
WebDAVA: An Administrator-Free Approach To Web File-Sharing

Alexander Levine Vassilis Prevelakis
Alexander.Levine@drexel.edu vp@drexel.edu

Drexel University Drexel University

John Ioannidis Sotiris Ioannidis Angelos D. Keromytis
ji@research.att.com sotiris@dsl.cis.upenn.edu angelos@cs.columbia.edu

AT&T Labs – Research University of Pennsylvania Columbia University

Abstract

Collaboration over the Internet depends on the ability
of the members of a group to exchange data in a secure
yet unobtrusive manner. WebDAVA is a system that allows
users to define their own access-control policies to network
resources that they control, enabling secure data sharing
within an enterprise. Our design allows users to selectively
give fine-grain access to their resources without involving
their system administrators. We accomplish this by using
authorization credentials that define the users’ privileges.

Our prototype implements a file-sharing service, where
users maintain sensitive-information folders and can allow
others to access parts of these. Clients interact with the
server over HTTP via a Java applet that transparently han-
dles credential management. This mechanism allows users
to share information with users not a priori known to the
system, enabling administrator-free management.

This work was supported by DARPA and NSF under
Contracts F39502-99-1-0512-MOD P0001 and CCR-TC-
0208972 respectively.

1 Introduction

The Web has become the standard mechanism by which
most users access networked information resources today.
Despite the high sophistication of available Web services,
some common usage cases remain unnecessarily complex.
A typical example of such a case is when a user, Alice,
wants to share some files, e.g., drafts of a legal agreement
under preparation, with another user, Bob, who is not part of
the same enterprise or division (and thus does not have ac-
cess to the Alice’s file server). Bob’s only way of accessing
these documents is “over the Web.” Alice would typically
place the files in a directory on her web server where she
has local access (meaning, she is an authenticated user of

the system), and then give Bob a URL. If she does not want
anyone else to see the drafts, Alice has to set up a way for
the server to authenticate Bob before granting him access.
Depending on how this is done, Bob may or may not be able
to give the URL to some of his colleagues (that is, delegate
access). If Alice wants to give access to different subsets of
her work items to different users, she has to resort to some
rather complicated hacks, or create individual directories
with copies of different subsets of the documents. A simi-
lar example would be that of a small number of users from
different organizations collaborating on a joint project (e.g.,
researchers from various institutions co-authoring a paper).
Traditional access-control mechanisms are ill-suited for a
world-wide network of millions of computers each with the
ability to act as a resource server to disparate clients who
cannot all be authenticated with a uniform mechanism.

We examine the dynamics of use of a credential-based
capability mechanism that provides file-access services to
an extended user base. In the traditional approach, Bob
must register with Alice’s server and inform her of his new
user-id, so that she can give him access to the files. Thus,
the system must perform two separate operations in order to
allow Bob access to Alice’s files. First, it must authenticate
Bob (this is why advance registration is needed) and then
determine whether Bob is authorized to access the files.

Significant effort has gone into optimizing this process.
Kerberos allows a collection of servers to use a centralized
database of users for authentication purposes. X.509 cer-
tificates were designed with a similar objective in mind.
Certificates allow a trusted third party, called the Certifica-
tion Authority (CA), to vouch for the binding of the owner’s
name to a key. This is done by having the CA digitally sign
the certificate. These arrangements appear to work satisfac-
torily as long as we constrain ourselves to a single adminis-
trative domain. If we try to combine different domains via
cross-certification, we are likely to “turn the hierarchy of
trust into the spaghetti of doubt” [3]. The importance of al-

1



lowing geographically-dispersed users to access distributed
resources is identified in [8]. To address the problem, they
employ an access-control mechanism that uses digitally-
signed certificates to enforce their access policy. However,
the servers that provide the resources remain burdened with
locating attribute and condition certificates.

Our system uses credentials that directly grant access
privileges. The credentials are based on the KeyNote trust-
management system [2], allowing us to use the flexibility
of the policy definition language within the credentials to
specify additional access constraints (e.g., access only on
weekends, outside office hours, etc.). Group membership
is implemented by issuing separate credentials to different
members of the group. Furthermore, a single credential
can authorize access to collections of files, easing credential
management. Perhaps the most significant benefit of using
KeyNote credentials is delegation: rather than require Bob
to register with the site before accessing Alice’s files, the
system allows Alice to delegate a subset of her access rights
(e.g., read-only access) to Bob by using her private key to
sign a credential granting Bob’s public key the privileges.

