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Abstract

Large scale distributed applications such as electronic
commerce and online marketplaces combine network ac-
cess with multiple storage and computational elements. The
distributed responsibility for resource control creates new
security and privacy issues, which are exacerbated by the
complexity of the operating environment. In order to han-
dle policies at multiple locations, the usual tools available
(firewalls and compartmented file storage) get to be used in
ways that are clumsy and prone to failure.

We propose a new approach, virtual private services.
Our approach relies on two functional divisions. First, we
split policy specification and policy enforcement, providing
local autonomy within the constraints of the global security
policy. Second, we create virtual security domains, each
with its own security policy. Every domain has an associ-
ated set of privileges and permissions restricting it to the
resources it needs to use and the services it must perform.
Virtual private services ensure security and privacy poli-
cies are adhered to through coordinated policy enforcement
points. We describe our architecture and a prototype im-
plementation, and present a preliminary performance eval-
uation confirming that our overhead of policy enforcement
using is small.

1 Introduction

Security is an application-dependent property, with some
applications requiring very little assistance, while others re-
quire considerable infrastructure to support their privacy,
integrity and availability requirements. When applications
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were confined to a single computer, the application pro-
grammer could rely on the host operating system to sup-
port these requirements. The advent of the Internet has in-
troduced new challenges for applications with non-trivial
access-control requirements. In particular, various network
access-control mechanisms such as firewalls are largely
oblivious to applications (and vice versa), while file-access
privileges associated solely with users may not allow for
sufficiently fine-grained access control to handle safety is-
sues related to untrusted active content (such as JavaScript
applets). In this paper, we introduce the concept of a virtual
private service (VPS), which captures in a policy specifica-
tion the complete access-control requirements of a service.
This single policy specification can then be used by enforce-
ment mechanisms in hosts, routers, firewalls and elsewhere
to produce a consistent environment for the service.

To illustrate virtual private services, let us look at an
example. Consider some web services run on a virtual
web server consisting of tens or hundreds of machines in
a server “farm”, with co-located auxiliary services such as
a database, credit card transaction support, and web-mail
service. Figure 1 shows the components of such a system,
without elaborating on the replicas of each component used
in a full-scale implementation (e.g.,, multiple servers per
physical location, and replicated physical locations, each
with a database replica and a credit card support system).

Typically, the configuration of such a system is static. By
this, we mean that the administrator configures each com-
ponent independently, and depends on the correctness of the
individual policies to enforce a system-wide policy for any
particular user or class of users. There is no coordination
among the nodes in the system, nor is there any coherent
relationship between the network access control (achieved
with firewalls and routers) and the node access control. The
application components thus become very difficult to man-
age effectively, and misconfigurations and other adminis-
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Figure 1. Current general architecture of dis-
tributed application clusters.

trative errors creep in [12, 21]. The causes can range from
the difficulty of managing local components, the difficulty
of managing local scale, or the difficulty of coordinating
across sites and administrators. Such systems call for an ap-
proach that can ensure consistent access-control policies, as
well as meet application-specific requirements using shared
resources such as hosts and the network.

Virtual private services are distributed applications
which require coordination among clients, servers, and net-
works to deliver a reliable, secure service to clients. The
name is intended to capture the combination of ideas from
the virtual private networks used to segregate groups of
nodes, and the virtual machine models used to control re-
sources in host operating systems. Our new contribution
to this problem is designing and building a system archi-
tecture for a single, ubiquitous security policy that will be
enforced throughout the system (nodes, networks, etc.) to
meet access-control requirements. Thus, in the web server
scenario we sketched earlier, network and host resource ac-
cess are managed consistently. For example, if an applica-
tion or user are not permitted to access a service locally, they
are prevented from accessing the same service remotely.

2 Motivation

Large distributed systems cannot be administered one
machine at a time. This is not, of course, news to system
administrators. Many tools (e.g.,ASD [15]) have been built
to ease the task of administering multiple computers. How-
ever, for the most part, these tools have been concerned with
file management and synchronization/distribution, rather
than policies. Policy configuration files can be centrally
administered, but this is more a side-effect than a basic
premise of the distribution tools. The problem is that com-

plex policies must be expressed in a variety of different
ways. For example, consider again the network shown in
Figure 1. Assuming there is a security policy barring im-
proper access to the credit card database, the question is
how to best architect a system that can enforce this policy.

The first obvious step is a firewall rule that blocks ac-
cess from the outside. However, we also need to guard
against attacks originating from the firewall-protected part
of the network, either by insiders or from inside machines
that have been compromised. Accordingly, the credit card
database may have its own configuration and policy rules
blocking most access from “inside” machines. Indeed, it
may be protected by its own packet filter or firewall. How-
ever, not all users that can legitimately access those “inside”
machines should necessarily be trusted. Accordingly, ad-
ditional access rules may be needed as well. These may
be lists of cryptographic credentials to be accepted, or they
may be distributed firewall rules [13, 4], etc. For that matter,
the database system may itself have access control mecha-
nisms that need to be configured.

It is clearly impractical to try to configure each of these
systems separately. While current tools can easily distribute
policy files, the deeper problem — ensuring consistent ac-
cess policies, across many different systems — is far more
difficult. It is this problem that we are addressing. Our
task is further complicated when enforcement must be split
across different components. For example, a rule that says
“user A may access database column B on server C when
coming from machine D via IPsec” should be specified in
one place. Enforcement, however, could be split between a
firewall that permits access to the database port from D and
a firewall rule on D that recognizes A’s credentials, while
enforcement of access restrictions to particular fields must
be done in the database server itself.

One attempt to solve this problem in a limited domain is
the Firmato [3] firewall language. Firmato is a high-level
language for specifying firewall policies. The administra-
tor specifies a policy and a network topology; the policy
is then compiled into rule-sets for the different firewalls
(which may be from different vendors), and distributed to
each firewall protecting the domain described in the topol-
ogy. While this is certainly a step in the right direction —
a single policy statement can simultaneously control sev-
eral different firewalls — it is limited to a single application
class. As noted above, complex — i.e.,realistic — security
policies need to simultaneously control many different types
of applications. Furthermore, the policies must be enforce-
able without the co-operation of the applications, since they
may be subverted.

We can thus list our requirements for an effective, multi-
layer security mechanism. First, the input language must
be rich and extensible, in order to be able to express a wide
variety of policies, for a wide variety of devices and appli-
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cations. Second, the input language must be high-level, to
avoid unnecessary device-specific semantics. Third, there
must be a reliable compilation and distribution mecha-
nism that will distribute the policy to all relevant network
nodes. Finally, the policy must be completely enforceable
by trusted components alone (dedicated nodes, operating
system kernels, etc.), without the cooperation of user-level
processes on marginally-trusted machines. However, the
definition of a trusted component should be extensible such
that a finer-grain policy could be enforced under certain as-
sumptions (e.g.,a database that enforces access restrictions
to specific columns). Note that proving the enforceability
of a given policy in a specific system is a hard theoretical
problem; rather than address it, we adopt a pragmatical ap-
proach. Our system accomplishes these goals.

3 Architecture

3.1 Separation of Management and Enforcement

The problems we discussed in the previous two sections
are exhibited by practically all existing security architec-
tures, and originate from the independent nature of each ser-
vice. Every application has a different notion of a security
policy, performs access control according to that specifica-
tion, and is oblivious to the security policies of other ap-
plications. This often causes configuration problems which
lead to security violations.
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Figure 2. Policy flows from a central speci-
fication point to various services. Only the
policy rules relevant to a specific service are
pulled to that service. No redundant policy
state is kept at the access points.

Virtual private services are a new approach to these chal-
lenges. Global security policies are specified for services,
while enforcement of these policies remains distributed, lo-
cal to the resource access points. Figure 2 shows how policy
is managed in this scheme. The policy flows from a central
specification point to the various services. Only the pol-
icy rules that are relevant to each specific service are pulled
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Figure 3. With virtual private services, clients
are granted access only to the resources they
require to accomplish their task.

to that service, so no unneeded policy state is maintained at
the various access points. In our architecture, we implement
policy management with the KeyNote [6] trust-management
system to express and distribute low-level security policy.
Policy enforcement is carried out by an augmented host op-
erating system, into which we have inserted several hooks
for policy enforcement.

Figure 3 demonstrates virtual private services in the con-
text of a web server application. A CGI script running as
part of a web server is only given access to specific sub-
trees of local and remote file systems, a part of a database,
and can form network connections only to the machines that
host the remote file system and database.

The VPS approach offers several benefits. First, it is
scalable because policy enforcement is done in a distributed
fashion by the access points, avoiding the bottlenecks of
a centralized policy server that has to be engaged at pol-
icy evaluation/enforcement time. It is flexible, since main-
tenance of policies is centralized and coordinated across
different applications. Policy modifications automatically
propagate to the enforcement points, simplifying the task of
administration and management of individual devices and
applications. Finally, the VPS approach allows for policy
consistency: every service added remains consistent with
the central security policy. New services cannot diverge
from the existing policies.

