
Artificial Intelligence

Search Agents

Uninformed search



Uninformed search

Use no domain knowledge!

Strategies:

1. Breadth-first search (BFS): Expand shallowest node



Uninformed search

Use no domain knowledge!

Strategies:

1. Breadth-first search (BFS): Expand shallowest node

2. Depth-first search (DFS): Expand deepest node



Uninformed search

Use no domain knowledge!

Strategies:

1. Breadth-first search (BFS): Expand shallowest node

2. Depth-first search (DFS): Expand deepest node

3. Depth-limited search (DLS): Depth first with depth limit



Uninformed search

Use no domain knowledge!

Strategies:

1. Breadth-first search (BFS): Expand shallowest node

2. Depth-first search (DFS): Expand deepest node

3. Depth-limited search (DLS): Depth first with depth limit

4. Iterative-deepening search (IDS): DLS with increasing limit



Uninformed search

Use no domain knowledge!

Strategies:

1. Breadth-first search (BFS): Expand shallowest node

2. Depth-first search (DFS): Expand deepest node

3. Depth-limited search (DLS): Depth first with depth limit

4. Iterative-deepening search (IDS): DLS with increasing limit

5. Uniform-cost search (UCS): Expand least cost node



Breadth-first search (BFS)
BFS: Expand shallowest first.



BFS search



BFS Criteria

BFS criteria?



BFS

• Complete Yes (if b is finite)

• Time 1 + b+ b2 + b3 + . . .+ bd = O(bd)

• Space O(bd)

Note: If the goal test is applied at expansion rather than gen-

eration then O(bd+1)

• Optimal Yes (if cost = 1 per step).

• implementation: fringe: FIFO (Queue)

Question: If time and space complexities are exponential,

why use BFS?



BFS

How bad is BFS?



BFS

How bad is BFS?

Time and Memory requirements for breadth-first search for a branching factor

b=10; 1 million nodes per second; 1,000 bytes per node.



BFS

How bad is BFS?

Time and Memory requirements for breadth-first search for a branching factor

b=10; 1 million nodes per second; 1,000 bytes per node.

Memory requirement + exponential time complexity are the

biggest handicaps of BFS!



DFS

DFS: Expand deepest first.



DFS search



DFS

DFS criteria?



DFS

• Complete No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path.

⇒ complete in finite spaces

• Time O(bm): 1 + b+ b2 + b3 + . . .+ bm = O(bm)

bad if m is much larger than d

but if solutions are dense, may be much faster than BFS.

• Space O(bm) linear space complexity! (needs to store only

a single path from the root to a leaf node, along with the

remaining unexpanded sibling nodes for each node on the

path, hence the m factor.)

• Optimal No

• Implementation: fringe: LIFO (Stack)



DFS

How bad is DFS?

Recall for BFS...

Depth =16.

We go down from 10 exabytes in BFS to . . . in DFS?



DFS

How bad is DFS?

Recall for BFS...

Depth =16.

We go down from 10 exabytes in BFS to 156 kilobytes in DFS!



Depth-limited search

• DFS with depth limit l (nodes at level l has no successors).

• Select some limit L in depth to explore with DFS

• Iterative deepening: increasing the limit l



Depth-limited search

• If we know some knowledge about the problem, may be we

don’t need to go to a full depth.

Idea: any city can be reached from another city in at most L

steps with L < 36.



Iterative Deepening

• Combines the benefits of BFS and DFS.

• Idea: Iteratively increase the search limit until the depth of the

shallowest solution d is reached.

• Applies DLS with increasing limits.

• The algorithm will stop if a solution is found or if DLS returns

a failure (no solution).

• Because most of the nodes are on the bottom of the search

tree, it not a big waste to iteratively re-generate the top

• Let’s take an example with a depth limit between 0 and 3.



Iterative Deepening

Limit = 0



Iterative Deepening

Limit = 1



Iterative Deepening

Limit = 2



Iterative Deepening

Limit = 3



Uniform-cost search

• The arcs in the search graph may have weights (different cost

attached). How to leverage this information?



Uniform-cost search

• The arcs in the search graph may have weights (different cost

attached). How to leverage this information?

• BFS will find the shortest path which may be costly.

• We want the cheapest not shallowest solution.



Uniform-cost search

• The arcs in the search graph may have weights (different cost

attached). How to leverage this information?

• BFS will find the shortest path which may be costly.

• We want the cheapest not shallowest solution.

• Modify BFS: Prioritize by cost not depth → Expand node n

with the lowest path cost g(n)



Uniform-cost search

• The arcs in the search graph may have weights (different cost

attached). How to leverage this information?

• BFS will find the shortest path which may be costly.

• We want the cheapest not shallowest solution.

• Modify BFS: Prioritize by cost not depth → Expand node n

with the lowest path cost g(n)

• Explores increasing costs.



UCS algorithm



Uniform-cost search

Go from Chicago to Sault Ste Marie. Using BFS, we would find

Chicago-Duluth-Sault Ste Marie. However, using UCS, we would

find Chicago-Pittsburgh-Toronto-Sault Ste Marie, which is actually

the shortest path!



Uniform-cost search
• Complete Yes, if solution has a finite cost.

• Time

– Suppose C∗: cost of the optimal solution

– Every action costs at least ε (bound on the cost)

– The effective depth is roughly C∗/ε (how deep the cheapest

solution could be).

– O(bC
∗/ε)

• Space # of nodes with g ≤ cost of optimal solution, O(bC
∗/ε)

• Optimal Yes

• Implementation: fringe = queue ordered by path cost g(n),

lowest first = Heap!



Uniform-cost search

While complete and optimal, UCS explores the space in

every direction because no information is provided about

the goal!



Exercise

Question: What is the order of visits of the nodes and the

path returned by BFS, DFS and UCS?



Exercise: BFS



Exercise: BFS



Exercise: BFS



Exercise: BFS



Exercise: BFS



Exercise: BFS



Exercise: BFS



Exercise: BFS



Exercise: BFS



Exercise: DFS



Exercise: DFS



Exercise: DFS



Exercise: DFS



Exercise: DFS



Exercise: DFS



Exercise: DFS



Exercise: DFS



Exercise: DFS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Exercise: UCS



Examples using the map
Start: Las Vegas

Goal: Calgary

BFS

Order of Visit: Las Vegas, Los Angeles, Salt Lake City, El Paso, Phoenix, San Francisco,

Denver, Helena, Portland, Dallas, Santa Fe, Kansas City, Omaha, Calgary.



Examples using the map
Start: Las Vegas

Goal: Calgary

DFS

Order of Visit: Las Vegas, Los Angeles, El Paso, Dallas, Houston, New Orleans, Atlanta,

Charleston, Nashville, Saint Louis, Chicago, Duluth, Helena, Calgary.



Examples using the map
Start: Las Vegas

Goal: Calgary

UCS

Order of Visit: Las Vegas, Los Angeles, Salt Lake City, San Francisco, Phoenix, Denver, Helena,

El Paso, Santa Fe, Portland, Seattle, Omaha, Kansas City, Calgary.



Credit

• Artificial Intelligence, A Modern Approach. Stuart Russell and

Peter Norvig. Third Edition. Pearson Education.

http://aima.cs.berkeley.edu/