The elegance of this approach is that the credential itself
contains information that is meaningless outside the server:
the credential need only contain the file handle, Alice’s and
Bob’s public keys and the digital signature. As long as
Alice is satisfied that the public key she received actually
does belong to Bob, there is no need for third parties (e.g.,
Certification Authorities) to be involved in the transaction.
Acquiring the credential does not give a third party access,
since the request for the file will have to be signed by Bob.

2 WebDAVA Design

We now consider our requirements for a system where
an authorized user can grant access to external users. First,
the system must be able to handle large numbers of files
or services, and an even larger number of users accessing
these. Second, the system must maintain as little additional
state as possible, apart from the actual data stored. Third,
administrator involvement in privilege management should
be minimal. Local users must be able to directly authorize
access to files by external users, rather than having to cre-
ate local accounts. Furthermore, the file access conditions
must be flexible and extensible. Additionally, the adminis-
trator must be able to specify the default access policies for
the entire site. This policy must be obeyed by the system,
regardless of individual users’ settings. Finally, the autho-
rization mechanism must allow use of different authentica-
tion and traffic-protection mechanisms, e.g., TLS or IPsec.

Existing systems have several shortcomings when used
for information-sharing tasks. First, traditional user authen-
tication implies that the user is known to the system, before
file requests can be processed. Second, file and directory

permissions are concepts inherited from multi-user operat-
ing systems. Sharing is achieved by either account sharing
(which is ill-advised, as it defeats accountability) or through
the use of group access permissions. Such permissions lack
flexibility and fine granularity, and, perhaps most impor-
tantly, extensibility: there is no way of adding new permis-
sion mechanisms if the existing ones prove inadequate.

The leading design constraint was for the system to be
usable from most commonly available hardware/software
platforms. This led naturally to our two major design de-
cisions: to use HTTP as the transfer protocol, and to use a
Java applet as the client interface. A user using any popular
browser on any platform can use our system.

2.1 The KeyNote Trust-Management System

To express access rights and the diverse conditions under
which these are granted, we need some form of policy def-
inition language. We use the KeyNote trust management
system for this purpose, because of our familiarity with
it. The basic service provided by KeyNote is compliance
checking; that is, checking whether a proposed action con-
forms to policy. Actions are specified as a set of name-value
pairs, called the action attribute set. Policies are written
in the KeyNote assertion language and either accept or re-
ject action attribute sets presented to the policy engine (non-
binary results are also possible, but we do not consider them
here). Policies can be broken up and distributed as creden-
tials, which are signed assertions that can be sent over a
network and to which a local policy can refer when mak-
ing a decision. The credential mechanism allows for arbi-
trarily complex graphs of trust, in which credentials signed
by several entities are considered when authorizing actions.
Group-based access is handled by issuing the appropriate
credentials to all the group members. Furthermore, sub-
groups can be created at any level in the hierarchy.

Authorizer: ADMINISTRATOR’S_PUBLIC_KEY
Licensees: ALICE’S_PUBLIC_KEY
Conditions: (AppDomain == "WebServer") &&

(File_UID == "666240") -> "RWX";
Comment: Owner (Alice) can do anything!

UID:666240
signature: SIGNED_BY_ADMIN’S_PRIVATE_KEY

Figure 1. Credential by the administrator giv-
ing Alice access to a file. Public keys and sig-
natures are replaced with symbolic names.

Figures 1 and 2 show two credentials forming part of a
delegation chain in our system. User Alice is granted access
to a particular file through a credential issued by the ad-
ministrator. User Bob is then granted read-only access (by

2



Authorizer: ALICE’S_PUBLIC_KEY
Licensees: BOB’S_PUBLIC_KEY
Conditions: (AppDomain == "WebServer") &&

(localtime >= "20021115000001") &&
(localtime <= "20021115235959") &&
(method == "GET") &&
(File_UID == "666240") -> "RWX";

Comment: UID:666240
Signature: SIGNED_BY_ALICE’S_PRIVATE_KEY

Figure 2. Credential from Alice delegating
read-only access to a file to Bob, for one
day. Again, public keys and signatures are
replaced with symbolic names.

Alice) to access the same file during November 15, 2002.
KeyNote will allow this delegation because the authority
granted to Bob is a subset of the authority granted to Alice.
Notice that users are identified only by their public keys.

The advantage of using this system is that we no longer
need to have a priori knowledge of the user base. Thus,
the system does not need to store information about every
person or entity that may need to retrieve a file. We also
provide our users with the ability to propagate access to the
files by passing on (delegating) their rights to other users.
In this way, users pass credentials rather than passwords,
thus allowing the system to associate access requests with
keys and also to be able to reconstruct the authorization path
from the administrator to the user making the request (and
thus grant access). The system may not know that Bob is
trying to get at a file, but it can log that key B (Bob’s key)
was used and that key A (Alice’s key) authorized the oper-
ation. Logging such information creates a clear audit trail
for any access request, which can be used by the adminis-
trator to validate that the appropriate usage policy is being
followed. Note that a user can at most pass on the privileges
she holds (there is no rights amplification); furthermore, the
user can delegate only a subset of her privileges (e.g., access
to only a specific file in the user’s directory).

