
Hardware Support For Self-Healing Software Services

Stelios Sidiroglou Michael E. Locasto Angelos D. Keromytis
Department of Computer Science, Columbia University in the City of New York

{stelios,locasto,angelos}@cs.columbia.edu

Abstract

We propose a new approach for reacting to a wide
variety of software failures, ranging from remotely
exploitable vulnerabilities to more mundane bugs
that cause abnormal program termination (e.g., ille-
gal memory dereference). Our emphasis is in cre-
ating “self-healing” software that can protect itself
against a recurring fault until a more comprehensive
fix is applied. Our system consists of a set of sensors
that monitor applications for various types of fail-
ure and an instruction-level emulator that is invoked
selectively, for parts of a program’s code. Such an
emulator allows us to predict recurrences of faults,
and recover program execution to a safe control flow.
Using the emulator for small pieces of code, as di-
rected by the sensors, allows us to minimize the per-
formance impact on the immunized application. We
describe the overall system architecture, highlighting
a prototype implementation for the x86 platform. We
discuss a virtual emulator, which uses existing and
new processor features to improve performance.

1 Introduction

Despite considerable work in fault tolerance and re-
liability, software remains notoriously buggy and
crash-prone. The situation is particularly trouble-
some with respect to services that must maintain
high availability in the face of deliberate remote at-
tacks, high-volume events (such as fast-spreading
worms that may trigger unrelated and possibly non-
exploitable bugs, or simple denial of service attacks
directed against the software as opposed to the un-
derlying network). The majority of solutions to this

problem are proactive, and include safe make the
code as dependable as possible, through a combina-
tion of safe languages and compilers, code analysis,
development methodologies, sandboxing, Byzantine
fault-tolerance schemes, and others.

We take a reactive approach by observing an ap-
plication (or appropriately instrumented instances of
it) for previously unseen failures. Upon detection
of a fault, we invoke a localized recovery mecha-
nism that seeks to recognize and prevent the spe-
cific failure in future executions of the program. Us-
ing continuous hypothesis testing, we verify whether
the specific fault has been repaired by re-running
the application against the event sequence that ap-
parently caused the failure. Our initial focus is on
automatic healing of services against newly detected
faults (whether accidental or maliciously induced).
We emphasize that we seek to address a wide vari-
ety of software failures, not just attacks. The types
of faults we examine here consist of illegal mem-
ory dereferences and division by zero exceptions, as
well as buffer overflow attacks. Other types of fail-
ures can be easily added to our system as long as
their cause can be algorithmically determined (i.e.,
another piece of code can tell us what the fault is and
where it occurred).

To recover, we use an instruction-level emulator,
libtasvm, that can be selectively invoked for arbitrary
segments of code, allowing us to mix emulated and
non-emulated execution inside the same code exe-
cution. The emulator allows us to (a) monitor for
the specific type of failure prior to executing the in-
struction, (b) undo any memory changes made by
the code function inside which the fault occurred, by
having the emulator record all memory modifications

made during its execution, and (c) simulate an error-
return from said function. Our intuition is that most
applications can handle most errors (i.e., a routine re-
turning with an error code), even though a condition
that was not predicted by the programmer allowed
a fault to slip in. Our preliminary experiments with
Apache, OpenSSH, and Bind support this. Although
the system incurs a significant performance penalty,
we believe that by using certain features at the micro-
architecture level, it should be possible to create a
virtual emulator that exhibits better performance.

Application Server

Instrumented
Application

Hypothesis
testing &
Analysis

Internet

Enterprise Network

(1) Failure inducing
Input

(2) Sensor determines
failure

(3) Input vector

(4) Feedback control
loop

(5) Update application

Figure 1: Self-healing services architecture.

