Artificial Intelligence

Search Agents
Informed search

Informed search

Use domain knowledge!

e Are we getting close to the goal?

e Use a heuristic function that estimates how close a state is to
the goal

e A heuristic does NOT have to be perfect!

Informed search

Use domain knowledge!

e Are we getting close to the goal?

e Use a heuristic function that estimates how close a state is to
the goal

e A heuristic does NOT have to be perfect!

e Example of strategies:

1. Greedy best-first search
2. A* search

3. IDA*

Informed search

Atlanta 272
Boston 240
Calgary 334
Charleston 322
Chicago 107
Dallas 303
Denver 270
Duluth 110
E1l Paso 370
Helena 254
Houston 332
Calgary 150 —~ Montreal Kansas City 176
100 Wi
Vancouver R innipeg . o Las Vegas 418
g A 72 ’ <® . Little Rock 240
Seattle 3 8 %, Sault(Ste Marie 8 : Los Angeles 484
> g Toronto = 3 s 3 8 9
¥ . 0 A Miami
Pend g . N Tork Montreal 193
) Helena 150 Duluth ° . ow:Tor Nashville 221
15> PILE h% New Orleans 322
I u =

i 7% E — 81 by @ New York 195

e © Chicago &)
. > 182 : Oklahoma City 237
o “ Omaha Washington Omaha 150

§ .
Salt [ake City A c ¢ gbiinéx b igg
g 101 135 Kansas City Raleigh 1 sburg

68 Denver ; 8 Saift Louis n Portland 452
San Frangisco 8 © as) . Raleigh 251

o R 8 Néshvilie S ; :
R & Oklahoma City .) " 8 Saint Lou1s' 180
5 Las Vegas 12t 2 - Salt Lake City 344

0, Santa Fe Little:Rock Atlanta X
& o ' g 4 Qbmnumn San Francisco 499
Los(Angeles '+ 109 Phoenix 2 o N N : Santa Fe 318
. - 2 o s Sault Ste Marie 0

o
El Paso 140 o 8 Seattle 434
: S «0 . New Orleans : Toronto 90
A 5

ueen ! Miami Vancouver 432
Washington 238
Winnipeg 156

Heuristic!

The distance is the straight line distance. The goal is to get to Sault Ste Marie,
so all the distances are from each city to Sault Ste Marie.

Greedy search

e Evaluation function h(n) (heuristic)
e h(n) estimates the cost from n to the closest goal

e Example: hg p(n) = straight-line distance from n to Sault Ste
Marie

e Greedy search expands the node that appears to be closest to
goal

Greedy search

function GREEDY-BEST-FIRST-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE : /* Cost f(n)=h(n) */

frontier = Heap.new(initialState)
explored = Set.new|()

while not frontier.isEmpty/():
state = frontier.deleteMin()
explored.add(state)

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
if neighbor not in frontier U explored:
frontier.insert(neighbor)
else if neighbor in frontier:
frontier.decreaseKey(neighbor)

return FAILURE

Greedy search example

The initial state:

Greedy search example

After expanding St Louis:

Greedy search example

After expanding Chicago:

Greedy search example

After expanding Duluth:

Examples using the map

Start: Saint Louis
Goal: Sault Ste Marie

Greedy search

Examples using the map

Start: Las Vegas
Goal: Calgary

Greedy search

A* search

e Minimize the total estimated solution cost

e Combines:
— g(n): cost to reach node n
— h(n): cost to get from n to the goal

— f(n) = g(n) + h(n)

f(n) is the estimated cost of the cheapest
solution through n

A* search

function A-STAR-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE : /* Cost f(n)= g(n)+ h(n) */

frontier = Heap.new(initialState)
explored = Set.new|()

while not frontier.isEmpty/():
state = frontier.deleteMin()
explored.add(state)

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
if neighbor not in frontier U explored:
frontier.insert(neighbor)
else if neighbor in frontier:
frontier.decreaseKey(neighbor)

return FAILURE

A* search example

The initial state:

