Artificial Intelligence

Search Agents

Goal-based agents

e Reflex agents: use a mapping from states to actions.

e Goal-based agents: problem solving agents or planning
agents.

Goal-based agents

e Agents that work towards a goal.
e Agents consider the impact of actions on future states.

e Agent’s job is to identify the action or series of actions that
lead to the goal.

Goal-based agents

e Agents that work towards a goal.
e Agents consider the impact of actions on future states.

e Agent’s job is to identify the action or series of actions that
lead to the goal.

e Formalized as a search through possible solutions.

Examples

Examples

EXPLORE!

Examples

The 8-queen problem: on a chess board, place 8 queens so that no
queen is attacking any other horizontally, vertically or diagonally.

Examples

Number of possible sequences to investigate:

«+57 = 1.8 x 1014

64 x 63 x 62 * ...

Problem solving as search

1. Define the problem through:

(a) Goal formulation

(b) Problem formulation

2. Solving the problem as a 2-stage process:

(a) Search: “mental” or “offline” exploration of several possi-
bilities
(b) Execute the solution found

Problem formulation

e Initial state: the state in which the agent starts

Problem formulation

e Initial state: the state in which the agent starts

e States: AIll states reachable from the initial state by any se-
quence of actions (State space)

Problem formulation

e Initial state: the state in which the agent starts

e States: AIll states reachable from the initial state by any se-
quence of actions (State space)

e Actions: possible actions available to the agent. At a state s,
Actions(s) returns the set of actions that can be executed in
state s. (Action space)

Problem formulation

e Initial state: the state in which the agent starts

e States: AIll states reachable from the initial state by any se-
quence of actions (State space)

e Actions: possible actions available to the agent. At a state s,
Actions(s) returns the set of actions that can be executed in
state s. (Action space)

e Transition model: A description of what each action does
Results(s, a)

Problem formulation

e Initial state: the state in which the agent starts

e States: AIll states reachable from the initial state by any se-
quence of actions (State space)

e Actions: possible actions available to the agent. At a state s,
Actions(s) returns the set of actions that can be executed in
state s. (Action space)

e Transition model: A description of what each action does
Results(s, a)

e Goal test: determines if a given state is a goal state

Problem formulation

e Initial state: the state in which the agent starts

e States: AIll states reachable from the initial state by any se-
quence of actions (State space)

e Actions: possible actions available to the agent. At a state s,
Actions(s) returns the set of actions that can be executed in
state s. (Action space)

e Transition model: A description of what each action does
Results(s, a)

e Goal test: determines if a given state is a goal state

e Path cost: function that assigns a numeric cost to a path
w.r.t. performance measure

Examples

e States: all arrangements of O to 8 queens on the board.

Examples

e States: all arrangements of O to 8 queens on the board.
e Initial state: No queen on the board

Examples

e States: all arrangements of O to 8 queens on the board.
e Initial state: No queen on the board
e Actions: Add a queen to any empty square

Examples

e States: all arrangements of O to 8 queens on the board.
e Initial state: No queen on the board

e Actions: Add a queen to any empty square

e Transition model: updated board

Examples

e States: all arrangements of O to 8 queens on the board.
e Initial state: No queen on the board

e Actions: Add a queen to any empty square

e Transition model: updated board

e Goal test: 8 queens on the board with none attacked

Examples

Examples

Vo6
712

234

Examples

Examples

712 2
534 9 5

States: Location of each of the 8 tiles in the 3x3 grid

Initial state: Any state

Actions: Move Left, Right, Up or Down

Transition model: Given a state and an action, returns re-
sulting state

Goal test: state matches the goal state?

e Path cost: total moves, each move costs 1.

