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Overview

Monte Carlo simulations are widely used in pricing and risk management of
complex financial instruments. Recently, quasi-Monte Carlo methods, which are
deterministic methods because they are based on low discrepancy sequences,
have been found far superior to Monte Carlo for pricing of financial derivatives in
terms of both speed and accuracy. In this paper we address  the application of
these deterministic methods to risk management.

Our study compares the efficacy of deterministic simulation, using low
discrepancy sequences, with Monte Carlo for the computation of Value at Risk
(VaR).  In particular, we show how the deterministic methods can be applied to
the computation of VaR and that they converge faster than Monte Carlo. We
illustrate our findings with two tests. The first of our tests uses a portfolio of
equity and currency european call options. The second test uses a portfolio of
collateralized mortgage obligation tranches. The low discrepancy sequence
chosen for our tests is the generalized Faure sequence due to Tezuka [1995].

VaR in brief

Market risk has become one of the most popular buzzwords of the financial
markets. Regulators, commercial and investment banks, corporate and
institutional investors are increasingly focusing on measuring more precisely the
level of market risk incurred by their institutions. Market risk is the uncertainty of
future returns due to fluctuations of financial asset quantities such as stock
prices, interest rates, exchange rates, and commodity prices. One of the most
widely accepted concepts in market risk management is Value at Risk.  Risk
management systems based on VaR have been designed and implemented in
many financial institutions, asset management institutions, and non-financial
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corporations. VaR has also been officially accepted and promoted by regulators
as sound risk management practice. VaR is based on a statistical approach and
it quantifies the market risk in portfolios of financial instruments. It can be used
as a trading and control tool. It serves a number of purposes such as information
reporting, resource allocation, performance evaluation, and trading limit
allocation. For a more detailed description of the reasons for the tremendous
growth in market risk management, the establishment of VaR as sound risk
management practice, and the various applications of VaR we refer to Jorion
[1997].

VaR is defined as the maximum loss with a given confidence level over a given
time horizon in a portfolio of financial instruments.

Often, the confidence level is chosen as 98% and the time horizon is assumed to
be one day. Other confidence levels, such as 95%, and time horizons, such as
10 days, are also in use. Throughout this paper, VaR is assumed to be the one
day maximum loss in a portfolio with 98% confidence. The 98% confidence level
implies that there is only 2% probability of losing a larger amount over a period of
one day. Therefore, on the average, at any day of a 100-day period we can
expect to lose more than the amount of VaR in two days out of  the 100.

Measuring VaR

We now introduce the mathematical framework for VaR. Let ξ ξ1, ,� d  be random
variables and η = L( ξ ξ1, ,� d )  be a function that depends on them. We can think
of each ξ j  as a market risk factor such as the percentage change of a foreign

currency, the yield on a bond, a commodity price, etc. We can think of η  as the
loss function of a portfolio that depends on the market risk factors ξ ξ1, ,� d .
Denote by FL  the cumulative distribution function of the loss, F l lL ( ) Pr{ }= <η ,
i.e., the probability of η  being less than l , for some l .

The problem of computing VaR can be reformulated as the problem of quantile
(percentile) estimation.  For a given p  (e.g. 0.98) find l p  such that F l pL p( ) = ,

i.e., find l p  such that the loss η  is less than l p  with probability exactly p  (e.g.

0.98). Then clearly VaR is given by l F pp L= −1( ) . Therefore, to find VaR we need

to approximate the inverse of the cumulative distribution function at the
percentile corresponding to p .

The approaches to VaR can be essentially divided into two groups. The first is
based on local valuation of the financial instruments. The best example from this
group is the variance-covariance method. This method relies on the assumption
of normality of the market risk factors and delta-equivalent presentation of the
portfolio. Due to these assumptions it is possible to show that there is an explicit
formula for the quantile and, therefore, for VaR. From a computational point of
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view, this method consists of relatively simple computations that are based on
matrix algebra. Without going into a full discussion of advantages and
disadvantages of this method, we only mention its inadequacy for measuring the
risk for derivative instruments such as options or mortgages. For example, under
this method options are specified by their delta-equivalent representation, i.e.,
the change of the option is given by the product of delta of the option and the
change of the underlying instrument. At-the-money options may exhibit high
convexity that is not taken into account by the variance-covariance method.

The second group is based on the simulation approach that performs full
valuation of the financial instruments. The best examples are historical
simulation and Monte Carlo simulation methods. The historical simulation
method is similar to the Monte Carlo method except that historical changes in
prices are used rather than simulated changes based on a stochastic model.
Although both methods solve the convexity problem of the variance-covariance
approach mentioned earlier, the Monte Carlo method is more flexible and has
certain advantages over the historical simulation method. Some of the criticism
of the historical simulation method is due to: (i) the assumption that the past
represents the immediate future, i.e., the distribution is assumed to be stationary,
(ii) the high sensitivity of the results with respect to the length of the time horizon
and, (iii) problems with collecting consistent historical data. See Jorion [1997] for
a full discussion of advantages and disadvantages of these methods.

Some authors Jorion [1997] consider Monte Carlo as the most powerful and
comprehensive method for measuring market risk. This method can also handle
credit risk which is beyond the scope of this paper. However the most serious
disadvantage of Monte Carlo is its high computational cost. This paper
addresses only the computational issues of Monte Carlo. We propose that
deterministic simulation using low discrepancy sequences offers a highly efficient
alternative to Monte Carlo for VaR calculations in risk management.

Monte Carlo simulation

We have shown that computing VaR can be reduced to the problem of quantile
(percentile) estimation. We now outline the Monte Carlo method for quantile
estimation.

1. Randomly draw n  samples from the multivariate joint distribution of ξ ξ1, ,� d .
2. For each sample evaluate the loss function L . This results in n  simulated

values of the loss η η1, ,� n .

3. Construct the empirical (sample) distribution function, �FL , of the loss by
sorting the valuesη η1, ,� n  and assigning the corresponding probabilities to

each value. More precisely, � ( ) /F l k nL = , where k  is the number of the ηi  that
are less than l .
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4. Compute the sample quantile �l p  such that p F lL p= � ( � )  and use it as an

approximation of the actual quantile. It is possible to show that the distribution
of the sample quantile �l p  is normal, as n → ∞ , with mean the actual quantile

l p  and variance p p

nf lp

( )

( )

1
2

− , where f  denotes the density function of the

distribution of the loss; for the proof see Stuart and Ord [1994].

Deterministic simulation

Can the high computational cost, which is the biggest disadvantage of Monte
Carlo, be overcome using quasi-Monte Carlo methods? These methods are
similar to Monte Carlo but the samples are taken at well-devised deterministic
points rather than at random points. The deterministic points are uniformly
spread because they belong to low discrepancy sequences; see Tezuka [1995]
for the precise definitions and some efficient constructions of low discrepancy
sequences.

Quasi-Monte Carlo methods can be used for the approximation of multi-
dimensional integrals. Recent constructions and improvements of low
discrepancy sequences have led to significant advances by reducing the high
computational cost of pricing of financial derivatives, see Ninomiya and Tezuka
[1996], Papageorgiou and Traub [1996], Paskov [1997], Paskov and Traub
[1995]. Quasi-Monte Carlo methods achieve an equivalent performance at a
fraction of the time required by Monte Carlo.

Intuitively, since VaR requires the computation of the probability of a tail event,
and since the points in a low discrepancy sequence are designed in a way that
reflects the volumes they occupy, it is reasonable to expect that the fraction of
the low discrepancy points that belong to the tail event in question should reflect
its probability fairly accurately.