2 Architecture

Our architecture, conceptually depicted in Figure 1,
uses three types of components: a sensor that moni-
tors an application such as a web server for faults, an
instruction-level emulator (libtasvm), implemented
as a library that is linked in with the application) that
can selectively emulate “slices” (arbitrary segments)
of code, and a testing environment where hypotheses
about the effect of various fixes are evaluated. Note
that these components can operate without human
supervision to minimize reaction time. The types
of faults we are currently handling include those
that cause abnormal program termination. Specifi-
cally, we handle illegal memory accesses, division
by zero, and buffer overflow attacks (as an instance

of a remotely exploitable software fault that is widely
in use). We intend to enrich this set of faults in
the future, specifically examining Time-Of-Check-
To-Time-Of-Use (TOCTTOU) violations.

Upon detecting a fault in the monitored applica-
tion, the sensor instruments the portion of the appli-
cation’s code that immediately surrounds the faulty
instruction(s) such that the code segment is emu-
lated. To verify the effectiveness of the fix, the ap-
plication is restarted in a test environment (sandbox)
with the instrumentation enabled, and is supplied
with the input that caused the failure (or the N most
recent inputs, if the offending one cannot be easily
identified). During emulation, libtasvm maintains a
record of all memory changes (including global vari-
ables or library-internal state, e.g., libc standard I/O
structures) the emulated code makes, along with their
original values. Furthermore, libtasvm examines the
operands and pre-determines the side effects of the
instructions it emulates. Using an emulator allows us
to avoid the complexity of code analysis and slicing,
as we only need to focus on the operation and side
effects of individual instructions independently from
each other. If the emulator determines that the fault
is about to occur after (or while) the next instruction,
the emulated execution is aborted. Specifically, all
memory changes made by the emulated code are un-
done, and the currently executing function is made to
return an error. We describe how this is done later in
this paper. The intuition behind our approach is that
most code is designed to handle error returns from
functions, despite the fact that boundary conditions
that escaped the programmer’s attention allowed a
particular fault to manifest itself. We describe this
hypothesis in more detail later in this section.

Upon forcing the function to return, emulation
also terminates. If the program crashes, the scope of
the emulation is expanded to include the parent rou-
tine, repeating as necessary. In the extreme case, the
whole application could end up being emulated at a
significant performance cost. However, as we shall
see in Section 3, this is very rarely necessary. If the
program does not crash after the forced return, we
have found a “vaccine” for the fault, which we can
use on the production server. Naturally, if the fault is

not triggered during an emulated execution, emula-
tion ends at the end of the vulnerable code segment
making all memory changes permanent. Note that
the cost of emulation is incurred at all times (whether
the fault is triggered or not). To minimize this cost,
we must identify the smallest piece of code that we
need emulate in order to catch and recover from the
fault. We currently treat functions as discrete entities
and emulate the whole body of a function, although
the emulator allows us to start and stop emulation at
arbitrary points.

Application Monitors The sensors we need to
detect software failures depend on the nature of the
flaws themselves, as well as on our tolerance of their
impact to system performance. We describe the two
types of application monitors that we experimented
with. First, and perhaps more straightforward, is to
depend on the operating system itself and the de-
fault behavior applications when faults such as ille-
gal memory dereferences occur: the application is
forced to abort, creating a core dump that includes
the type of failure and the stack trace when that fail-
ure occurred. This provides us with sufficient infor-
mation to apply selective emulation, starting with the
top-most function in the stack trace. Thus, we only
need a watchdog process that waits until the service
terminates before it invokes our system.

A second approach is to use an instrumented ver-
sion of the application on a separate server as a hon-
eypot, as we demonstrated for the case of network
worms [2]. Under this scheme, we instrument the
parts of the application that may be vulnerable to a
particular class of attack (in this case, remotely ex-
ploitable buffer overflows) such that an attempt to
exploit a new vulnerability exposes the attack vector
and all pertinent information (attacked buffer, vul-
nerable function, stack trace, etc.). This information
is then used to construct an emulator-based vaccine
that effectively implements array bounds checking
at the machine-instruction level. This approach has
great potential in catching new vulnerabilities that
are being indiscriminately attempted, as may be the
case with a fast-spreading worm. Since the honey-
pot is not in the production server’s critical path, its

performance is not a primary concern (assuming that
attacks are relatively rare). In the extreme case, we
can construct a honeypot using our instruction-level
emulator to execute the whole application, although
we do not further explore this possibility in this pa-
per.