3.2 Policy Translation and Composition

For our architecture to operate across enforcement
boundaries and for policy to be globally enforceable, we
include “referral” primitives, first introduced in STRONG-
MAN [14]; this is simply a reference to a decision made
by another enforcement point (typically lower in the proto-
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Authorizer: ADMINISTRATOR_KEY
Licensees: USER_A
Conditions: ((app_domain == "db access") &&
(db_column == "column B") &&
(permissions == "FULL_ACCESS") &&
(dst_addr == "Server C") &&
(src_address == "Host D") &&
(ipsec_result == "YES")) -> "permit";

Figure 4. A simplified representation of the
VPS policies for the database example from
Section 2.

Authorizer: ADMINISTRATOR_KEY
Licensees: ANY_USER
Conditions: ((app_domain == "net access") &&

(src_addr == "ALICE") &&
(dst_addr == "BOB")) -> "permit";

Figure 5. Sample policy for allowing network
connections between two machines, from Al-
ice to Bob.

col stack, but more generally at another enforcement point).
This primitive allows us to perform policy composition
at enforcement time; decisions made by one enforcement
mechanism (e.g., IPsec) are made available to higher-level
enforcement mechanisms and can be taken into considera-
tion when making an access-control decision.

To accomplish this, all that is necessary is a channel to
propagate this information across enforcement boundaries.
In our system, this is done on a case-by-case basis. For
example, in our present system IPsec information can be
propagated higher in the protocol stack by suitably modify-
ing the Unix getsockopt(2) system call; in the case of a web
server and SSL, the information is readily available to the
web server through the SSL data structures.

3.3 Sample Policies

In Section 2 we described an example of a policy for a
user accessing a specific column in a database with some
additional network constraints. Figure 4 shows how such
a policy is described in our system. In this example, the
administrator authorizes user A to have full access to the
database column B, provided they access it on server C
coming from host D over IPsec.

In Section 3.1 we gave a brief example of a service pro-
vided by a CGI script (Figure 3). The script requires limited
access to the file system (remote and local) and the database,
and should not get all the privileges of the web server. We
accomplish this by setting up a distributed policy as seen

Authorizer: ADMINISTRATOR_KEY
Licensees: ANY_USER
Conditions: ((app_domain == "ftp access") &&

(directory == "/ftpdir/*") &&
(permissions == "READ") &&
(dst_addr == "BOB")) -> "permit";

Figure 6. Specification for an FTP policy.

Authorizer: ADMINISTRATOR_KEY
Licensees: WEB_ADM
Conditions: ((app_domain == "fs access") &&
(directory == "/www*") &&
(permissions == "FULL_ACCESS")) -> "permit";

Figure 7. Policy giving the web administrator
full access to the WWW directories.

in Figure 9. The first part of the policy guarantees that
the script can only connect to either host2 or host3 from
host1, the second part will limit file accesses to directories
that only contain data for the script, and last part guarantees
will only allow the script to access its own database records.
The combination of these simple policies assures the prop-
erties of the service provided by the CGI script. These sub-
policies are independently enforced by the firewall, filesys-
tem, and database server respectively.

Finally, in Figures 5, 6, 7, and 8 we give examples of
simple policies that define virtual private services for dif-
ferent users and applications. Administrators can customize
services in their system by specifying such policies and
guarantee consistency across all system components.

3.4 Evaluation

While the architectural discussion is largely qualitative,
some estimates of the system performance are useful. To
accomplish this we tested our system with the services for
network connection, file system access and web access, de-
fined by the sample policies presented in Section 3.3. Even
though the sample services are simple, small scale cases,
we believe they provide an adequate picture of the base
performance of the system. We are currently working on
more complex and larger scale scenarios for a more com-
plete evaluation.

In our first experiment we wanted to explore the effects
that our architecture has on network performance. For this
we set up a simple client to consecutive form TCP connec-
tions to a server machine (over 100Mbps Ethernet). The
average slowdown due to our access control layer was less
than %3 (50.4ms vs. 51.8ms). It took 50.4ms to form the
connections on a standard OpenBSD system and 51.8ms
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Authorizer: ADMINISTRATOR_KEY
Licensees: ANY_USER
Conditions: ((app_domain == "web access") &&

(directory == "/www/webpages/*") &&
(permissions == "READ") &&
(dst_addr == "WEB_SERVER") &&
(dst_port == "80")) -> "permit";

Figure 8. Policy allowing any user to access
the web server pages.

