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The Brownian bridge has been suggested as an effective method for reducing the
quasi-Monte Carlo error for problems in finance. We give an example of a digital
option where the Brownian bridge performs worse than the standard discretization.
Hence, the Brownian bridge does not offer a consistent advantage in quasi-Monte
Carlo integration. We consider integrals of functions of d variables with Gaussian
weights such as the ones encountered in the valuation of financial derivatives and in
risk management. Under weak assumptions on the class of functions, we study
quasi-Monte Carlo methods that are based on different covariance matrix decom-
positions. We show that different covariance matrix decompositions lead to the
same worst case quasi-Monte Carlo error and are, therefore, equivalent. © 2002

Elsevier Science (USA)
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1. INTRODUCTION

Monte Carlo simulation is an important tool for pricing and risk
management of complex financial instruments. The reason is that many
problems require the numerical evaluation of high dimensional integrals
and Monte Carlo can approximate these integrals with expected error
O(n−1/2), independently of the number of dimensions.

Quasi-Monte Carlo methods, which use points from low discrepancy
sequences [6, 13] instead of random numbers, have been found signifi-
cantly superior to Monte Carlo for many high dimensional problems not
only in finance but also in physics [1, 2, 4, 5, 9, 10, 14–20, 24]. The worst



case quasi-Monte Carlo error is O(logd n/n), which even though is asymp-
totically superior to O(n−1/2) does not explain the success of quasi-Monte
Carlo in practice, where d is large and n is relatively small. There are a
number of papers claiming practical limitations of quasi-Monte Carlo in
high dimensions, for example, see [3, 8]. This has led some to suggest that
perhaps finance problems are not really high dimensional; that they depend
on only a few important variables. Although there is no universally
accepted explanation, Sloan and Woźniakowski [22] may offer a possible
answer to the question of why quasi-Monte Carlo beats Monte Carlo for
high dimensional integrals in finance.

In this paper we study techniques aimed at speeding up quasi-Monte
Carlo. They have been applied to integrals with Gaussian weights, which
are typical in finance, and have been found successful in certain cases [1, 5,
9, 10]. They are motivated by the fact that some researchers believe that in
high dimensions (for example, when the dimension is greater than 50) the
first coordinates of low discrepancy points will be more uniformly distrib-
uted than the rest [1, 7, 9]. Roughly speaking, the techniques aim to
modify the way that paths are simulated, from multidimensional Gaussian
samples, so that the resulting integrands depend heavier on the presumably
more uniform coordinates of these samples.

The Brownian bridge construction for pricing of financial derivatives is
one of these techniques. It was suggested by Caflisch and Moskowitz [4]
and by Morokoff and Caflisch [9]. The authors of [1] state that ‘‘It
attempts to use the best coordinates of each point to determine most of the
structure of a path.’’ The principal components construction is based on
similar ideas, and was recently proposed by Ackworth et al. [1] for pricing
of financial derivatives.

These constructions rely on properties of the multivariate Gaussian dis-
tribution. They are derived from different decompositions of its covariance
matrix, and deal with the way that asset prices are simulated from a sample
of d-dimensional points. In particular, they deal with the simulation of
Brownian motion paths. They are not concerned with the way the asset
prices are combined by the payoff function.

Although the Brownian bridge (or, another similar construction) can
enjoy an advantage in a number of interesting cases we shall show that it is
not a panacea because there are integrals for which it does not perform
well. We provide an example of a digital option, where the underlying asset
is lognormally distributed. For this option, the price obtained using the
Brownian bridge is considerably worse than that obtained using the stan-
dard discretization (i.e., the one reflecting the Cholesky decomposition of
the covariance matrix of the Gaussian distribution), not only when the
dimension is large but also when the dimension is as small as two. This
leads to the following conclusions:
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• The Brownian bridge does not offer a consistent advantage in quasi-
Monte Carlo integration for lognormally distributed asset prices.

• The argument attributing its success in a number of cases to its
ability to reduce the effective dimension of a problem requires clarification
[4, 5, 9, 10].

• A covariance matrix decomposition can be interpreted as a change
to the integrand or to the sample points. Such a change may yield a harder
problem relative to a fixed set of sample points.

Under weak assumptions, we propose a model for a class of integrands,
which can be used for functions in finance, and study quasi-Monte Carlo
integration with respect to different covariance matrix decompositions. Our
goal is not to dismiss any of the potential benefits of the Brownian bridge,
or any other construction, but to point out that the advantages of a
method depend on the structure of both the integrands and the sample
points. In particular, we show that the worst case error of any two quasi-
Monte Carlo methods that use points from the same low discrepancy
sequence but rely on different covariance matrix decompositions is the
same and, therefore, covariance matrix decompositions are equivalent for
quasi-Monte Carlo integration.

In the remaining sections we use the terms construction, discretization
and decomposition interchangeably. We do so when we refer to a particu-
lar Gaussian covariance matrix decomposition, or a method that simulates
a given d-dimensional Gaussian distribution using d normal random
variables with zero mean and unit variance.

2. SIMULATION OF GAUSSIAN PROCESSES

Let {Xt, 0 [ t [ T} be a Gaussian Markov process, which is sampled at
d times 0 [ t1 [ · · · [ td [ T. This results to a random vector X=
(Xt1 , ..., Xtd ). X is normally distributed and we assume that its mean is zero
and its covariance matrix is C. Let f: RdQ R be a given function and let
I(f)=E[f(X)] be the integral we want to compute. Then X can be
simulated using z=(z1, ..., zd), where zj are independent normal random
variables with mean zero and variance one. Indeed,

Id(f)=E[f(x)]=(2p)−d/2 |C|−1/2 F
R
d
f(x) e−OC

−1x, xP/2 dx

=(2p)−d/2 F
R
d
f(Az) e−||z||

2/2 dz, (1)
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where |C| denotes the determinant of the matrix C, O · , ·P denotes the inner
product in Rd, A is any real d×d matrix that satisfies AAT=C, and f is
any integrable function.

For example, when paths of the Brownian motion are required, we have
Xt=Wt. The standard construction generates theWtj by

Wtj+1=Wtj+`tj+1−tj zj+1, j=0, ..., d−1, (2)

whereW0=0. Equivalently, in matrix notation we have

R
Wt1
Wt2
x

Wtd

S=AR
z1

z2

x

zd

S ,
where A is obtained from the Cholesky factorization of the matrix
C={min(ti, tj)}

d
i, j=1=AAT. When Dt=T/d=tj+1−tj, j=0, ..., d−1,

which is often the case in practice, the matrix A is given by

A=`Dt R
1

1 1

x x z

1 1 · · · 1

S . (3)

The expectation of any integrable function of the discretized path of the
Brownian motion is given by

E[f(Wt1 , ..., Wtd )]=E[f(Az)], z=(z1, ..., zd)T.

The Brownian bridge construction first generates WT, then using this
value, and W0=0, it generates WT/2. It generates WT/4 using W0 and WT/2,
and it generates W3T/4 using WT/2 and WT. The construction proceeds
recursively filling in the mid points of the subintervals. Thus, the discretely
sampled Brownian path is generated by determining its values at
T, T/2, T/4, 3T/4, ..., (d−1) T/d according to
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WT=`T z1

WT/2=
1
2
WT+

`T

2
z2

WT/4=
1
2
WT/2+

`2T

4
z3

W3T/4=
1
2
(WT/2+WT)+

`2T

4
z4

x

W(d−1) T/d=
1
2
(W(d−2) T/d+WT)+=

T
2d
zd .