180

A* search example

After expanding St Louis:

A* search example

After expanding Chicago:

A* search example

After expanding Kansas City:

A* search example

After expanding Little Rock:

Pittsburgh
396 337

A* search example

After expanding Nashville:

371 396 337

A* search example

After expanding Pittsburgh:

449 355 508

A* search example

After expanding Toronto:

Pittsburgh
396

|I 508
Sault Ste

Montreal Plttsburgh

Marle

573 355

Examples using the map

Start: Saint Louis
Goal: Sault Ste Marie

Ak

Examples using the map

Start: Las Vegas
Goal: Calgary

Ak

Admissible heuristics

A good heuristic can be powerful.

Only if it is of a “good quality”

Admissible heuristics

A good heuristic can be powerful.
Only if it is of a “good quality”

A good heuristic must be admissible.

Admissible heuristics

e An admissible heuristic never overestimates the cost to reach
the goal, that is it is optimistic

e A heuristic h is admissible if

vV node n,h(n) < h*(n)
where h* is true cost to reach the goal from n.
e hgrp (used as a heuristic in the map example) is admissible

because it is by definition the shortest distance between two
points.

A* Optimality

If h(n) is admissible, A* using tree search is optimal.

A* Optimality

If h(n) is admissible, A* using tree search is optimal.
Rationale:
e Suppose Gy is the optimal goal.
e Suppose Gs is some suboptimal goal.
e Suppose n is an unexpanded node in the fringe such that n is
on the shortest path to Gy.
o f(Gs) = g(Gs) since h(Gs) =0
f(Go) = g(Go) since h(Go) =0
f(Gs) > g(Gy) since Gs is suboptimal
Then f(Gs) > f(Gy) ... (1)
e h(n) < h*(n) since h is admissible
g(n) + h(n) < g(n) + h*(n) = g(Go) = f(Go)
Then, f(n) < f(Go) ... (2)
From (1) and (2) f(Gs) > f(n)
so A* will never select GGs during the search and hence A* is
optimal.

A* search criteria

e Complete: Yes
e Time: exponential
e Space: keeps every node in memory, the biggest problem

e Optimal: Yes!

Heuristics

7 2 - 1 2

5 6 3 - 5

8 3 1 6 7 8
Start State Goal State

e [he solution is 26 steps long.

e hi1(n) = number of misplaced tiles

e ho(n) =total Manhattan distance (sum of the horizontal and
vertical distances).

e hi(n) =8

e Tiles 1 to 8 in the start state gives: ho =34+ 1424242+
34+ 3+ 2= 18 which does not overestimate the true solution.

Search Algorithms: Recap

e Uninformed Search: Use no domain knowledge.

BFS, DFS, DLS, IDS, UCS.

e INnformed Search: Use a heuristic function that estimates how
close a state is to the goal.

Greedy search, A* IDA*.

DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.

DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.

DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.

DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.

DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.

DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.

DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.

DFS

Searches branch by branch ...
. with each branch pursued to maximum depth.

DFS

The frontier consists of unexplored siblings of all ancestors.
Search proceeds by exhausting one branch at a time.

IDS

Searches subtree by subtree ...
. with each subtree increasing by depth limit.

IDS

Searches subtree by subtree ...
. with each subtree increasing by depth limit.

IDS

Searches subtree by subtree ...
. With each subtree increasing by depth limit.

IDS

Searches subtree by subtree ...
. with each subtree increasing by depth limit.

IDS

Searches subtree by subtree ...
. with each subtree increasing by depth limit.

IDS

Searches subtree by subtree ...
. with each subtree increasing by depth limit.

IDS

Searches subtree by subtree ...
. with each subtree increasing by depth limit.

IDS

Each iteration is simply an instance of depth-limited search.
Search proceeds by exhausting larger and larger subtrees.

IDS

Each iteration is simply an instance of depth-limited search.
Search proceeds by exhausting larger and larger subtrees.

