Artificial Intelligence

Search Adgents
Uninformed search

&
% ©
156 A N
=]
A 2 ©
o () 90
\ad
N .
150 %
@
15 >
T E 81 3
8.
142 &
)
w
9
~ N
=, -
Salt it W
107 G 4 135 |ty68
- 2%
©0 & 5 A
- &
© &
7o ok o>
63
,\V
- o
2 N

7
g\t
08

0
g 151

Uninformed search

Use no domain knowledge!

Strategies:

1. Breadth-first search (BFS): Expand shallowest node

Uninformed search

Use no domain knowledge!

Strategies:

1. Breadth-first search (BFS): Expand shallowest node
2. Depth-first search (DFS): Expand deepest node

Uninformed search

Use no domain knowledge!

Strategies:
1. Breadth-first search (BFS): Expand shallowest node

2. Depth-first search (DFS): Expand deepest node
3. Depth-limited search (DLS): Depth first with depth limit

Uninformed search

Use no domain knowledge!

Strategies:

1. Breadth-first search (BFS): Expand shallowest node

2. Depth-first search (DFS): Expand deepest node

3. Depth-limited search (DLS): Depth first with depth limit
4

. Iterative-deepening search (IDS): DLS with increasing limit

Uninformed search

Use no domain knowledge!

Strategies:

1.

o & N

Breadth-first search (BFS): Expand shallowest node
Depth-first search (DFS): Expand deepest node
Depth-limited search (DLS): Depth first with depth limit
Iterative-deepening search (IDS): DLS with increasing limit

Uniform-cost search (UCS): Expand least cost node

Breadth-first search (BFS)

BFS: Expand shallowest first.
@

WO OOOOO®O 0J00J020X0X0

BFS search

function BREADTH-FIRST-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE :

frontier = Queue.new(initialState)
explored = Set.new|()

while not frontier.isEmpty/():
state = frontier.dequeue()
explored.add(state)

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
if neighbor not in frontier U explored:

frontier.enqueue(neighbor)

return FAILURE

BFS Criteria

BFS criteria?

BFS

e Complete Yes (if b is finite)
e Time1+b+b2+03+ ...+ =0(%

e Space O(b9)
Note: If the goal test is applied at expansion rather than gen-
eration then O(pt1)

e Optimal Yes (if cost = 1 per step).

e implementation: fringe: FIFO (Queue)

Question: If time and space complexities are exponential,
why use BFS?

BFS

How bad is BFS?

How bad is BFS?

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 101 13 days 1 petabyte
14 10 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

Time and Memory requirements for breadth-first search for a branching factor

b=10; 1 million nodes per second; 1,000 bytes per node.

How bad is BFS?

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 10° 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 101 13 days 1 petabyte
14 10 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

Time and Memory requirements for breadth-first search for a branching factor

b=10; 1 million nodes per second; 1,000 bytes per node.

Memory requirement 4+ exponential time complexity are the
biggest handicaps of BFS!

DFS

DFS: Expand deepest first.
{ON

DFS search

function DEPTH-FIRST-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE :

frontier = Stack.new(initialState)
explored = Set.new|()

while not frontier.isEmpty/():
state = frontier.pop()
explored.add(state)

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
if neighbor not in frontier U explored:

frontier.push(neighbor)

return FAILURE

DFS

DFS criteria?

DFS

e Complete No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path.
= complete in finite spaces

e Time O(™): 14+b+b24+b34+... 4" =0(01™)
bad if m is much larger than d
but if solutions are dense, may be much faster than BFS.

e Space O(bm) linear space complexity! (needs to store only
a single path from the root to a leaf node, along with the
remaining unexpanded sibling nodes for each node on the
path, hence the m factor.)

e Optimal No

e Implementation: fringe: LIFO (Stack)

DFS

How bad is DFS?
Recall for BFS...

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 108 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 104 3.5 years 99 petabytes
16 1076 350 years 10 exabytes
Depth =16.

We go down from 10 exabytes in BFS to ...in DFS?

DFS

How bad is DFS?
Recall for BFS...

Depth Nodes Time Memory
2 110 11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 108 1.1 seconds 1 gigabyte
8 108 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 104 3.5 years 99 petabytes
16 1076 350 years 10 exabytes
Depth =16.

We go down from 10 exabytes in BFS to 156 kilobytes in DFS!

Depth-limited search

e DFS with depth limit [(nodes at level [has no successors).
e Select some limit L in depth to explore with DFS

e [terative deepening: increasing the limit {

Depth-limited search

o If we know some knowledge about the problem, may be we
don’t need to go to a full depth.

" Calgary 180 Montreal 1]
Vancouver 00 8 WInnI’peg
\93
Bost
Seattl Sault Ste Marie
- Toronts
and Helena 150 Duluth) Neiw-York
3 Pittsburgh 3
Chicag
Omaha Washingf
&
Salt Lake City N
107 Kansas City 3
Den 68 Raleigh
Saint Louis
San Francisco S
Nashville
Oklahoma City ok &
s Veg 121 72 ® -
Santa Fe Little:Rock Atlanta
. ’charl eeeee
Los/Angeles 109 hoenix
Dallas
EI P ’
N 0. New Orleans
Houston ' ™
Miami

Idea: any city can be reached from another city in at most L
steps with L < 36.

Iterative Deepening

e Combines the benefits of BFS and DFS.

e Idea: Iteratively increase the search limit until the depth of the
shallowest solution d is reached.

e Applies DLS with increasing limits.

e [he algorithm will stop if a solution is found or if DLS returns
a failure (no solution).

e Because most of the nodes are on the bottom of the search
tree, it not a big waste to iteratively re-generate the top

e Let’'s take an example with a depth limit between O and 3.

Iterative Deepening

Limit =0 » °

Iterative Deepening

Limit=1
EoN @

o e

Iterative Deepening

t=2

Iterative Deepening

Uniform-cost search

Salt Lake City

72 :
Little Rock

’’’’’’’’’’’

«0.New Orleans

Miami

e The arcs in the search graph may have weights (different cost
attached). How to leverage this information?

Uniform-cost search

B Montreal |
Vanco Winnipeg
Seattl Sault Ste Marie
Tor
rtiand Helena 150 Duluth e New:York
S Pittsburgh 3
Chicag
Omaha Washingf
IN
Salt Lake City v
Kansas City 3
envel leigh
Saint Lot
San Fral :
= 8 Nashville
K Oklahoma City 6
Las Veg:
SantaFe' LittleRock
63
Charleston
ngele: &
Dallas
El Pas oL
N 0. New Orleans
Hou -
Miami

e The arcs in the search graph may have weights (different cost
attached). How to leverage this information?

e BFS will find the shortest path which may be costly.

e \We want the cheapest not shallowest solution.

Uniform-cost search

Salt Lake City

’’’’’’’’’’’

Miami

e The arcs in the search graph may have weights (different cost
attached). How to leverage this information?

e BFS will find the shortest path which may be costly.
e \We want the cheapest not shallowest solution.

e Modify BFS: Prioritize by cost not depth — Expand node n
with the lowest path cost g(n)

Uniform-cost search

Salt Lake City

’’’’’’’’’’’

Miami

e The arcs in the search graph may have weights (different cost
attached). How to leverage this information?

e BFS will find the shortest path which may be costly.
e \We want the cheapest not shallowest solution.

e Modify BFS: Prioritize by cost not depth — Expand node n
with the lowest path cost g(n)

e EXplores increasing costs.

UCS algorithm

function UNIFORM-COST-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE : /* Cost f(n)= g(n) */

frontier = Heap.new(initialState)
explored = Set.new|()

while not frontier.isEmpty/():
state = frontier.deleteMin()
explored.add(state)

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
if neighbor not in frontier U explored:
frontier.insert(neighbor)
else if neighbor in frontier:
frontier.decreaseKey(neighbor)

return FAILURE

Uniform-cost search

Sault Ste Marie
90
Toronto

08

Duluth

75)
Pittsburgh
e\
Chicago

Go from Chicago to Sault Ste Marie. Using BFS, we would find
Chicago-Duluth-Sault Ste Marie. However, using UCS, we would
find Chicago-Pittsburgh-Toronto-Sault Ste Marie, which is actually

the shortest path!

Uniform-cost search

e Complete Yes, if solution has a finite cost.

e Time
— Suppose C*: cost of the optimal solution
— Every action costs at least € (bound on the cost)
— The effective depth is roughly C*/e (how deep the cheapest
solution could be).
— O(bC*/e>

e Space # of nodes with g < cost of optimal solution, O(bc*/e)
e Optimal Yes

e Implementation: fringe = queue ordered by path cost g(n),
lowest first = Heap!