This results in a matrix B different from that of the Cholesky factoriza-
tion, where BBT=C. The Brownian bridge can be generalized to include
unequal length intervals. For tj+1=tj+Dt, j=0, ..., d−1, Dt=T/d, we
can simulate a future valueWtk , k > j, (given the valueWtj ) according to

Wtk=Wtj+`(k−j) Dt z, (4)

where z follows the normal distribution N(0, 1). We can simulate Wti at
any intermediate point tj < ti < tk (given the values Wtj and Wtk ) according
to the Brownian bridge formula

Wti=(1− c) Wtj+cWtk+`c(1− c)(k−j) Dt z, (5)

where z follows the normal distribution N(0, 1) and c=(i−j)/(k−j).
Recall that (2p)−d/2 >Rd g(Ax) e−||x||

2/2 dx=(2p)−d/2 >Rd g(Bx) e−||x||
2/2 dx,

for all d×d matrices A, B such that AAT=BBT=C, and for any function
g, g: RdQ R, for which the integral is well defined.

Returning to the integral Id(f) of equation (1), the choice of the covari-
ance matrix decomposition cannot affect the Monte Carlo error because it
depends on the first and second moments of f which remain invariant
under the different decompositions. In fact, any method with error
depending on moments of f is unaffected by the choice of the decomposi-
tion of C.

On the other hand, the choice of a matrix A, AAT=C, affects quasi-
Monte Carlo. It can be interpreted as a change in the integrand or as a
change in the sample points. The deterministic error bound of quasi-Monte
Carlo depends on the integrand and on the discrepancy of the sample
points and it is important to consider both factors in choosing A.
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As we have already mentioned, a number of recent papers show that the
Brownian bridge construction has advantages over the standard discretiza-
tion for a number of problems; some of them require the calculation of
integrals in 360 dimensions. However, in the next section we show a simple
problem for which the opposite is true, for different values of d, both small
and large.

3. A DIGITAL OPTION

We now show an example of an integrand for which the quasi-Monte
Carlo convergence using the Brownian bridge construction is worse than
that using the standard construction (or discretization), i.e., the one corre-
sponding to the Cholesky decomposition of the covariance matrix C. We
consider lognormally distributed asset prices and define the function we
want to integrate. It is a rather simple option and its price can be computed
analytically. We generate the asset prices according to the Brownian bridge
and the standard discretization using low discrepancy sequences. We
compare the convergence of the two constructions.

Assume that an asset price S follows the geometric Brownian motion

dSt=mSt dt+sSt dWt, (6)

where the drift m and the volatility s are given constants, W is the Wiener
process, and S0 is the present price of the asset. Consider a time interval
[0, T] and, for simplicity, assume that it has been discretized at equally
spaced the points tj=j Dt, j=0, ..., d, Dt=T/d. We generate the asset
prices by simulating the Brownian motion using equation (2) in the case
of the standard construction, and Eqs. (4), (5) in the case of the
Brownian bridge.

We define the function

P(S1, ..., Sd)=
1
d
C
d

j=1
(Sj−Sj−1)

0
+ Sj, (7)

where (x)0+ is equal to 1 if x > 0 and is 0 otherwise, x ¥ R. This is the
payoff function of a digital option, (see, [11] for the case d=1). For d > 1,
it can be viewed as a portfolio of digital options, or as a ratchet option
since it allows an investor to lock in a gain [12]. Ratchet options are useful
to fund managers, for instance, they use them to hedge equity-linked index
annuities.
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The expected value of P is given by

Id(P)=E[P(S1, ..., Sd)]=
S0
d
F(b(m, s, Dt)+s`Dt ) C

d

j=1
emj Dt,

where b(m, s, Dt)=(m−s2/2)`Dt /s, and F denotes the cumulative dis-
tribution function of the standard normal distribution with mean zero and
variance one. In particular, for S0=100, m=4.5%, s=30%, and T=1,
I2(P)=60.40825, I64(P)=52.69044 and I128(P)=52.23314.

The variance of P, vard(P)=Id(P2)−I
2
d(P), can be derived by observing

that

E[(Sj−Sj−1)
0
+(Si−Si−1)

0
+ SjSi]

=S20F(b(m, s, Dt)+s`Dt ) F(b(m, s, Dt)+2s`Dt ) e
m(i+j) Dtes

2i Dt, j > i

and

E[(Sj−Sj−1)
0
+ S

2
j ]=S

2
0F(b(m, s, Dt)+2s`Dt ) e

2mjDtes
2j Dt.