Authorizer: ADMINISTRATOR_KEY
Licensees: CGI1
Conditions: ((app_domain == "net access") &&
(src_addr == "Host1") &&
((dst_addr == "host2") ||
(dst_addr == "host3"))) -> "permit";

Authorizer: ADMINISTRATOR_KEY
Licensees: CGI1
Conditions: ((app_domain == "fs access") &&
(directory == "/www/cgi1data/*") &&
(permissions == "FULL_ACCESS")) -> "permit";

Authorizer: ADMINISTRATOR_KEY
Licensees: CGI1
Conditions: ((app_domain == "db access") &&
(records == "cgi1records) &&
(permissions == "FULL_ACCESS")) -> "permit";

Figure 9. Set of polices that apply to the CGI
script example from Section 3.1.

when we activated the VPS system.
We then simulated a large file transfer over the network

by FTP-ing a 100MB between the server and the client. In
this case the our system overhead dropped to less than %0.5
(11,131ms vs. 11,178ms). This reduction is expected, since
the cost imposed by our system (invoked once when the net-
work connection is formed and once when the file is first
accessed) is amortized over the entire file transfer.

For our final experiment we used ab(8), the Apache
web server benchmarking tool. We run it for 500 requests
with concurrency 1 and 50, the file transferred was 1024
bytes of static HTML. The resulting overheads were of the
order of %1.

4 Related Work

System security for large scale distributed applications is
driven by the rapidly changing nature of those applications.
The environment we examine in this paper is one of hetero-

geneous systems, multiple layers of security mechanisms,
and great complexity; in that sense, it differs from research
focused on single nodes, homogeneous nodes making up a
distributed system, or single protocols.

The Flask system [20] extends the idea of capabilities
and access control lists with the more general notion of a
security policy. Flask relies on a security server for policy
decisions and on an object server for enforcement. Every
object in the system has an associated security identifier.
Requests coming from objects are bound by the permissions
associated with their security identifier. Flask does not ad-
dress the issue of cooperation amongst clients, servers and
networks to deliver reliable and secure services to clients.

A different approach relies on the notion of system-call
interposition. Systems like Janus [10], Consh [2], and Map-
box [1], operate at user level and confine applications by
filtering access to system calls. To accomplish this they rely
on ptrace(2), the /proc file system, and special shared li-
braries. Another category of systems like Tron [5], SubDo-
main [8] and others go a step further. They intercept sys-
tem calls inside the kernel and use policy engines to decide
whether to permit the call or not. Our architecture focuses
on separation of policy enforcement and specification, and
support for distributed compartmentalized services.

Capabilities and access control lists are the most com-
mon mechanisms operating systems use for access control.
Such mechanisms expand the UNIX security model and are
implemented in several popular operating systems, such as
Solaris and Windows NT [9]. The Hydra capability based
operating system [16] separated its access control mecha-
nisms from the definition of its security policy. Follow up
operating system such as KeyKOS [11] and EROS [19] di-
vide a secure system into compartments. Communication
between compartments is mediated by a reference monitor.
Our system creates distributed compartments using a cen-
tralized policy specification.

Traditional firewall work [7] has focused on nodes and
enforcement mechanisms rather than overall system pro-
tection and policy coordination. There are however pro-
posed firewall architectures [4, 13] that identify the need
for flexible policy specification and distribution. Our sys-
tem reaches beyond networking, extending the set of ser-
vices that participate in the security domain. Other work
that aims to aid the administrator in specifying policies for
VPNs can be found in [18, 17].

5 Concluding Remarks

We argued that an increasing number of applications are
composed from heterogenous software components inter-
connected by a network, and that this model introduces new
security problems not easily addressed with a conventional
set of tools such as compartmented file systems and fire-
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walls. We proposed a new approach, Virtual Private Ser-
vices, which unifies the management of all access-control
enforcement points under a single global policy.

Our system copes with scale and heterogeneity, at a low
cost in usability, by converting this global policy into a form
in which it can be enforced locally. The impact on per-
formance was evaluated using a prototype implementation
under the OpenBSD operating system in a series of micro-
and macro-benchmarks selected to cover the space of uses
of the server side in a distributed application setting. Al-
though our measurements are preliminary, we believe that
we have demonstrated that the performance impact of the
enforcement mechanism is expected to be low.

In Section 2, we listed four requirements for an effective
multi-layer security mechanism. Our system achieves three
of the four: we have a rich and extensible language to ex-
press policies, a reliable compilation and distribution mech-
anism of policies to enforcement points, and those policies
are completely enforceable. However, we do not feel that
our policy language is high-level enough. We intend to in-
vestigate the issue of a high-level policy definition language
in future research.

The performance analysis ignored the security advan-
tages of virtual private services. We believe that our hy-
potheses, that is that the cost of the centralized policy spec-
ification was low, and that the policy enforcement cost was
low, have been demonstrated. Better performance could be
gained through recoding and better cache management. Our
prototype was only deployed on two hosts as a proof of con-
cept demonstration, we are however interested in deploying
the system in a realistic environment. The main goal of this
deployment would be investigating the larger-scale (and un-
fortunately more qualitative) question of the value of a con-
sistent global policy in real systems.
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