Homework 1: Discrete Mathematics Spring 2020

Introduction to IAT_EX

January 22, 2020

 LAT_EX is a markup language that can be used to create well formatted PDF documents. It is widely used in science and academia. In this homework you will be asked to learn about LAT_EX , use it to generate a very simple PDF document and submit your source code together with the resulting PDF. Here you can see an example (provided to you) of some LATEX markup (hw1_template.tex) and the document it generates (hw1_template.pdf).

	Homework 1	
\documentclass{article}	First Name, Last Name UNI	
\title{Homework 1}	September 7, 2018	
\author		
{	Question 1	
First Name, Last Name	Insert answer for question 1 here	
Vand UNI	more anower for queetion 1 netor	
}	Question 2	
	Insert answer for question 2 here.	
\begin{document}		
\maketitle	Question 3	
	Insert answer for question 3 here.	
\section {Question 1}		
\section*{Question 2}	Question 4	
Insert answer for guestion 2 here.	Insert answer for question 4 here.	
\section*{Question 3}		
Insert answer for question 3 here.	Question 5	
\section*{Question 4}	Insert answer for question 5 here.	
Insert answer for question 4 here.	Quarties 6	
(Section {Question 5})	Question 0	
\section*{Question 6}	Insert answer for question 6 here.	
Insert answer for question 6 here.	Question 7	
\section*{Question 7}		
Insert answer for question 7 here.	Insert answer for question 7 here.	
\section*{Question 8}	Question 8	
insen answer for question & nere.	Theorem engineer for expection 9 hours	
\end{document}	answer answer for question o nere.	
ona (accument)	1	

2 How to compile a .tex file

2.1 Using Overleaf (recommended if you are a beginner)

If you want to avoid installing a T_EX distribution on your computer, you can use Overleaf. It is an online E^T_EX editor and compiler which also includes very good guides and tutorials. If you want to use Overleaf, you can read their introductory guide here:

https://www.overleaf.com/learn/how-to/Creating_a_document_in_Overleaf

2.2 Installing a TEX distribution in your local machine

The recommended distributions for each of the major operating systems are:

- TeX Live (http://www.tug.org/texlive) is a major TeX distribution for *BSD, GNU/Linux, Mac OS X and Windows.
- MiKTeX (http://www.miktex.org) is a Windows-specific distribution.
- MacTeX (http://www.tug.org/mactex) is a Mac OS-specific distribution based on TeX Live.

If you need more information about how to install it, you can visit the following website: https://en.wikibooks.org/wiki/LaTeX/Installation.

2.3 LaTeXiT

 IaT_EXiT is a small tool for writing IaT_EX equations and inserting them anywhere. As a last alternative, you can write documents in Word and insert equations that have been generated with IaT_EXiT . You can download IaT_EXiT here:

http://www.chachatelier.fr/latexit/.

Alternatively, you can use computers at the Science and Engineering Library, which have it installed already.

3 Homework submission

In this homework, you will learn how to form at mathematical expressions in LATEX. For instance, to type the formula

$$f(x) = (x+y)^2$$

The associated IAT_FX syntax is

$$f(x)=(x+y)^2]$$

You can achieve a similar result using:

$$f(x)=(x+y)^{2}$$

Or using:

 $f(x)=(x+y)^{2}$

In this homework, you are expected to submit two files:

- A .tex file with the contents of your source code.
- A .pdf file with the results.

The resulting PDF should contain the following: a title, your name and UNI, the date on which it was generated, and answers to the questions below. Please use the given template hw1_template.tex (under the files section in Canvas) to complete your homework.

Question 1

A Pythagorean triple consists of three positive integers a, b, and c, such that

$$a^2 + b^2 = c^2$$

Write the condition $a^2 + b^2 = c^2$ in LAT_FX.

Question 2

Given a quadratic equation $ax^2 + bx + c = 0$ where x is an unknown variable, a, b, and c are constants. The solution to the quadratic equation is called quadratic formula and is given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Write the quadratic formula in IAT_FX.

Question 3

Use LATEX to write the following formulas:

$$1 + 2 + 3 + 4 + \dots + 98 + 99 + 100 = \sum_{x=1}^{100} x$$
$$x_1 + x_2 + x_3 + \dots + x_n = \sum_{i=1}^n x_i$$
$$x_1 \times x_2 \times x_3 \times \dots \times x_n = \prod_{i=1}^n x_i$$
$$f(x) = \int_a^b x^2 dx$$

Question 4

This semester, we will learn about functions. Use LATEX to write the following function: $f: \mathbb{Z} \mapsto \mathbb{N}$ defined by

$$f(x) = \begin{cases} 2x & \text{if } x \ge 0\\ -2x - 1 & \text{if } x < 0 \end{cases}$$

Question 5

We will learn about set theory in this course. Use LATEX to write the following sets:

$$V = \{x \in \mathbb{Z} | x < 100\} \cap \{x \in \mathbb{Z} | x \text{ is prime}\}\$$

$$V \subset W$$

Question 6

We will also learn about Boolean formulas and logic. Use LATEX to write the following Boolean formula:

$$((\alpha \to \beta) \land (\beta \to \gamma)) \to (\alpha \to \gamma)$$

Question 7

Consider the following statements about integers:

- 1. For every x, there is a y, such that x + y = 0
- 2. There is a y, such that for every x, we have x + y = 0

In symbols, these statements are written respectively:

- 1. $\forall x \exists y \ x + y = 0$
- 2. $\exists y \ \forall x \ x + y = 0$

Use LATEX to write these two statements.

Question 8

Use IAT_EX to write the following proof verbatim (as is) including the square, mark of end of proof:

If x is even, then x^2 is even.

Proof. x is an even number. $\exists a \in \mathbb{Z}$ such that x = 2a $x^2 = (2a)^2 = 4a^2 = 2(2a^2)$ Let $c = 2a^2$, $c \in \mathbb{Z}$ $x^2 = 2c$ Therefore, x^2 is even.

Question 9

Use $\ensuremath{\mbox{L\!A}\mbox{T}_{\mbox{E}}\mbox{X}\mbox{to}$ write the following truth table:

x	y	$x \vee y$
TRUE	TRUE	TRUE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE