
Artificial Intelligence

Search Agents

Informed search



Informed search

Use domain knowledge!

• Are we getting close to the goal?

• Use a heuristic function that estimates how close a state is to

the goal

• A heuristic does NOT have to be perfect!



Informed search

Use domain knowledge!

• Are we getting close to the goal?

• Use a heuristic function that estimates how close a state is to

the goal

• A heuristic does NOT have to be perfect!

• Example of strategies:

1. Greedy best-first search

2. A* search

3. IDA*



Informed search

Heuristic!

The distance is the straight line distance. The goal is to get to Sault Ste Marie,

so all the distances are from each city to Sault Ste Marie.



Greedy search

• Evaluation function h(n) (heuristic)

• h(n) estimates the cost from n to the closest goal

• Example: hSLD(n) = straight-line distance from n to Sault Ste

Marie

• Greedy search expands the node that appears to be closest to

goal



Greedy search



Greedy search example
The initial state:



Greedy search example
After expanding St Louis:



Greedy search example
After expanding Chicago:



Greedy search example
After expanding Duluth:



Examples using the map
Start: Saint Louis

Goal: Sault Ste Marie

Greedy search



Examples using the map
Start: Las Vegas

Goal: Calgary

Greedy search



A* search

• Minimize the total estimated solution cost

• Combines:

– g(n): cost to reach node n

– h(n): cost to get from n to the goal

– f(n) = g(n) + h(n)

f(n) is the estimated cost of the cheapest

solution through n



A* search



A* search example

The initial state:



A* search example

After expanding St Louis:



A* search example

After expanding Chicago:



A* search example

After expanding Kansas City:



A* search example

After expanding Little Rock:



A* search example

After expanding Nashville:



A* search example

After expanding Pittsburgh:



A* search example

After expanding Toronto:



Examples using the map
Start: Saint Louis

Goal: Sault Ste Marie

A*



Examples using the map
Start: Las Vegas

Goal: Calgary

A*



Admissible heuristics

A good heuristic can be powerful.

Only if it is of a “good quality”



Admissible heuristics

A good heuristic can be powerful.

Only if it is of a “good quality”

A good heuristic must be admissible.



Admissible heuristics

• An admissible heuristic never overestimates the cost to reach

the goal, that is it is optimistic

• A heuristic h is admissible if

∀ node n, h(n) ≤ h∗(n)

where h∗ is true cost to reach the goal from n.

• hSLD (used as a heuristic in the map example) is admissible

because it is by definition the shortest distance between two

points.



A* Optimality

If h(n) is admissible, A* using tree search is optimal.



A* Optimality

If h(n) is admissible, A* using tree search is optimal.

Rationale:

• Suppose Go is the optimal goal.

• Suppose Gs is some suboptimal goal.

• Suppose n is an unexpanded node in the fringe such that n is

on the shortest path to Go.

• f(Gs) = g(Gs) since h(Gs) = 0

f(Go) = g(Go) since h(Go) = 0

f(Gs) > g(Go) since Gs is suboptimal

Then f(Gs) > f(Go) . . . (1)

• h(n) ≤ h∗(n) since h is admissible

g(n) + h(n) ≤ g(n) + h∗(n) = g(Go) = f(Go)

Then, f(n) ≤ f(Go) . . . (2)

From (1) and (2) f(Gs) > f(n)

so A* will never select Gs during the search and hence A* is

optimal.



A* search criteria

• Complete: Yes

• Time: exponential

• Space: keeps every node in memory, the biggest problem

• Optimal: Yes!



Heuristics

• The solution is 26 steps long.

• h1(n) = number of misplaced tiles

• h2(n) =total Manhattan distance (sum of the horizontal and

vertical distances).

• h1(n) = 8

• Tiles 1 to 8 in the start state gives: h2 = 3 + 1 + 2 + 2 + 2 +

3 + 3 + 2 = 18 which does not overestimate the true solution.



Search Algorithms: Recap

• Uninformed Search: Use no domain knowledge.

BFS, DFS, DLS, IDS, UCS.

• Informed Search: Use a heuristic function that estimates how

close a state is to the goal.

Greedy search, A*, IDA*.



DFS

Searches branch by branch ...

... with each branch pursued to maximum depth.



DFS

Searches branch by branch ...

... with each branch pursued to maximum depth.



DFS

Searches branch by branch ...

... with each branch pursued to maximum depth.



DFS

Searches branch by branch ...

... with each branch pursued to maximum depth.



DFS

Searches branch by branch ...

... with each branch pursued to maximum depth.



DFS

Searches branch by branch ...

... with each branch pursued to maximum depth.



DFS

Searches branch by branch ...

... with each branch pursued to maximum depth.



DFS

Searches branch by branch ...

... with each branch pursued to maximum depth.



DFS

The frontier consists of unexplored siblings of all ancestors.

Search proceeds by exhausting one branch at a time.



IDS

Searches subtree by subtree ...

... with each subtree increasing by depth limit.



IDS

Searches subtree by subtree ...

... with each subtree increasing by depth limit.



IDS

Searches subtree by subtree ...

... with each subtree increasing by depth limit.



IDS

Searches subtree by subtree ...

... with each subtree increasing by depth limit.



IDS

Searches subtree by subtree ...

... with each subtree increasing by depth limit.



IDS

Searches subtree by subtree ...

... with each subtree increasing by depth limit.



IDS

Searches subtree by subtree ...

... with each subtree increasing by depth limit.



IDS

Searches subtree by subtree ...

... with each subtree increasing by depth limit.



IDS

Each iteration is simply an instance of depth-limited search.

Search proceeds by exhausting larger and larger subtrees.



IDS

Each iteration is simply an instance of depth-limited search.

Search proceeds by exhausting larger and larger subtrees.



IDS

Each iteration is simply an instance of depth-limited search.

Search proceeds by exhausting larger and larger subtrees.



IDS

Each iteration is simply an instance of depth-limited search.

Search proceeds by exhausting larger and larger subtrees.



IDS

Each iteration is simply an instance of depth-limited search.

Search proceeds by exhausting larger and larger subtrees.



IDS

Each iteration is simply an instance of depth-limited search.

Search proceeds by exhausting larger and larger subtrees.



BFS

Searches layer by layer ...

... with each layer organized by node depth.



BFS

Searches layer by layer ...

... with each layer organized by node depth.



BFS

Searches layer by layer ...

... with each layer organized by node depth.



BFS

Searches layer by layer ...

... with each layer organized by node depth.



BFS

Searches layer by layer ...

... with each layer organized by node depth.



BFS

Searches layer by layer ...

... with each layer organized by node depth.



BFS

Searches layer by layer ...

... with each layer organized by node depth.



BFS

Searches layer by layer ...

... with each layer organized by node depth.



BFS

The frontier consists of nodes of similar depth (horizontal).

Search proceeds by exhausting one layer at a time.



BFS

The frontier consists of nodes of similar depth (horizontal).

Search proceeds by exhausting one layer at a time.



BFS

The frontier consists of nodes of similar depth (horizontal).

Search proceeds by exhausting one layer at a time.



BFS

The frontier consists of nodes of similar depth (horizontal).

Search proceeds by exhausting one layer at a time.



BFS

The frontier consists of nodes of similar depth (horizontal).

Search proceeds by exhausting one layer at a time.



UCS

Searches layer by layer ...

... with each layer organized by path cost.



UCS

Searches layer by layer ...

... with each layer organized by path cost.



UCS

Searches layer by layer ...

... with each layer organized by path cost.



UCS

Searches layer by layer ...

... with each layer organized by path cost.



UCS

Searches layer by layer ...

... with each layer organized by path cost.



UCS

Searches layer by layer ...

... with each layer organized by path cost.



UCS

Searches layer by layer ...

... with each layer organized by path cost.



UCS

Searches layer by layer ...

... with each layer organized by path cost.



UCS

The frontier consists of nodes of various depths (jagged).

Search proceeds by expanding the lowest-cost nodes.



UCS

The frontier consists of nodes of various depths (jagged).

Search proceeds by expanding the lowest-cost nodes.



UCS

The frontier consists of nodes of various depths (jagged).

Search proceeds by expanding the lowest-cost nodes.



UCS

The frontier consists of nodes of various depths (jagged).

Search proceeds by expanding the lowest-cost nodes.



UCS

The frontier consists of nodes of various depths (jagged).

Search proceeds by expanding the lowest-cost nodes.



UCS

The frontier consists of nodes of various depths (jagged).

Search proceeds by expanding the lowest-cost nodes.



UCS

The frontier consists of nodes of various depths (jagged).

Search proceeds by expanding the lowest-cost nodes.



Recap

We can organize the algorithms into pairs where the first proceeds

by layers, and the other proceeds by subtrees.

(1) Iterate on Node Depth:

• BFS searches layers of increasing node depth.

• IDS searches subtrees of increasing node depth.



Recap

We can organize the algorithms into pairs where the first proceeds

by layers, and the other proceeds by subtrees.

(1) Iterate on Node Depth:

• BFS searches layers of increasing node depth.

• IDS searches subtrees of increasing node depth.

(2) Iterate on Path Cost + Heuristic Function:

• A* searches layers of increasing path cost + heuristic function.

• IDA* searches subtrees of increasing path cost + heuristic

function.



Recap

Which cost function?

• UCS searches layers of increasing path cost.

• Greedy best first search searches layers of increasing heuristic

function.

• A* search searches layers of increasing path cost + heuristic

function.



Credit

• Artificial Intelligence, A Modern Approach. Stuart Russell and

Peter Norvig. Third Edition. Pearson Education.

http://aima.cs.berkeley.edu/


