
Information Flow Auditing In the Cloud

Angeliki Zavou

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015

©2015

Angeliki Zavou

All Rights Reserved

ABSTRACT

Information Flow Auditing In the Cloud

Angeliki Zavou

As cloud technology matures and trendsetters like Google, Amazon, Microsoft, Apple, and

VMware have become the top-tier cloud services players, public cloud services have turned

mainstream for individual users. Many companies and even governments are also adopting

cloud services as a solution to reduce costs and improve the quality of their services. How-

ever, despite the appealing benefits of cloud technologies, inherent in the concept of cloud

computing are also the risks associated with entrusting confidential and sensitive data to

third parties, especially in the case of security-sensitive operations, i.e., banking, medical

services. Therefore, it comes as no surprise that the most-often cited barriers against cloud

computing are cloud users’ lack of trust regarding data confidentiality as well as the risk of

unauthorized exposure and manipulation of sensitive user data within the cloud, since such

incidents cause catastrophic damages to the business interests of an organization, as well

as affect the privacy individuals are entitled to.

Most cloud providers and service providers (e.g., Amazon, Google, Dropbox etc.) do

take security precautions for protecting users’ data and use service level agreements (SLAs)

as a means to promise, among other features, availability, reliability and compliance with

privacy standards (e.g., HIPPA, PCI-DCS, FISMA etc.). But very limited tools are cur-

rently available to cloud users to evaluate their effectiveness and incidents abound that fuel

scepticism and distrust towards cloud computing. The many examples of security breaches

in major cloud services, that reach the press from time to time, show that despite SLAs

and good intentions from the providers’ side, protection against data leakage remains a

challenging task that needs to be addressed carefully to take full advantage of the cloud

computing potential. In this setting, and in lack of a better alternative, other than not

using cloud services at all, cloud users have to blindly trust the fate of their data to the

best efforts of service providers to achieve the promised security guarantees.

This dissertation aims to address security issues and concerns that affect cloud-hosted

web services, whose providers do not have malicious intentions but which may be composed

by buggy or misconfigured software, vulnerable to attacks and accidental data leaks. My

approach was inspired by the observation that cloud users’ security concerns could be al-

leviated if the SLAs between cloud services’ providers and their users could be verifiable,

at least to some extent. More specifically, since the verification of adherence to security

constraints within cloud services is a very challenging and formidable task, users would

benefit if they were offered the tools to monitor the high-level service behavior and at least

promptly discover when the security measures are failing. Another important premise of

our approach is that cloud providers and service providers faced with the requirement to

satisfy customer security concerns, have the incentive to both make real investments in

improving the security of their portion of the technology stack as well as incorporate the

proposed techniques to their services. It is in their best interest to provide best security

practises to maintain reputation as their business depends on this.

In this work, I propose a set of techniques that can be used as the basis for alleviating

cloud customers’ privacy concerns and elevating their confidence in using the cloud for

security-sensitive operations as well as trusting it with their sensitive data. The main goal

is to provide cloud customers’ with a reliable mechanism that will cover the entire path of

tracking their sensitive data, while they are collected and used by cloud-hosted services,

to the presentation of the tracking results to the respective data owners. In particular,

my design accomplishes this goal by retrofitting legacy applications with data flow tracking

techniques and providing the cloud customers with comprehensive information flow auditing

capabilities. For this purpose, we created CloudFence, a cloud-wide fine-grained data flow

tracking (DFT) framework, that allows service providers to monitor and log the use of

sensitive data in well-defined domains, offering additional protection against inadvertent

leaks and unauthorized access. To achieve cloud-wide data tracking for legacy application

without demanding emulation we built TaintExchange, a generic cross-process and cross-

host DFT system, which was incorporated in the CloudFence framework. Besides cloud-

wide information flow tracking for the service providers, we also built Cloudopsy, a service

that allows users to independently audit and get a better understanding of the treatment

of their cloud-resident private data by the third-party cloud-resident services, through the

intervention of the cloud infrastructure provider that hosts these services. While Cloudopsy

is targeted mostly towards end users, it provides also the online service providers with an

additional layer of protection against illegitimate data flows, e.g., inadvertent data leaks,

through a graphical more meaningful representation of the overall service dependencies

and the relationships with third-parties outside the cloud premises, as they derive from

the CloudFence-generated audit logs. Experimental results are presented to support the

effectiveness of these techniques. The results of my evaluation demonstrate the ease of

incorporating these techniques on existing real-world applications, their effectiveness in

preventing a wide range of security breaches, and their performance impact on real settings.