OWo
b

Examples of search agents

Calgary Montreal
0 180 o
Vancouver = ° Wmm‘peg
,\\% 15 ,\93 o S
3] R
> A s R o Boston
Seattl @ &% 2 ault/Ste Marie _ © ~
° " v ' %0 Toronto .
¥ 189 N .
Portland Helena 150 Duluth) New-York
: ©
IS;,
7)q };f PittSbUl'gh 2
74 o Chicago 8
<} 142
o = Omaha Washington
0 < N
Salt Lake City \® N
101 Kansas Ci R
156 Denver 195 tys&, , Raleigh
' Saint Louis o
[#,) —
San Francisco @ © 8s A .
’ =]
o - 8 Nashville “ o
T v Oklahoma City o 6>
2 Las Vegas 21 72 : R
2] ' Santa Fe Little:Rock Atlanta
© % “ 63 i
: = ¢ . Charleston
Los/Angeles 109 Phoenix g ' 2 ®
R
, -
“ 140 Dallas > 5
El Paso ’ ®
%, z
a0 . New Orleans
Houston 151

Miami

Examples

ananananan

Chiicago *'

5. Kansas City

San Francisco

lllllllll
Oklatioma City

% P
LileRock ~ Atlanta
Z 6
Charleston

Dallas

Houston %

e States: In City where
City € {Los Angeles, San Francisco, Denver,...}
e Initial state: In Boston
e Actions: Go New York, etc.
e Transition model:
Results (In (Boston), Go (New York)) = In(New York)
e Goal test: In(Denver)
e Path cost: path length in kilometers

Real-world examples

e Route finding problem: typically our example of map search,
where we need to go from location to location using links or
transitions. Example of applications include tools for driving

directions in websites, in-car systems, etc.

Real-world examples

e Traveling salesperson problem: Find the shortest tour to
Visit each city exactly once.

Real-world examples

e VLSI layout: position million of components and connections
on a chip to minimize area, shorten delays. Aim: put circuit
components on a chip so as they don't overlap and leave space
to wiring which is a complex problem.

N b
Rt i1
i \%\Xﬁl i (G |1// <
O AR

Real-world examples

e Robot navigation: Special case of route finding for robots
with no specific routes or connections. The robot navigates in
2D or 3D space or ore where the state space and action space

are potentially infinite.

Real-world examples

e Automatic assembly sequencing: find an order in which to
assemble parts of an object which is in general a difficult and
expensive geometric search.

Real-world examples

e Protein design: find a sequence of amino acids that will fold
into a 3D protein with the right properties to cure some dis-
ease.

State space vs. search space

e State space: a physical configuration

State space vs. search space

e State space: a physical configuration

e Search space: an abstract configuration represented by a
search tree or graph of possible solutions.

State space vs. search space

e State space: a physical configuration

e Search space: an abstract configuration represented by a
search tree or graph of possible solutions.

e Search tree: models the sequence of actions
— Root: initial state
— Branches: actions
— Nodes: results from actions. A node has: parent, children,
depth, path cost, associated state in the state space.

State space vs. search space

e State space: a physical configuration

e Search space: an abstract configuration represented by a
search tree or graph of possible solutions.

e Search tree: models the sequence of actions
— Root: initial state
— Branches: actions
— Nodes: results from actions. A node has: parent, children,
depth, path cost, associated state in the state space.

e Expand: A function that given a node, creates all children
nodes

Search Space Regions

e [he search space is divided into three regions:
1. Explored (a.k.a. Closed List, Visited Set)
2. Frontier (a.k.a. Open List, the Fringe)
3. Unexplored.
e The essence of search is moving nodes from regions (3) to (2)

to (1), and the essence of search strategy is deciding the order
of such moves.

e In the following we adopt the following color coding: orange
nodes are explored, grey nodes are the frontier, white nodes
are unexplored, and black nodes are failures.

Tree

search

function TREE-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE :

initialize frontier with initialState

while not frontier.isEmpty/():
state = frontier.remove()

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
frontier.add(neighbor)

return FAILURE

Examples of search agents

100 Calgary. 150
Vancouver
0 N
<+
2,
Seattle 3 8
3 189
Portland s
’,3\ ©
2 B
Salt Lake City
101
188 Denver
San Frangisco &
e
N {f’b
% Las Vegas
° Santa Fe
& o
Los/Angeles '+ 109 Phoenix 2
191
El Paso