Instruction-level Emulation For our recovery
mechanism we use an instruction-level emulator, lib-
tasvm, that can be selectively invoked for arbitrary
segments of code, allowing us to mix emulated and
non-emulated execution inside the same code exe-
cution. To enable selective emulation, we provide
a statically-linked C library that defines special tags
(combination of macros and function calls) that mark
the beginning and end of selective emulation. Upon
entering the vulnerable section of code, the emulator
captures the program state and processes all instruc-
tions, including function calls, inside the area des-
ignated for emulation. To use the emulator, we can
either link it with an application in advance or com-
pile it in in response to a detected failure, as is done
in [2]. When the program counter references the first
instruction outside the bounds of emulation, the vir-
tual processor copies its internal state back to the pro-
gram. While registers are explicitly updated, mem-
ory updates have implicitly been applied throughout
the execution of the emulation. The program, un-
aware of the instructions executed by the emulator,
continues executing directly on the CPU. The use of
an emulator allows us to monitor a wide array of soft-
ware failures such as illegal memory dereferences,
buffer overflows and underflows, and more generic
faults such as division by zero. To implement this,
the emulator simply checks the operands of instruc-
tions it is about to emulate, also using additional in-
formation that is supplied by the sensor that detected
the fault. In the case of division by zero, the emula-
tor need only check the value of the operand to the
div instruction. For illegal memory dereferencing,
the emulator verifies whether the source and desti-
nation address of any memory access (or the pro-
gram counter, for instruction fetches) points to a page
that is mapped to the process address space using
the mincore() system call. Buffer overflow detec-

tion is handled by “padding” the memory surround-
ing the vulnerable buffer, as identified by the sensor,
by one byte, similar to the way StackGuard [1] op-
erates. The emulator then simply watches for mem-
ory writes to these memory locations. Our approach
allows us to stop the attack before it overwrites the
stack, and to recover the execution.

Once we detect a software failure, we are able to
undo any memory changes made by the code func-
tion inside which the fault occurred by having the
emulator keep track of all implicit memory modifi-
cations during its execution. Currently, the emulator
must be pre-linked with the vulnerable application,
or that the source code of that application is avail-
able. However, it is possible to circumvent this limi-
tation by using the processor’s programmable break-
point register (in much the same way as a debugger
uses it to capture execution at particular points in the
program) to invoke the emulator without the running
process even being able to detect that it is now run-
ning under an emulator.

Recovery: Forcing Error Returns Upon de-
tecting a fault, our recovery mechanism undoes all
memory changes and forces an error return from the
currently executing function. To determine the ap-
propriate error value, we analyze the declared type
of the function. Depending on the return type of the
emulated function, an “appropriate” value is returned
based on some straightforward heuristics. For exam-
ple, if the return type is an int, a −1 is returned; if
the value is unsigned int we return 0, etc. A spe-
cial case is used when the function returns a pointer.
Specifically, instead of blindly returning a NULL,
we examine if the returned pointer is later derefer-
enced further by the parent function. If so, we ex-
pand the scope of the emulation to include the par-
ent function. We handle value-return function argu-
ments similarly. These heuristics worked extremely
well in our preliminmary experiments. In the future,
we plan to use more aggressive source code analy-
sis techniques to determine the return values that are
appropriate for a function. Since in many cases a
common error-code convention is used for a large
application, it is possible to ask the programmer to

provide a short description of this convention as in-
put to our system.

