Artificial Intelligence

Search Agents
Informed search



Informed search

Use domain knowledge!

e Are we getting close to the goal?

e Use a heuristic function that estimates how close a state is to
the goal

e A heuristic does NOT have to be perfect!



Informed search

Use domain knowledge!

e Are we getting close to the goal?

e Use a heuristic function that estimates how close a state is to
the goal

e A heuristic does NOT have to be perfect!

e Example of strategies:

1. Greedy best-first search
2. A* search

3. IDA*



Informed search
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Heuristic!

The distance is the straight line distance. The goal is to get to Sault Ste Marie,
so all the distances are from each city to Sault Ste Marie.



Greedy search

e Evaluation function h(n) (heuristic)
e h(n) estimates the cost from n to the closest goal

e Example: hg p(n) = straight-line distance from n to Sault Ste
Marie

e Greedy search expands the node that appears to be closest to
goal



Greedy search

function GREEDY-BEST-FIRST-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE : /* Cost f(n)=h(n) */

frontier = Heap.new(initialState)
explored = Set.new|()

while not frontier.isEmpty/():
state = frontier.deleteMin()
explored.add(state)

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
if neighbor not in frontier U explored:
frontier.insert(neighbor)
else if neighbor in frontier:
frontier.decreaseKey(neighbor)

return FAILURE



Greedy search example

The initial state:



Greedy search example

After expanding St Louis:




Greedy search example

After expanding Chicago:




Greedy search example

After expanding Duluth:




Examples using the map

Start: Saint Louis
Goal: Sault Ste Marie

Greedy search



Examples using the map

Start: Las Vegas
Goal: Calgary

Greedy search



A* search

e Minimize the total estimated solution cost

e Combines:
— g(n): cost to reach node n
— h(n): cost to get from n to the goal

— f(n) = g(n) + h(n)

f(n) is the estimated cost of the cheapest
solution through n



A* search

function A-STAR-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE : /* Cost f(n)= g(n)+ h(n) */

frontier = Heap.new(initialState)
explored = Set.new|()

while not frontier.isEmpty/():
state = frontier.deleteMin()
explored.add(state)

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
if neighbor not in frontier U explored:
frontier.insert(neighbor)
else if neighbor in frontier:
frontier.decreaseKey(neighbor)

return FAILURE



A* search example

The initial state:
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A* search example

After expanding St Louis:




A* search example

After expanding Chicago:




A* search example

After expanding Kansas City:




A* search example

After expanding Little Rock:
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A* search example

After expanding Nashville:

371 396 337




A* search example

After expanding Pittsburgh:

449 355 508



A* search example

After expanding Toronto:
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Examples using the map

Start: Saint Louis
Goal: Sault Ste Marie

Ak



Examples using the map

Start: Las Vegas
Goal: Calgary

Ak



Admissible heuristics

A good heuristic can be powerful.

Only if it is of a “good quality”



Admissible heuristics

A good heuristic can be powerful.
Only if it is of a “good quality”

A good heuristic must be admissible.



Admissible heuristics

e An admissible heuristic never overestimates the cost to reach
the goal, that is it is optimistic

e A heuristic h is admissible if

vV node n,h(n) < h*(n)
where h* is true cost to reach the goal from n.
e hgrp (used as a heuristic in the map example) is admissible

because it is by definition the shortest distance between two
points.



A* Optimality

If h(n) is admissible, A* using tree search is optimal.



A* Optimality

If h(n) is admissible, A* using tree search is optimal.
Rationale:
e Suppose Gy is the optimal goal.
e Suppose Gs is some suboptimal goal.
e Suppose n is an unexpanded node in the fringe such that n is
on the shortest path to Gy.
o f(Gs) = g(Gs) since h(Gs) =0
f(Go) = g(Go) since h(Go) =0
f(Gs) > g(Gy) since Gs is suboptimal
Then f(Gs) > f(Gy) ... (1)
e h(n) < h*(n) since h is admissible
g(n) + h(n) < g(n) + h*(n) = g(Go) = f(Go)
Then, f(n) < f(Go) ... (2)
From (1) and (2) f(Gs) > f(n)
so A* will never select GGs during the search and hence A* is
optimal.



A* search criteria

e Complete: Yes
e Time: exponential
e Space: keeps every node in memory, the biggest problem

e Optimal: Yes!



Heuristics

7 2 - 1 2

5 6 3 - 5
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e [ he solution is 26 steps long.

e hi1(n) = number of misplaced tiles

e ho(n) =total Manhattan distance (sum of the horizontal and
vertical distances).

e hi(n) =8

e Tiles 1 to 8 in the start state gives: ho =34+ 1424242+
34+ 3+ 2= 18 which does not overestimate the true solution.



Search Algorithms: Recap

e Uninformed Search: Use no domain knowledge.

BFS, DFS, DLS, IDS, UCS.

e INnformed Search: Use a heuristic function that estimates how
close a state is to the goal.

Greedy search, A* IDA*.



DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.



DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.



DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.



DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.



DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.



DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.



DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.



DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.



DFS

The frontier consists of unexplored siblings of all ancestors.
Search proceeds by exhausting one branch at a time.



IDS

Searches subtree by subtree ...
. with each subtree increasing by depth limit.
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IDS

Each iteration is simply an instance of depth-limited search.
Search proceeds by exhausting larger and larger subtrees.
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Recap

We can organize the algorithms into pairs where the first proceeds
by layers, and the other proceeds by subtrees.

(1) Iterate on Node Depth:

e BFS searches layers of increasing node depth.

e IDS searches subtrees of increasing node depth.



Recap

We can organize the algorithms into pairs where the first proceeds
by layers, and the other proceeds by subtrees.

(1) Iterate on Node Depth:
e BFS searches layers of increasing node depth.

e IDS searches subtrees of increasing node depth.

(2) Iterate on Path Cost 4+ Heuristic Function:
e A* searches layers of increasing path cost 4+ heuristic function.

e IDA* searches subtrees of increasing path cost 4+ heuristic
function.



Recap

Which cost function?

e UCS searches layers of increasing path cost.

e Greedy best first search searches layers of increasing heuristic
function.

e A* search searches layers of increasing path cost 4+ heuristic
function.



Credit

e Artificial Intelligence, A Modern Approach. Stuart Russell and
Peter Norvig. Third Edition. Pearson Education.

http://aima.cs.berkeley.edu/