Let’'s show the first steps in growing the search tree to find a route

o~ Montreal
Winnipeg
” s
= el
756 A9 ,(\‘3
?& Sault Ste Marie % 8
Toronto .
)\\0 A
150 Duluth % New-York
= o
15>
T 3 Pittsburgh 2
Chicago 8
142
Omaha Washington
»
AP o e
Kansas Ci A
135 tysg . Raleigh
Saint Louis
& 4 A2
&
&$
&8 Nashville @©
Oklahoma Cit -
121 yre : oh & :
Little'Rock Atlanta
- 63 .
. Charleston
% .
140 Dallgs > o
k3
a0 New Orleans
Houston 151
Miami

from San Francisco to another city

Boston

Examples of search agents

oo Y Winnipeg we” function TREE-SEARCH(initialState, goalTest)

Vancouver
© NS 158 3 N v
¢ ¢ W returns SUCCESS or FAILURE :
Seattle N 3 3 Sault/Ste Marie TéaNo @ .
¥ 189 < : o e e e .
Portand G Duluth New York initialize frontier with initialState
I55 @
. 3 .. Pittsburgh 3 . . .
g . Griesgo while not frontier.isEmpty():
Gprape) Washington state = frontier.remove()
N IN
Salt Lake City P $
- Kansas Ci B
160 Denver 1 oo . Raleigh .
. o santiouis if goalTest(state):
San Frantisco @ : @ 8 i .
? Nashullo S return SUCCESS(state)
N @ Oklahoma, City oh &> B
2 Las Vegas 121 7 : e R
o, Santa Fe Little Rock Atlanta
o > g 63
& ® . . .
oo Charleston for neighbor in state.neighbors():
Los/Angeles 109 gix 3 % o
Datias ‘ 5 frontier.add(neighbor)
140 3
El Paso . @
K «0.New Orleans
Houston 151 Miami
lami
return FAILURE
T r *-.
e / T~
-7 / S~
- 1 S~
- 1 ~
- 1 S~
e / -
- / ~<
Salt Lake City
’ N s \ 7 NN
PARVEEANRN Py : AN < : N
it ! \ N ’ 1 \ 7 ’ 1 \ S
L I/ \\ S ’ [l \ i ’ | \ S
, N / | \ e ’ | \ S
. / Y AN /S i N e / H K heS
’ / \ N ’ H \ e ’ H \ N
’ N ’ \ P / \ N
1 " 1 1 I I A Im I n I I
1 [} 1 1 LY I NN} 1w T [Y Y
[N [[N [N L N [S Hip o Hipnay [[N [N
[N [o [N Y B 1o [N oy Frpnnn [(BN [N
o [o o ,'I |\“ oy L I T} I oy Ty [[[
[T I Y P P B oy oo Tigp vy Tippay [o) o)
o [[[VR N B T Y Il, |\\ r’l] |\\\‘ rf1|||\\\‘) [} |\\ [} |\\
(I L oo oo A oy T PR S Y . ooy Povoy

Examples of search agents

Varfogiver S Winnipeg r wer function TREE-SEARCH(initialState, goalTest)
A s o returns SUCCESS or FAILURE :

©
8

3 4 % Sault(Ste Marie
Seattle 2 < % 9 Toronto .
‘g ’83 \\c \ . . 3 3
Portand G Duluth New York initialize frontier with initialState
755 @
T N o1 Pittsburgh 3 .
. criesgo while not frontier.isEmpty():
5 142
£ Gprape) Washington state = frontier.remove()
Salt ['ake City o a N
101 - Kansas Ci i
60 Denver 1 oo e Raleigh . .
. o santiouis - if goalTest(state):
San Francisco @ © 8s o t SUCCESS t t
Nashuill a return (state)
LT @ Oklahoma City o o &
2 as Vegas 124 7o : > }
o, e Santa Fe Little Rock Atlanta
o > g 63
S ® . . .
; Cri@on for neighbor in state.neighbors():
Los/Angeles 109 Phoenix 3 % o
Dallas ‘ 5 frontier.add(neighbor)
El Paso . @
K «0.New Orleans
Houston 151 Miami
lami
return FAILURE
Salt Lake City
o N ’ \ s NN
;” /I \\ \\\ s : N ,’, /7 : N \‘\
’ N 7 ! \ s ’ | \ ~
L J \ ~ J 1 N L7 J 1 s NG
S i \ AN . i \ . / | S N
é 1 \ N II | \\ // I/ | \\ \‘
. ! \ N / i \ L / ' \ ~
@ S e Sestte @@ Fortiad
1 " 1 1 /1 I s 1w m " L L
1) 1 1 LY I L1y 1w T [} Y Y
[N [[N [N L N [S Hip o Hipnay [[N [N
[N [[N [N Y B 1o [N oy Trrnn [(BN [N
I [I I ,'r | \“ I IJ [\\ Ifu 1\\\ r“"l“\ [l P P
A i Y A R Do IR ! 111' \ WA ! 111' ' WA . N Do
b o o o N v] AU R AR P P
' . - ' . ' . U P T P A A L Y . Do Do