In particular, for S0=100, m=4.5%, s=30%, and T=1, we have
var1/22 (P)=48.24015, var1/264 (P)=14.67443 and var1/2128 (P)=12.87541. These
quantities can be used to obtain the Monte Carlo error in each of the cases.

We used the Sobol and the generalized Faure low discrepancy sequences
from FinDer2 to carry out the simulations for d=2, 64, 128. The general-

2 FinDer is a Columbia University software system.

ized Faure low discrepancy sequence is due to Tezuka, see [23]. We found
that the standard construction has consistently smaller error and converges
faster than the Brownian bridge.

We first discuss the case d=2. The performance of the Brownian bridge
and the standard construction is significantly different. The standard con-
struction converges very fast. Its relative error becomes less than 10−3 using
about 1000 points. It becomes less than 5 · 10−5 when the sample size is
about 5 · 104 points. Both low discrepancy sequences perform equally well
and their good convergence is maintained with and without skipping an
initial part of the sequence.

The Brownian bridge, on the other hand, converges slower for both
sequences. Without skipping, the relative error of the Sobol sequence does
not become less than 10−3 even for sample size greater than 2.5 · 105 points.
Skipping a number of terms improves its performance but it does not make
it comparable to that of the standard discretization. An interesting case
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FIG. 1. The Sobol sequence converges slower with the Brownian bridge than with the
standard discretization d=2.

occurs when 217=131072 terms of the sequence are skipped. Then the
relative error oscillates according to the pattern shown in Figure 1. In
general, the relative error of the Sobol sequence with the Brownian bridge
is at least two to three times larger than the corresponding one using the
standard construction.

The generalized Faure sequence with the Brownian bridge also leads to
slower convergence than with the standard construction. A relative error of
10−3 requires at least 4000 sample points, while an error of 10−4 requires
about 105 sample points.

Figures 1 and 2 compare the Brownian bridge to the standard con-
struction for d=2, using the Sobol and generalized Faure sequences,

FIG. 2. The generalized Faure sequence converges slower with the Brownian bridge than
with the standard discretization d=2.
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FIG. 3. The Sobol sequence converges slower with the Brownian bridge than with the
standard discretization d=64.

respectively. The horizontal axis shows the sample size and the vertical axis
the corresponding relative error.

For d=64 the situation is similar. The Sobol and generalized Faure
sequences with the standard construction have error less than 10−3 with
about 1500 points, and error 10−4 with about 5 · 104 points. The Brownian
bridge requires 6000 points for error 10−3, and while the generalized Faure
requires about 1.5 · 105 points for error 10−4, Sobol achieves this with about
2.2 · 105 points.

Figures 3 and 4 compare the Brownian bridge to the standard con-
struction for d=64, using the Sobol and generalized Faure sequence,

FIG. 4. The generalized Faure sequence converges slower with the Brownian bridge than
with the standard discretization d=64.
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FIG. 5. The Sobol sequence converges slower with the Brownian bridge than with the
standard discretization d=128.

respectively. The horizontal axis shows the sample size and the vertical axis
the corresponding relative error.

For d=128 either sequence with either construction achieves accuracy
10−3 with about 6000 points. However, when the accuracy demand increa-
ses to 10−4 we see both Sobol and generalized Faure with the standard
discretization requiring about 5 · 104 points, while with the Brownian bridge
requiring about 3 · 105 points. It is also important to point out that both
sequences with the Brownian bridge are sensitive to the number of terms
that are skipped. The convergence of the standard discretization does not
show this sensitivity.

FIG. 6. The generalized Faure sequence converges slower with the Brownian bridge than
with the standard discretization d=128.
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Figures 5 and 6 compare the Brownian bridge to the standard construc-
tion for d=128, using the Sobol and generalized Faure sequence, respec-
tively. The horizontal axis shows the sample size and the vertical axis the
corresponding relative error.