2.2 Saving Files

The HTTP PUT method is used to upload a file to the
server. When a client needs to upload a file to the server,
a PUT request must be sent. The PUT header includes the
length of the file, the URI of the file, and the user’s public
key. If the URI refers to a file that is already on the server,
then the server requests a valid credential from the user that
includes proper access rights (this situation is discussed in
Section 2.4). If all of the information in the PUT request is
valid, then the server returns a 100 Continue response.
Upon receiving this message, the client can upload the file

to the server. If the information is invalid, then the server
returns a 401 Unauthorized response to the client, and
the client must either try again or abort the transfer.

Figure 3. Uploading a file to the server.

After a file has been successfully uploaded to the server,
the server creates a KeyNote credential granting full-access
privileges for that file to the client. A unique identifier
(UID) for that file is associated with the file; this UID is also
included in the credential. The server then returns a 201
Created message to the client. This response includes
the credential in the ETag portion of the message. While
the ETag header is generally a caching-related header, it is
used here as it is the only way to send back information
about a resource in the response header. The receipt of the
201 Created response completes the transaction. The
software on the client must then extract the credential and
store it. This credential will be required for future access to
the file. Figures 3 and 4 show successful and unsuccessful
file upload exchanges between a browser and a server.

Figure 4. Failed attempt to upload a file.

2.3 The Challenge-Response Scheme

The system employs a challenge-response scheme to
protect against replay attacks. When a user attempts to ac-
cess a secure file on the WebDAVA server, the server sends
back a 401 Unauthorized response containing a chal-
lenge. Included in the WWW-Authenticate header is the
name of the authentication method being used, a nonce, and
the server’s public key:

WWW-Authenticate: Keynote nonce=<nonce> \\
server_key=<server_key>\r\n

The client then prepares a response that includes the
nonce from the challenge message. The client first creates a

3



new nonce credential delegating trust to the server key for
the desired action (GET, PUT, etc.). The nonce credential is
signed with the user’s private key. The Authorization header
of the response includes the user’s public key, the original
file credential, and the newly created nonce credential:

Authorization: client_key=<client_key> \\
credential=<original_credential>\n\n \\
<nonce_credential>\r\n

When the server receives the message, it verifies that
all the necessary information is included. If not, a 401
Unauthorized message is sent. If all the necessary
information is there, the server passes all supplied cre-
dentials to the KeyNote policy engine, along with the
action name/value pairs of (AppDomain, “WebServer”),
(method, “ �

method � ”), (file, “ �
File UID � ”), and (nonce,

“ �
nonce � ”), as well as the server’s local policy, and the

user’s public key as the action authorizer.
�

File UID �
refers to the UID of the requested file and �

method � to
the HTTP method being called (GET, PUT, DELETE). If
KeyNote approves the request, the file is sent to the client.
Otherwise, a 403 Forbidden message is returned. Fig-
ures 5 and 6 show successful and unsuccessful challenge-
response message exchanges for a GET request.

Figure 5. Message exchange in a successful
GET request.

2.4 Downloading, Editing, and Deleting Files

Downloading a file from the web server is done via the
HTTP GET method. Files on the server are identified via
the UID assigned when they are first uploaded to the server.
First, the client sends a GET request for the file using the
UID as the file URI. The server then attempts to validate the
user’s request via the challenge-response scheme mentioned
previously. If the credential verification is successful, a 200
OK response is generated and the file is transmitted.

Modifying a stored file is done by overwriting it using
the HTTP PUT method, as described previously in Sec-
tion 2.2. Deleting a file is done by saving an empty file;
the server notices that the file is empty and removes it. If
the user really wants an empty file, she must create one.

Figure 6. Message exchange in a failed GET
request.

3 Prototype

Our prototype implementation of WebDAVA allows
users to create the delegation credentials and send them
to other users. Moreover, the software allows users to ac-
cept and integrate within their workspace credentials sent
to them by other users. The server, written in C++, im-
plements the initial uploading of files and their subsequent
downloading, based on receipt of proper credentials.