We now show how quasi-Monte Carlo methods can be used for the calculation
of VaR. Recall that ξ ξ1, ,� d are random variables chosen to represent the market
risk factors on which the value of a portfolio depends. The potential loss is

( )L dξ ξ1, .�  and we denote the joint multivariate distribution of ξ ξ1, ,� d  by G . The
probability distribution function of the loss is then given by

( ) ( ){ } ( )( ) ( )F l L l L dGL d l d

R

d
d

= < = ∫Pr , , , , , ,[ , )ξ ξ ξ ξ ξ ξ1 0 1 11� � � , l R∈ , where 1A is the

characteristic (indicator) function of the set A .
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Assume that, by a change of variable, this integral can be transformed to one

over the d -dimensional unit cube of the form ( ) ( )F l t t dt dtL l d d
d

= ∫ ρ 1

0 1

1, ,
[ , ]

� � , for a

suitably chosen function ρl ≥ 0 . For instance, such a transformation is possible
for normally (or lognormally) distributed market risk factors. We can then use a
quasi-Monte Carlo method to approximate the value of this integral. The error of
this approximation is bounded by the product of the variation, ( )V lρ , of the

function ρl  and the discrepancy of the sample D O
n

nn

d

=








log
; see Niederreiter

[1992].

Given a confidence level p ∈( , )0 1  we want to estimate the value l p such that

( )p F lL p= . Following the outline of the quantile estimation method presented

earlier, we sample the loss function L  and we construct the empirical distribution
�FL  of the loss. In particular, given any n  sample points 

&
�x x xi i i d= ( , , ), ,1 ,

i n= 1, ,� , the empirical distribution of the loss is given by � ( ) ( )F l
n

xL l i
i

n

=
=
∑1

1

ρ &
. Let

the n  sample points belong to a low discrepancy sequence. Without loss of
generality, assume that n  is such that n p⋅  is an integer. We approximate l p

using the value �l p  for which ( )p F lL p= � � . By the Koksma-Hlawka inequality, the

bound on the error that results from the use of the empirical distribution function
is

( ) ( ) ( ) ( )F l F l F l F l V C
n

nL p L p L p L p l d

d

p
− = − ≤� � � � ( )

log
�ρ ,

where Cd is a constant that depends on the low discrepancy sequence.

An  estimate for l lp p− �  can be derived by analyzing FL  in a neighborhood of  l p ;

see also the derivation of the Monte Carlo error in Stuart and Ord [1994].
Assume, for instance, that the loss distribution is dF l f l dlL ( ) ( )= , f > 0 . Then
applying the mean value theorem and using the above inequality we obtain

l l
V

f
C

n

np p

l

d

d
p− ≤�

( )

( )

log�ρ

ξ
, (1)

where ξ  belongs to the open interval generated by l p  and �l p .

This may be compared with the expected error of Monte Carlo which is

        
p p

f l np

( )

( )

1 1−
. (2)
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If we compare (1) and (2) we conclude that for sufficiently large n  quasi-Monte
Carlo is superior to Monte Carlo.  However, in risk management n  is quite
modest, typically in the low thousands. On the other hand, the number of market
risk factors d  is large; often d  is in the range of a hundred to a thousand. For
such values of n  and d  our test results in the next section show that quasi-
Monte Carlo remains superior to Monte Carlo for the computation of VaR.

Test results

These results were obtained using the FINDER software system. FINDER may
be obtained from Columbia University.

We used the generalized Faure low discrepancy sequence to calculate the Value
at Risk, at a 98% confidence level, of two portfolios. We compared the results to
those of Monte Carlo simulation. The low discrepancy method with a small
sample yielded VaR estimates with 1% accuracy while the Monte Carlo, with the
same sample size, had error about ten times larger.