Table of Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 The Problem . 2

1.1.1 Misconceptions about cloud security 4

1.1.2 Current Measures . 5

1.2 Research Approach . 7

1.2.1 Scope and Target Applications . 8

1.2.2 Security Model . 9

1.2.3 Thesis Statement . 10

1.2.4 Contributions . 11

1.3 Dissertation Roadmap . 12

2 Background 13

2.1 Multi-level Security . 13

2.2 Dynamic Data Flow Tracking . 16

2.2.1 Taint Tags Granularity . 18

2.2.2 Taint Accuracy . 19

2.3 Taxonomy of Dynamic DFT Systems . 19

2.3.1 DFT Deployment Platforms . 19

2.3.2 Scope of Taint Tracking . 24

i

2.3.3 Dynamic Binary Instrumentation with PIN 25

2.4 Cloud-related Concepts . 27

2.4.1 Term Definitions . 27

2.4.2 Cloud Service Models . 30

2.4.3 Trust Relationships . 31

3 Generic Cross-Host Taint Propagation Mechanism 34

3.1 Introduction . 34

3.2 Design . 36

3.2.1 Taint Sources . 36

3.2.2 Taint Propagation . 38

3.2.3 Taint Sinks . 39

3.2.4 Taint Headers . 39

3.3 Implementation . 42

3.3.1 The Libdft Data Flow Tracking Framework 42

3.3.2 Taint-Exchange Data Structures . 43

3.3.3 Filesystem Taint Sources . 43

3.3.4 Taint Propagation Over the Network 44

3.3.5 Cross-process Taint Propagation . 44

3.4 Evaluation . 45

3.4.1 Bandwidth . 45

3.4.2 Latency . 51

3.5 Discussion . 52

3.6 Conclusions . 53

4 Cloud-wide auditing mechanism 55

4.1 Introduction . 55

4.1.1 Incentives . 57

4.1.2 Challenges . 57

4.2 System Overview . 59

4.3 Design . 60

ii

4.3.1 Data Flow Tracking . 62

4.4 Implementation . 62

4.4.1 32-bit Wide Tags and 64-bit Support 63

4.4.2 Lazy Tag Propagation . 64

4.4.3 Tag Persistence . 65

4.4.4 Data Flow Domain . 67

4.4.5 User Interface . 67

4.5 Evaluation . 68

4.5.1 Deploying CloudFence . 68

4.5.2 Effectiveness . 70

4.5.3 Performance . 71

4.6 Discussion . 74

4.7 Conclusions . 76

5 Cloudopsy 78

5.1 Introduction . 78

5.2 Approach . 80

5.2.1 System Overview . 80

5.3 Design . 82

5.3.1 Audit Logs Generation . 82

5.3.2 Audit Trails Processing . 83

5.3.3 Audit Trails Visualization . 83

5.4 Implementation . 84

5.4.1 Cloud-wide auditing mechanism . 84

5.4.2 Visualization component . 85

5.4.3 Illustrative Scenario: Testing Cloudopsy with an E-store 87

5.5 Conclusions . 89

6 Conclusions 90

Bibliography 93

iii

I Appendices 104

A Uses of the TaintExchange Mechanism 105

A.1 The Problem . 106

A.2 Protocol Overview . 106

A.3 Implementation . 108

A.3.1 I/O Interception . 110

A.3.2 Protocol Commands . 111

iv

List of Figures

1.1 Target applications and cloud setting. 8

2.1 Taxonomy of dynamic DFT systems . 20

2.2 Cloud entities. 29

2.3 Cloud service models. 30

2.4 Relationships in the cloud setting. 32

3.1 TaintExchange overview . 37

3.2 TaintExchange header structure . 40

3.3 Space overhead of the different TaintExchange implementations 41

3.4 TaintExchange impact on TCP socket throughput. 47

3.5 Slowdown factor in comparison with the native execution of bw tcp 50

3.6 Latency measurements on the read() and write() system calls instrumented

for the TaintExchange mechanism. 52

4.1 Main interactions among the participating entities in a CloudFence-enabled

cloud . 59

4.2 The CloudFence architecture. 61

4.3 Slowdown as a function of the percentage of data with different tags that

must be combined (worst case). 72

4.4 Request throughput for VirtueMart using the default web server configuration. 73

4.5 Request throughput for VirtueMart using Facebook’s HipHop. 73

5.1 Cloudopsy architecture . 81

v

5.2 A user’s view of a transaction. 87

5.3 A service provider’s view of user transactions. 88

A.1 Irreversible side-effects within rescue points. 107

A.2 Naive approach to address the irreversible side-effects within rescue points. 108