3 Evaluation

To validate our hypothesis on control flow recovery
using forced function return, we ran profiled versions
of the selected applications against a set of test suites
and examine the subsequent call-graphs generated by
these tests with gprof and Valgrind. The ensuing call
trees are analyzed in order to extract leaf functions.
The leaf functions are, in turn, employed as poten-
tially vulnerable functions. Armed with the infor-
mation provided by the call-graphs, we run a TXL
script that inserts an early return in all the leaf func-
tions, simulating an aborted function. Specifically,
we examined 154 leaf functions. For each simulated
aborted transaction, we monitor the program execu-
tion of Apache by running httperf, a web server per-
formance measurement tool. The results from these
tests were very encouraging; 139 of the 154 func-
tions completed the httperf tests successfully: pro-
gram execution was not interrupted. What we found
to be surprising was that not only did the program not
crash, but in some cases all the pages were served
correctly. This is probably due to the fact a large
number of the functions are used for statistical and
logging purposes. Furthermore, out of the 15 func-
tions that produced segmentation faults, 4 did so at
start up.

Similarly for sshd, we iterate through each simu-
lated aborted function while examining program ex-
ecution during an scp transfer. In the case of sshd,
we examined 81 leaf functions. Again, the results
were analogously auspicious: 72 of the 81 functions
maintained program execution. Furthermore, only 4
functions caused segmentation faults; the rest simply
did not allow the program to start. For Bind, we ex-
amined the program execution of named during the
execution of a set of queries; 67 leaf functions were
tested. In this case, 59 of the 67 functions main-
tained the proper execution state. Similarly to the
results from sshd, only 4 functions caused segmenta-
tion faults.

To further validate our hypothesis against real at-

tacks, we used set of exploits for Apache, OpenSSH
and Bind and tested them against our system. No
prior knowledge was encoded in our system with re-
spect to the vulnerabilities: for all purposes, this was
a zero-day attack. For Apache, we used the apache-
scalp exploit that takes advantage of the fact that
Apache improperly calculates the required buffer
sizes for chunked encoding requests resulting in a
buffer overflow. We applied selective emulation on
the offending function and successfully recovered
from the attack; the server successfully served sub-
sequent requests. The attack used for OpenSSH was
the RSAREF2 exploit for SSH-1.2.27. This exploit
relies on unchecked offsets that result in a buffer
overflow attack. Again, we were able to gracefully
recover from the attack and the sshd server contin-
ued normal operation. Bind is susceptible to a num-
ber of known exploits; for the purposes of this exper-
iment, we tested our approach against the TSIG bug
on ISC Bind 8.2.2-x. In the same motif as the previ-
ous attacks, this exploit takes advantage of a buffer
overflow vulnerability. Similar to previous cases, we
were able to safely recover program execution while
maintaining service availability.

We next turned our attention to the performance
impact of our system. In particular, we measured
the overheads imposed by the emulator component.
The libtasvm emulator is meant to be a lightweight
mechanism for executing selected portions of an ap-
plication’s code. We can select these code slices ac-
cording to a number of strategies, as we discussed in
the previous section. We evaluated the performance
impact of libtasvm by instrumenting the Apache
2.0.49 web server and OpenSSH sshd. We first
show that emulating the bulk of an application en-
tails a significant performance impact. In particular,
we emulated the main request processing loop for
Apache (contained in ap process http connection())
and compared our results against a non-emulated
Apache instance. In this experiment, the emulator
executed roughly 213,000 instructions. The impact
on performance is clearly seen in Figure 2 and further
elucidated in Figure 3, which plots the performance
of the fully emulated request-handling procedure.

To get a more complete sense of this performance

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80

re
qu

es
ts

 p
er

 s
ec

on
d

of client threads

Apache 2.0.49 Request Handling Performance

apache-mainloop
lbtasvm-mainloop
lbtasvm-parse-uri

lbtasvm-header-parser

Figure 2: Performance of various levels of emulation.
While full emulation is fairly invasive in terms of per-
formance, selective emulation of input handling rou-
tines appears quite sustainable.

