adq

−1)

}(d−2)/2
q

[log(adq−1)](d−2)/2

= q(1 + o(1)), as q → 0.

From (5) and (6) we have tight bounds for µ(r),

1

d
g(r)

(
1− 1

d

)
≤ 1

d
g(r)

[
1− 1

r2

]
≤ 1− µ(r) ≤ g(r), r >

√
d ≥ 1.

The function g is decreasing for r2 > d − 2, which implies that g−1[1 − µ(r∗)] ≥ r∗. We
substitute r∗ by the value g−1[1− µ(r∗)] in the error estimate to obtain

ρ(ζ)
e(Id,n)

e(Id,1)
≤ c

n
(g−1[1− µ(r∗)] + d).

Since we have assumed that t(n) < 1−(4n)−1, and µ(r∗) = t(n), we have 1−µ(r∗) > (4n)−1.

This implies that r = g−1[1− µ(r∗)] =
√

2 log(adn)(1 + o(1)), which completes the proof. �
We do not know if the bound of Theorem 2 is sharp. The proof of Theorem 2 not only

shows how good sample points can be obtained but also how the quality of any sample can
be assessed by calculating the discrepancy of its points. If the discrepancy Dµ,n of the sample
points xi, i = 1, . . . , n, is small then the error of the method Id,n will be small.

The quantity
√

2 log(adn), ad = d/Γ(d/2), in the error bound of Theorem 2 is small in

practice. For d as small as 6 a sample of size n > 108 is required for
√

2 log(adn) > d.

Corollary 1. For
√

2 log(adn) ≤ d, ad = d/Γ(d/2), we have

e(Id,n) ≤ e(Id,1)

ρ(ζ)
2d
c

n
.

Corollary 2. If r∗ is small so that r∗ = r∗(n) ≤
√
d, then we have

e(Id,n) ≤ e(Id,1)

ρ(ζ)
[
√
d+ d]

c

n
.

Proof : When r∗ ≤
√
d we cannot directly use (5) as we did in the proof of Theorem 2.

Using |Rµ(r)| ≤ c/n, r ∈ R+, we have∫ ∞
0

|Rµ(r)| dr ≤
∫ √d

0

|Rµ(r)| dr +

∫ ∞
√
d

[1− µ(r)] dr

≤ c
√
d

n
+ d[1− µ(

√
d)] ≤ c

√
d

n
+ d[1− µ(r∗)]

≤ c

n
[
√
d+ d],

which completes the proof. �
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Corollaries 1 and 2 show conditions that relate the size of the dimension d and the sample
size n and how these conditions affect the error of the method Id,n. These conditions can be
interesting in practice.

In all cases, the size of Dµ,n and the conditions of the above two corollaries can be easily
checked to yield practical numerical error estimates. For instance, the discrepancy of the
points used by QMC-GF in [11] is small for n ≤ 106 and d ≤ 100. This implies that they can
be used to efficiently evaluate integrals of functions in the class F . Thus, simulation results
reporting fast convergence even when d is large as in [9, 11] can be explained.
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