Uniform-cost search

While complete and optimal, UCS explores the space in

every direction because no information is provided about
the goal!

|
- =~

EXxercise

2R
e
o

Question: What is the order of visits of the nodes and the
path returned by BFS, DFS and UCS?

EXxercise:

BFS

Exercise: BFS

Order of Visit:

S

EXxercise:

BFS

Exercise: BFS

Queue:

Order of Visit:

S A B

Exercise: BFS

Order of Visit:

S A B C

Exercise: BFS

Order of Visit:

S A B C D

Exercise: BFS

Q@ o
@gf """ 7 -®

Queue:

Order of Visit:

S A B C D E

Exercise: BFS

g}@@

@éq

Queue:

Order of Visit:

S A B C D E G

Exercise: BFS

EXxercise:

DFS

Exercise: DFS

Stack:

S C | B A

Order of Visit:

S

EXxercise:

DFS

Exercise: DFS

Stack:

Order of Visit:

S A D

Exercise: DFS

4 \

3 4 6 ‘s

/('

)

)
-6-4{ B 9 /
J
\\‘ l,
2 2 K 8
\ ,

Stack:

Order of Visit:

S A D F

Exercise: DFS

SSSSS

Exercise: DFS

Exercise: DFS

SSSSSSS

Exercise: DES

7o

Exercise: UCS

Exercise: UCS

Priority Queue:

So C2 | As | Bs

Order of Visit:

S

Exercise: UCS

Priority Queue:

C2

As

Order of Visit:

S

C

Exercise: UCS

Priority Queue:

A3

Order of Visit:

S

C

A

Exercise: UCS

Priority Queue:

Order of Visit:

S cC A E

Exercise: UCS

&

Priority Queue:

Bs | De | Hs | F9 | G14

Order of Visit:

S cC A E B

Exercise: UCS

Priority Queue:

Ds | Hs | Fo9 | G14

Order of Visit:

S C A E B D

Exercise: UCS

Priority Queue:

Hs | Fo | G4

Order of Visit:

S C A E B D H

Exercise: UCS

Priority Queue:

Order of Visit:

S C A E B D H F

Exercise: UCS

SSSSSSSSS

Exercise: UCS

Order of Visit:

SSSSSSSSS

Examples using the map

Start: Las Vegas
Goal: Calgary

)
9 R\ A3 28
8
90
a
N
¥ 20
®
?5;
8t >
5 &
S
142
w
v
N A
-
1
§ 01% 135 |ty
R
o AR
San @ isco 8s
&
8 8
A 6>
% 7 ’
[~
63
L o
0s @ = -~)
2 N4 s
I
o
5
0
8 151

Order of Visit: Las Vegas, Los Angeles, Salt Lake City, El Paso, Phoenix, San Francisco,

Denver, Helena, Portland, Dallas, Santa Fe, Kansas City, Omaha, Calgary.

Examples using the map

Start: Las Vegas
Goal: Calgary

100 ¢ @ 180
%
AR 493
2 A 155)
\d

.
3 A 2
o, D 90

157
7
b 142
AP
107
135
180 o
Sai
o
>

66

4
&
T/IhD
-
[%1]
o
~,
o
Gk
Ps

oL

L)

A%

4z

U
o) AR
R g
&P
L o - o
2] a
& o } 6‘aton

Los gs 109] .

80

k)
ol
o
o
of
:@ lle ©
a
6>
A
Q>
g
H 15

g
is

as

ok
® 5

°. 8

,
DFS

Order of Visit: Las Vegas, Los Angeles, ElI Paso, Dallas, Houston, New Orleans, Atlanta,

Charleston, Nashville, Saint Louis, Chicago, Duluth, Helena, Calgary.

Examples using the map

Start: Las Vegas
Goal: Calgary

493 o

66

90
»

e

oL

gl
85

70,
47

%

60
95

72

63

80

80

UCS

Order of Visit: Las Vegas, Los Angeles, Salt Lake City, San Francisco, Phoenix, Denver, Helena,

El Paso, Santa Fe, Portland, Seattle, Omaha, Kansas City, Calgary.

Credit

e Artificial Intelligence, A Modern Approach. Stuart Russell and
Peter Norvig. Third Edition. Pearson Education.

http://aima.cs.berkeley.edu/