The server puts all uploaded files in a directory called
“storage”. When the server receives a file, it creates a UID
to represent it using the uuid generate API that is part of
the Linux E2fsprogs ext2 filesystem library. The file is then
stored on the server using this UID. A client trying to re-
trieve a file must sends a special file access block (FAB)
that contains the file UID along with additional information
(note that the FAB in Figure 7 is that of the file owner, as it
does not contain any delegation credentials).

Figure 7. FAB with a single credential.

For portability, the client was implemented as a signed
Java applet. Clients can upload a file to the server, for which
they will receive a file access credential in return (contained
inside the file access block). They can then use this cre-
dential to retrieve the file from the server, or they can pass
it, along with a delegation credential they create, to another
user with a valid set of keys. When Alice wants to download
a file from the server, she sends the credential representing
the file. If the credential is valid, the server then sends the
file to the client. The applet can search for the appropriate
credential using the UID as a key in its credential database.

When Alice wants to allow another user, Charlie, to ac-

4



cess a file stored on the WebDAVA server, she needs to re-
trieve Charlie’s public key, construct the credential delegat-
ing access to Charlie’s key, and then send this credential
along with her own access credentials to Charlie. Charlie
must import these credentials and use them to access the
file. While Alice may use any mechanism to get Charlie’s
key, we provide a key-server that stores the keys of the var-
ious users to simplify credential management.

To transfer a credential to Charlie, Alice simply selects
the credential and enters Charlie’s email address. When
users run the Java applet for the first time, their email ad-
dresses and public keys are passed to the key-server. The
key-server stores a mapping of email address/public key
pairs. If Charlie is not registered, Alice must obtain his
key through other means. If Charlie is registered with the
key-server, Alice creates a credential transferring authority
to Charlie’s key and appends it to a copy of the creden-
tials she already has for that file. The client then creates an
email message using these credentials and sends it to Char-
lie. Charlie can use these credentials to download the file
from the server. Figure 8 shows Charlie’s FAB.

Figure 8. FAB with the file access credential
and one delegation credential.

4 Evaluation

Performance Analysis The prototype implementation
was used to determine the costs of the initial message ex-
change and credential verification. We used a Pentium 866
Mhz machine running Red Hat Linux 7.2 (server) and an
IBM X.21 laptop running Windows 2000 (client). We mea-
sured the average elapsed time for repeatedly processing a
GET request for the same file. We performed this operation
with the access-control mechanism disabled, using only the
original credential delegated from the server to the client
who had initially uploaded the file, and with an increasing
number of delegation credentials. Figures 9 and 10 show the
results of using a local (on the same machine as the server)
and a remote (over the network) client respectively.

The time was measured in system-clock ticks, with a res-

Clockticks

N
o 

S
ec

ur
ity

O
rig

in
al

 C
er

tif
ic

at
e

D
el

eg
at

e 
1 

T
im

e

D
el

eg
at

e 
2 

T
im

es

D
el

eg
at

e 
3 

T
im

es

D
el

eg
at

e 
4 

T
im

es

D
el

eg
at

e 
5 

T
im

es

0
10
20
30
40
50
60
70

1

33.35 34.85
39.3 40.5

45.7 48.15

Figure 9. Time to handle a GET request, client
and server on the same host.

Clockticks

N
o 

S
ec

ur
ity

O
rig

in
al

 C
er

tif
ic

at
e

D
el

eg
at

e 
1 

T
im

e

D
el

eg
at

e 
2 

T
im

es

D
el

eg
at

e 
3 

T
im

es

D
el

eg
at

e 
4 

T
im

es

D
el

eg
at

e 
5 

T
im

es

0
10
20
30
40
50
60
70

0.9

34.3 38 41.45
51.1

57.4 60.95

Figure 10. Time to handle a GET request,
client connecting over the network.

olution of ������� seconds. Increasing the number of delega-
tions slightly increases request-processing time. Additional
tests showed that the policy evaluation itself required be-
tween 1 and 2 clock ticks, even after 5 delegations. The
cost of retrieving the file from disk is minimal since, af-
ter the first request, it resides entirely in the operating sys-
tem’s cache. Thus, the increase in latency can be directly
attributed to the overhead of the security mechanism and
the network-stack (present even in the local-access case).
Security Analysis As the performance analysis indicates,
the challenge-response phase incurs a significant perfor-
mance penalty. This cost, however, must be weighed
against the benefits gained from a security perspective.
The design primarily addresses replay attacks, whereby an
eavesdropper records an interaction between a user and the
server, and sends the same packets at a later time. The exis-
tence of the nonce in the server’s challenge ensures that each
exchange is unique (assuming a good source of entropy).
Revocation One of the major problems in capability-
based systems is revocation. In our system, each file has

5



an associated file that stores information about revoked cre-
dentials. Before the KeyNote compliance checker is con-
sulted, the file-access credential is checked against the cor-
responding revocation file to make sure it is still valid. If
it is found in the revocation file, the compliance checker
does not consider it in the policy evaluation. In this way,
the revocation file acts as a Certificate Revocation List. The
fact that the file is located in one server makes this simple
approach acceptable. The only remaining problem, of how
revoked credentials are added to the file, is solved by having
the issuer of the credential to be revoked attempt to upload
the credential in the revocation file (using the PUT method),
using our protocol to authenticate. The server intercepts the
PUT method, verifies that the key used to authenticate the
request is the same as the key that signed the credential, and
adds the hash of the credential to the revocation file.
Other Services Web servers are increasingly used as
front-ends to databases and other services. Clients issue
parameterized POST requests that are passed to programs
spawned by the web server in response (e.g., CGI scripts).
This model has proved very successful, and various stan-
dardization efforts use it for remote method invocation and
as an inter-process communication mechanism. Authenti-
cation using simple public key certificates does not allow
for fine-grain access control at the parameter level. Since
KeyNote allows for arbitrarily complex conditions to be ex-
pressed as part of the policy, we can pass the inputs from
a POST request to the policy engine, as part of the access-
control decision-making process. Access to services can
then be arbitrarily fine-grained using the WebDAVA model.

5 Related Work

Although network file systems such as NFS [6] and
AFS [4] are the most popular mechanisms for sharing
files in tightly-administered domains, crossing administra-
tive boundaries creates numerous problems. Similar issues
arise with SFS [5]. Although its self-certifying pathnames
(file names that effectively contain the appropriate remote
server’s public key) allows clients to contact previously-
unknown servers, clients must still use X.509 certificates
or a shared-secret protocol to authenticate to the server.

WebFS [9, 1] implements a network file system using
user-level HTTP servers to transfer data, along with a kernel
module that implements the file system. It uses X.509 cer-
tificates to identify users and transfer privileges. Each file is
associated with an ACL that enumerates which users have
read, write, or execute permission on the file. By avoiding
traditional ACLs altogether, we remove the need for main-
taining, and controlling access to, a separate administrative
interface for managing the ACLs.

Capafs [7] provides a weak security system for file ac-
cess by encoding the access capabilities in the file name.

Apart from producing complex file names, knowledge of
the file name allows access to the file, making it a password.

6 Conclusions

Our motivation for this work was the inappropriateness
of traditional access control mechanisms for use on the web.
Their main failing is that policy is embedded in the operat-
ing or file system (e.g., directory permissions), so that pro-
ducing variations to suit changing needs is difficult. There-
fore, while it quite possible to implement strategies like ours
using traditional mechanisms, the result would be inflexible
and non-intuitive, thus alienating users. Examples abound
where user apathy or incomprehension have caused serious
security breaches. By creating a portable application that
allows any user to utilize the WebDAVA secure web server
we have also shown that simple solutions employing novel
techniques are often more effective than the older mono-
lithic mechanisms. Although we have concentrated on the
Web model, nothing prevents the same techniques from be-
ing used in a distributed file system or in a resource allo-
cation mechanism as part of an operating system. We will
continue our research along these lines and apply the Web-
DAVA model in other domains.

References

[1] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin. The CRI-
SIS Wide Area Security Architecture. In Proceedings of the
USENIX Security Symposium, pages 15–30, August 1998.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis.
The KeyNote Trust Management System Version 2. RFC
2704, September 1999.

[3] P. Gutmann. PKI: It’s Not Dead, Just Resting. IEEE Com-
puter Magazine, 35(8):41–49, August 2002.

[4] J. H. Howard et al. Scale and Performance in a Distributed
File System. ACM Transactions on Computer Systems,
6(1):51–81, February 1988.

[5] D. Mazieres, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In Pro-
ceedings of the Symposium on Operating Systems Principles
(SOSP), pages 124–139, 1999.

[6] R. Sandberg et al. Design and Implementation of the Sun
Network File System. In Proceedings of the Summer USENIX
Conference, June 1985.

[7] J. Regan and C. Jensen. Capability File Names: Separat-
ing Authorization from User Management in an Internet File
System. In Proceedings of the USENIX Security Symposium,
pages 211–233, August 2001.

[8] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jack-
son, and A. Essiari. Certificate-based access control for
widely distributed resources. In Proceedings of the USENIX
Security Symposium, pages 215–228, August 1999.

[9] A. Vahdat. Operating System Services for Wide-Area Appli-
cations. PhD thesis, University of California, Berkeley, De-
cember 1998.

6