IDS

Each iteration is simply an instance of depth-limited search.
Search proceeds by exhausting larger and larger subtrees.

IDS

Each iteration is simply an instance of depth-limited search.
Search proceeds by exhausting larger and larger subtrees.

IDS

Each iteration is simply an instance of depth-limited search.
Search proceeds by exhausting larger and larger subtrees.

IDS

Each iteration is simply an instance of depth-limited search.
Search proceeds by exhausting larger and larger subtrees.

BFS

Searches layer by layer ...
. with each layer organized by node depth.

BFS

Searches layer by layer ...
. with each layer organized by node depth.

BFS

Searches layer by layer ...
. with each layer organized by node depth.

BFS

Searches layer by layer ...
. with each layer organized by node depth.

BFS

Searches layer by layer ...
. with each layer organized by node depth.

BFS

Searches layer by layer ...
. with each layer organized by node depth.

BFS

The frontier consists of nodes of similar depth (horizontal).
Search proceeds by exhausting one layer at a time.

BFS

The frontier consists of nodes of similar depth (horizontal).
Search proceeds by exhausting one layer at a time.

BFS

The frontier consists of nodes of similar depth (horizontal).
Search proceeds by exhausting one layer at a time.

BFS

The frontier consists of nodes of similar depth (horizontal).
Search proceeds by exhausting one layer at a time.

BFS

The frontier consists of nodes of similar depth (horizontal).
Search proceeds by exhausting one layer at a time.

UCS

Searches layer by layer ...
. with each layer organized by path cost.

UCS

Searches layer by layer ...
. with each layer organized by path cost.

UCS

Searches layer by layer ...
. with each layer organized by path cost.

UCS

Searches layer by layer ...
. with each layer organized by path cost.

UCS

Searches layer by layer ...
. with each layer organized by path cost.

UCS

Searches layer by layer ...
. with each layer organized by path cost.

UCS

Searches layer by layer ...
. with each layer organized by path cost.

UCS

Searches layer by layer ...
. with each layer organized by path cost.

UCS

The frontier consists of nodes of various depths (jagged).
Search proceeds by expanding the lowest-cost nodes.

UCS

The frontier consists of nodes of various depths (jagged).
Search proceeds by expanding the lowest-cost nodes.

UCS

The frontier consists of nodes of various depths (jagged).
Search proceeds by expanding the lowest-cost nodes.

UCS

The frontier consists of nodes of various depths (jagged).
Search proceeds by expanding the lowest-cost nodes.

UCS

The frontier consists of nodes of various depths (jagged).
Search proceeds by expanding the lowest-cost nodes.

UCS

The frontier consists of nodes of various depths (jagged).
Search proceeds by expanding the lowest-cost nodes.

UCS

The frontier consists of nodes of various depths (jagged).
Search proceeds by expanding the lowest-cost nodes.

Recap

We can organize the algorithms into pairs where the first proceeds
by layers, and the other proceeds by subtrees.

(1) Iterate on Node Depth:

e BFS searches layers of increasing node depth.

e IDS searches subtrees of increasing node depth.

Recap

We can organize the algorithms into pairs where the first proceeds
by layers, and the other proceeds by subtrees.

(1) Iterate on Node Depth:
e BFS searches layers of increasing node depth.

e IDS searches subtrees of increasing node depth.

(2) Iterate on Path Cost 4+ Heuristic Function:
e A* searches layers of increasing path cost 4+ heuristic function.

e IDA* searches subtrees of increasing path cost 4+ heuristic
function.

Recap

Which cost function?

e UCS searches layers of increasing path cost.

e Greedy best first search searches layers of increasing heuristic
function.

e A* search searches layers of increasing path cost 4+ heuristic
function.

Credit

e Artificial Intelligence, A Modern Approach. Stuart Russell and
Peter Norvig. Third Edition. Pearson Education.

http://aima.cs.berkeley.edu/