For the first test we constructed a portfolio of 34 at-the-money equity and
currency european call options. Each option is on a currency or equity index that
is used as a single market risk factor. Therefore there are 34 market risk factors
that influence the value of this portfolio and, therefore, the dimension of the
problem is 34. We used J. P. Morgan/Reuters data sets for correlation and
volatility of the corresponding market risk factors. We allocated $10,000 in each
option for a total portfolio value of $340,000. We ran a Monte Carlo simulation
which achieved sufficient accuracy using 100,000 points; we call this the true
value. Figure 1 compares the low discrepancy method to Monte Carlo, each
using a sample of 1,000 points. Two Monte Carlo simulations with different
seeds are shown in the figure. The horizontal axis shows a probability interval
around 98% and the vertical axis shows the corresponding VaR. The true value
is shown for comparison. Figure 2 is similar to Figure 1. The only difference is
that we have used antithetic variates in one of the Monte Carlo simulations. We
see that  antithetic variates do not yield any substantial improvement over simple
Monte Carlo.

The second test was carried out using the Collateralized mortgage obligation
(CMO) that one of the authors, S. Paskov, and J. F. Traub originally considered
in 1993 when they first started  applying low discrepancy sequences to problems
in finance; see Paskov [1997] , Paskov and Traub [1995]. The CMO is from a
pool of 30 year mortgages and has 10 tranches. In particular, we created a
$1,000,000 portfolio by investing $100,000 in each of the tranches. Since we are
dealing with 30 year mortgages with monthly payments the dimension of the
problem is 360. As in the previous test, we ran a Monte Carlo simulation with
150,000 points to obtain the true VaR. Then we estimated the value at risk of the
portfolio using Monte Carlo and the generalized Faure low discrepancy
sequence, with 1,500 points each. Figure 3 shows the results. The horizontal
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axis depicts a probability interval around 98% and the vertical axis shows the
corresponding VaR. Two Monte Carlo simulation results, with different seeds,
and the result of the low discrepancy method are shown in the figure. The true
value is also shown for comparison.

In summary, our tests indicate that small samples derived from low discrepancy
sequences yield quite accurate VaR estimates. Monte Carlo with the same
sample size has significantly larger error. Additional results may be found at
http://www.cs.columbia.edu/~ap.

Concluding remarks

The efficiency of quasi-Monte Carlo methods for high dimensional integrals that
arise in problems in finance has been discussed in a number of papers. These
papers deal with the valuation of financial derivatives. In this paper we see that
deterministic simulation using quasi-Monte Carlo methods provides a highly
efficient alternative to Monte Carlo for VaR calculations.

The error bound given in (1) shows that quasi-Monte Carlo is asymptotically
superior to Monte Carlo. Yet the test results indicate that quasi-Monte Carlo
retains its superior performance for modest n  an large d  often used in risk
management.

Here is a possible explanation. The error bound (1) is based on the Koksma-
Hlawka inequality which holds for general integrands. Integrands in mathematical
finance are usually non-isotropic. That is, some of the variables are more
important than others. In a very recent paper Sloan and Wozniakowski [1998],
Sloan and Wozniakowski formalize the notion of non-isotropic integrands and
prove the existence of a quasi-Monte Carlo method with excellent convergence
properties. Although their paper makes very significant progress, major open
problems must still be solved before we fully understand why quasi-Monte Carlo
is so superior to Monte Carlo for problems in mathematical finance.

This has been a first attempt in showing the effectiveness of quasi-Monte Carlo
methods for risk management. We intend to continue this work by applying these
methods to other market risk management problems. Credit risk management is
another interesting application domain.
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Figure 1: Portfolio of 34 equity and currency european call options. Comparison
between Monte Carlo (MC) with two different seeds, and the generalized Faure
(GF) low discrepancy method. Each method is using a sample of 1,000 points.
True is the result of Monte Carlo using 100,000 points.
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Figure 2: Portfolio of 34 equity and currency european call options. Comparison
between Monte Carlo (MC), Monte Carlo with antithetic variates (MCAV), and the
generalized Faure (GF) low discrepancy method. Each method is using a sample
of 1,000 points. True is the result of Monte Carlo using 100,000 points.
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Figure 3: Portfolio of 10 CMO tranches. Comparison between Monte Carlo (MC)
with two different seeds, and the generalized Faure (GF) low discrepancy
method. Each method is using a sample of 1,500 points. True is the result of
Monte Carlo using 150,000 points.