0

50

100

150

200

0 10 20 30 40 50 60 70 80

re
qu

es
ts

 p
er

 s
ec

on
d

of client threads

Apache 2.0.49 (emulated) Request Handling Performance

lbtasvm-mainloop

Figure 3: A closer look at the performance for the fully
emulated version of main processing loop. While there
is a considerable performance impact compared to the
non-emulated request handling loop, the emulator ap-
pears to scale at the characteristic linear rate, indicat-
ing that it does not create additional overhead beyond
the cost of emulation.

impact, we timed the execution of the request han-
dling procedure for both the non-emulated and fully-
emulated versions of Apache by embedding calls to
gettimeofday() where the emulation functions were
(or would be) invoked. For our test machines and
sample loads, Apache normally (e.g., non-emulated)
spent some 6.3 milliseconds to perform the work in
the ap process http connection() function, as shown
in Figure 4. The fully instrumented loop running in
the emulator spends an average of 278 milliseconds
per request in that particular code section.

Lacking any actual attacks to launch against

1000

10000

100000

1e+06

0 2 4 6 8 10 12 14 16 18

tim
e

to
 s

er
vi

ce
 r

eq
ue

st
 (

m
ic

ro
se

co
nd

s)

trial #

Apache Request Loop Timing

normal apache
lbtasvm apache
valgrind apache

Figure 4: Timing of main request processing loop.
The y axis is on a log scale and shows the overhead
of running the whole primary request handling mech-
anism inside the emulator. Each trial represents a user
thread issuing an HTTP GET request.

Apache (with the exception of the apache-scalp
exploit, as we previously discussed), we used
the RATS tool to identify possible vulnerable
sections of code in Apache 2.0.49. The tool
identified roughly 270 candidate lines of code,
the majority of which contained fixed size local
buffers. We then correlated the entries on the
list with code that was in the primary execution
path of the request processing loop. The main re-
quest handling logic in Apache 2.0.49 begins in the
ap process http connection() function. The effective
work of this function is carried out by two subrou-
tines: ap read request() and ap process request().
The ap process request() function is where Apache
spends most of its time during the handling of a
particular request. In contrast, the ap read request()
function accounts for a smaller fraction of the
request handling work. We chose to emulate
subroutines of each function in order to assess the
impact of selective emulation. We constructed
a partial call tree and chose the ap parse uri()
function (invoked via read request line() in
ap read request()) and the ap run header parser()
function (invoked via ap process request internal()

in ap process request()). The emulator processed
approximately 358 and 3229 instructions, respec-
tively, for these two functions. In each case, the
performance impact, as expected, was much less
than the overhead incurred by needlessly emulating
the entire work of the request processing loop.

However, it should be possible to do better than
that, by using a virtual emulator that uses the stan-
dard memory-management subsystem of the proces-
sor and operating system, and a new proposed feature
we call instruction filtering. Effectively, we suggest
a debugging enhancement to processors that causes
the CPU to throw an exception when a particular
instruction (or class of instructions) is about to be
executed; control is then transferred to a registered
handler. This is similar to the way instruction roll-
back after a page fault is implemented in some ar-
chitectures, and also reminiscent of the way virtual
machines like VMWare handle non-virtualizable in-
structions. Thus, we can allow a piece of code to
execute until a specific class of instructions is en-
countered, at which point the checking code cur-
rently used in libtasvm can be invoked to determine
whether bad behavior is about to be exhibited. Fur-
thermore, we can use the copy-on-write feature avail-
able in most operating systems: prior to executing
the vulnerable code, mark all pages as read-only; any
memory writes will cause an exception that the op-
erating system will catch and recognize as relevant
to the emulation. The OS will then create a copy of
the page, and let the application resume execution.
Once we leave emulation, we can decide which ver-
sion of the pages to keep. Using these two features
(one existing, one proposed), it should be possible to
achieve better performance than pure emulation.

References

[1] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. Stackguard: Automatic adaptive detec-
tion and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Symposium,
January 1998.

[2] S. Sidiroglou and A. D. Keromytis. A Network Worm
Vaccine Architecture. In Proceedings of the IEEE

Workshop on Enterprise Technologies: Infrastructure
for Collaborative Enterprises (WETICE), Workshop
on Enterprise Security, pages 220–225, June 2003.