Our tests show that the convergence of the Brownian bridge is much
slower than that of the standard discretization for d=2, 64, 128. Both low
discrepancy sequences lead to fast convergence with the standard discre-
tization. There are clear differences in the convergence between the two low
discrepancy sequences when the Brownian bridge is used.

Hence, for the approximation of multi dimensional integrals derived
from problems in finance with lognormally distributed assets, the Brownian
bridge does not offer a consistent advantage in quasi-Monte Carlo integra-
tion.

The Brownian bridge gave consistently worse results compared to those
of the standard discretization. It made the problem harder and introduced
an undesirable sensitivity with respect to the low discrepancy sequence and
the number of terms that are skipped.

4. EQUIVALENCE OF COVARIANCE DECOMPOSITIONS

The authors of [9] describing the Brownian bridge state that, ‘‘This
reduces the effective dimension of the random walk simulation, which
increases the accuracy of quasi-Monte Carlo.’’ However, as we will see
below, the knowledge of the underlying Gaussian process and the fact that
equation (1) is independent of the covariance matrix decomposition are not
sufficient to establish that a given decomposition is better than another.
Platen [21] points out that in a variety of practical problems, such as
integration, a pathwise approximation of the solution of a stochastic dif-
ferential equation is not required and that a lot of computational effort has
been wasted on simulations by missing this point.

We define a class of functions, that can be used to represent problems in
finance, and show that the worst case error of quasi-Monte Carlo is inde-
pendent of the decomposition. Therefore, all decompositions are equivalent
in the worst case.

Since the Black Scholes model is important in finance, to motivate our
discussion let us consider lognormally distributed asset prices (6). Let us
also assume that time has been discretized at equally spaced moments.

The payoff function P of a path dependent financial derivative combines
the simulated asset prices Sj, j=1, ..., d, along a path of length d (i.e., a set of
d different time moments) to obtain the simulated price of the financial deri-
vative, i.e., P(S1, ..., Sd); see, the payoff function of the digital option (7).
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For instance, when the standard discretization (2) is used, the asset prices
are generated according to

Sj+1=Sje (m−s
2/2) Dt+szj+1 `Dt, j=0, ..., d−1,

where S0, m, and s are given, and zj, j=1, ..., d, are independent normal
random variables with mean zero and variance one. Using matrix notation
we have

Sj=S0e (m−s
2/2) j Dt+sOAz, ejP, (8)

where O · , ·P denotes the inner product in Rd, A is the matrix of Eq. (3), ej
is the unit vector in Rd with 1 in coordinate j, and z=(z1, ..., zd). To
emphasize the dependence of Sj on the vectors z, ej, and the matrix A we
write Sj=Sj(OAz, ejP), j=1..., d.

The price of the financial derivative P, P: RdQ R, is then given by

Id(P)=E[P(S1, ..., Sd)]

=(2p)−d/2 F
R
d
P(S1(OAz, e1P), ..., Sd(OAz, edP)) e−||z||

2/2 dz

=(2p)−d/2 |C|−1/2 F
R
d
P(S1(Ox, e1P), ..., Sd(Ox, edP)) e−OC

−1x, xP/2 dx,

where C=AAT and |C| denotes the determinant of the matrix C.
Observe that the above equation is a special case of (1) and has been

derived for functions that correspond to payoff functions of financial deri-
vatives, where the underlying asset is lognormally distributed. It is the
integral of a function of the form

g(x)=G(Ox, t1P, ..., Ox, tdP), x ¥ Rd, (9)

where G: RdQ R is a given function, and tj ¥ Rd are given vectors,
j=1, ..., d.

Let g: RdQ R be a fixed function, integrable with respect to the
d-dimensional Gaussian distribution with mean zero and covariance
C=CT > 0. Recall Eq. (1) for the definition of Id(g). Consider a fixed
d×d matrix A such that AAT=C. It is easy to show that: B=AUT for
some orthonormal matrix U, i.e., UTU=I, iff BBT=C. Thus any other
decomposition of C can be represented as replacing A by AU for some
orthonormal d×d matrix U. We define the class of functions Fg by

Fg={f: RdQ R | f(x)=g(AUA−1x), x ¥ Rd, where UTU=I}.
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We will now define the quasi-Monte Carlo methods that we wish to
analyze, and the error criterion. Since our goal is to examine the effect of
different covariance matrix decompositions we will assume that the sample
points are arbitrary but fixed and study the error of quasi-Monte Carlo
with respect to the different decompositions BBT=C.