Examples of search agents

. cal o ~ Montreal . . e
Varicouver 1T : Winipeg = function TREE-SEARCH(initialState, goalTest)
R T80 493 © hd
’ : L @ returns SUCCESS or FAILURE :
Seattle % & 3 Sault/Ste Marie 8
Toronto .
g ’55 \\0 : . L] 3
Portiand i Dututh New York initialize frontier with initialState
T3 3 78> o . Pittsburgh 3 . . .
, Chicago while not frontier.isEmpty():
E e . Waiington state = frontier.remove()
Salt Lake City o Kangedciy : N
01 & ansas Ci i
156 D 199 P . Raleigh .
\8 i enver ; &saimLOuis "].f goalTest(State):
San Francisco nd : 5 as ” i
R Nashullo S return SUCCESS(state)
- & Oklahoma, City oh &
2 Las Vegas 121 7 : .
o,) Santa Fe Little ﬂock Atlanta .
& ® JC le:
Lox Amiaes. . 10 PHORMX - . ; Hiton for nelghb.or in state..nelghbors().
o Dailas § 5 frontier.add(neighbor)
'aso g ©
% 0. New Orleans
Houston 151

N return FAILURE

Salt Lake City

1]
/ \ ’ A ~
’ ! \ 2 ! NN
’ } \ 4 /’ | \ ~
’ 1 AY i / | \ Sa
’ 1 \ e s | \ ~
/ A / Ay
s ! \ e ’ | \ AN
’ ! \ P ’ ! \ S~
’] \ L ’ | \ N
Salt Lake City | San Francisco @ @@ Las Vegas Portland San Francisco
JANEN [N RN LN 1Imm " [AN [AN
AEER AR RN IR IR 1 [RR [RR
oy [I I RN [N (B (B
Py, (BN Iy [NENEY NRTRY [I I
”Il\“ [ropo fepon A NERRN [[[
PO [oo N Frgoh P [[[
P I T [T r’ [\\ "H |\‘\ ‘H|||\\\ [o [T
[\ [\ [} \ [} \ i \ i \
s U o d T T P S P A L [h o h o

Graph search

How to handle repeated states?

Graph search

How to handle repeated states?

function GRAPH-SEARCH(initialState, goalTest)
returns SUCCESS or FAILURE :

initialize frontier with initialState
explored = Set.new|()

while not frontier.isEmpty():
state = frontier.remove()
explored.add(state)

if goalTest(state):
return SUCCESS(state)

for neighbor in state.neighbors():
if neighbor not in frontier U explored:

frontier.add(neighbor)

return FAILURE

Search strategies

e A strategy is defined by picking the order of node expansion

Search strategies

e A strategy is defined by picking the order of node expansion

e Strategies are evaluated along the following dimensions:

— Completeness
Does it always find a solution if one exists?

— Time complexity
Number of nodes generated/expanded

— Space complexity
Maximum number of nodes in memory

— Optimality
Does it always find a least-cost solution?

Search strategies

e [ime and space complexity are measured in terms of:

— b: maximum branching factor of the search tree (actions
per state).

— d: depth of the solution

— m: maximum depth of the state space (may be ~o) (also
noted sometimes D).

e [woO Kinds of search: Uninformed and Informed.

Credit

e Artificial Intelligence, A Modern Approach. Stuart Russell and
Peter Norvig. Third Edition. Pearson Education.

http://aima.cs.berkeley.edu/