We consider quasi-Monte Carlo methods that approximate the integral
Id(f), f ¥ Fg, by the average

Q{xi}, n, d, B(f)=
1
n
C
n

i=1
f(Bxi),

where B is a matrix such that BBT=C, and xi ¥ R, i=1, ..., n, are given
sample points.

For f ¥ Fg we define the error of the method Q{xi}, n, d, B by

e(Q{xi}, n, d, B, f)=|Id(f)−Q{xi}, n, d, B(f)|.

We define the worst case error of the method Q{xi}, n, d, B in the class Fg by

e(Q{xi}, n, d, B, Fg)=sup
f ¥ Fg

e(Q{xi}, n, d, B, f).

Theorem 4.1. The quantity e(Q{xi}, n, d, B, Fg) is independent of the matrix
B.

Proof. Let f ¥ Fg then f(x)=g(AUA−1x), for some orthonormal
matrix U, AAT=C, x ¥ Rd. From equation (1) and the change of variable
x=Ut we obtain

Id(g)=(2p)−d/2 F
R
d
g(Ax) e−||x||

2/2 dx=(2p)−d/2 F
R
d
g(AUt) e−||t||

2/2 dt

=(2p)−d/2 F
R
d
g(AUA−1At) e−||t||

2/2 dt

=(2p)−d/2 F
R
d
f(At) e−||t||

2/2 dt=Id(f).

Thus Id(f)=Id(g), -f ¥ Fg.
Consider any matrices B1 and B2, B1B

T
1=B2B

T
2=C. There exist

orthogonormal matrices V1 and V2 such that B1=AV
T
1 and B2=AV

T
2 .

Letf1 ¥ Fg. Thenf1(B1x)=g(AUA−1B1x)=g(AUV
T
1 x)=g(AUV

T
1B

−1
2 B2x),

x ¥ Rd. The function f2 defined by

f2(x)=g(AUV
T
1B

−1
2 x)=g(AUV

T
1V2A

−1x), x ¥ Rd,

QUASI-MONTE CARLO INTEGRATION 13



belongs to Fg since UVT1V2 is orthonormal. Thus f1(B1x)=f2(B2x), x ¥ Rd,
I(f1)=Id(f2) and e(Q{xi}, n, d, B1 , f1)=e(Q{xi}, n, d, B2 , f2).

Since f2 has been derived using f1 the above implies that

e(Q{xi}, n, d, B1 , Fg) [ e(Q{xi}, n, d, B2 , Fg).

Similarly we have

f1(B2x)=g(AUA−1B2x)=g(AUV
T
2 x)=g(AUV

T
2B

−1
1 B1x), x ¥ Rd.

The function f3 defined by f3(x)=g(AUV
T
2B

−1
1 x)=g(AUV

T
2V1A

−1x),
belongs to Fg since UVT2V1 is orthonormal. Thus f1(B2x)=f3(B1x), x ¥ Rd,
Id(f1)=Id(f3) and e(Q{xi}, n, d, B2 , f1)=e(Q{xi}, n, d, B1 , f3).

Since f3 has been derived using f1 the above implies that

e(Q{xi}, n, d, B2 , Fg) [ e(Q{xi}, n, d, B1 , Fg),

which completes the proof. L

A larger class of functions for which the same result holds can be defined
by

Fg,M={f: RdQ R | f(x)=g(MAUA−1x), x ¥ Rd, where UTU=I, M ¥M},

where M is a given compact set of matrices.

Corollary 4.1. The quantity e(Q{xi}, n, d, A, Fg,M) is independent of the
matrix A.

Proof. The proof follows directly from Theorem 1 and we omit the
details. L
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