A.3 Cascading rescue points overview. 109

A.4 The cascading rescue points protocol header. 110

vi

List of Tables

3.1 Taint-header’s fields. 40

3.2 Throughput evaluation. 46

3.3 Slowdown over native execution. 49

3.4 Operational overhead. 51

vii

Acknowledgments

First and foremost, I would like to thank my advisor, Angelos D. Keromytis, for enabling

this thesis to even exist. I am deeply grateful to him for giving me the opportunity to be

here and explore the world of research and security in particular, and for teaching me how

to ask questions, identify interesting problems for my research, appreciate sushi, but most

of all for challenging me everyday to become better.

I am also very grateful to Georgios Portokalidis, who guided me at my first steps in

research, taught me that working hard will eventually pay off, and who remained an en-

couraging mentor, collaborator and friend throughout the PhD odyssey. I heartily thank

also the other members of my defense committee, Steve Bellovin, Sal Stolfo, and Stelios

Sidiroglou-Douskos for teaching me the security fundamentals throughout the years but

also for their valuable feedback and support during my defense and this thesis writing and

of course for getting me past “the finish line”. This thesis would not have been complete

without their valuable feedback and their meticulosity and therefore I am sincerely grateful

to them.

I am especially thankful to all my officemates throughout these years, Stelios, Mike

Locasto, Brian Bowen, Vasilis Kemerlis, Dimitris Geneiatakis, Elias Athanasopoulos and

Christopher Dall, who made going to the office so much more enjoyable. I am also thank-

ful to all members of the Network Security Lab and especially Mariana Raykova, Hang

Zhao, Mike Polychronakis, Georgios Kontaxis, Vasilis Pappas, Sambuddho Chakravarty,

and Kangkook Jee for their, advice, friendship and support. Many of them have provided

valuable feedback on my ideas and their comments have been useful in refining my research

and publications.

But this journey would not have been possible without some people very important

to me. I will always cherish the support and encouragement of Petros Mol, Christine

viii

Karastathi, Elli Androulaki and Alexandros Iliadis, who made my phd life so much better

even from far away. Our experiences, discussions and the laughs we shared even at very

difficult times all these years were the reasons I managed to stay sane and complete this

journey.

Last but not least, I would like to thank my parents, Polyxeni and Alexandros Zavos,

who made me the person I am today and who taught me the value of education and instilled

in me the desire to strive for the best. They, along with my brother, Dimitris, have always

been my strongest supporters throughout my PhD journey and I am deeply indebted to

them for their humor at hard times, and for their endless love and unwavering faith in me.

Without them I wouldn’t be able to make my dream come true and therefore I dedicate

this thesis to my family.

ix

To my strongest supporters, my family ...

x

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Cloud computing has inarguably received enormous attention in the recent years from both

businesses and individual users. At an unprecedented pace, the cloud service model is

becoming the new paradigm for deploying software services for businesses, government, and

individuals in the form of public clouds. Indeed, the world’s largest technology trendsetters,

e.g., Amazon, Google, Microsoft, IBM, and Apple have made the long-held dream of “using

computing as a public utility” a reality. Many companies and even governments are adopting

the cloud services as a solution to reduce costs and improve the quality of their services.

Cloud-based services are also gaining traction among individual users. Applications such as

Dropbox, Google Docs, iCloud, Vine, and Instagram have become an integral part of many

people’s daily lives, especially through the use of smartphones and tablets.

In today’s interconnected and competitive world, cloud technologies provide dynamism,

elasticity and such a range of services, that makes them too attractive for enterprises to

ignore. Therefore, as cloud technology matures, and businesses and individuals increas-

ingly rely on the cloud, an increasing number of critical applications will also be deployed

and operated in these computational environments. As a result, some of their private (or

mission-critical) data is handled and stored on the cloud systems outside of their admin-

istrative control. Access credentials, social security and credit card numbers, private files,

and other sensitive data is temporarily or permanently stored in back-end databases and

file systems, beyond their owners’ control.

In reality, the cloud IT paradigm is a greater cultural transformation for enterprises

CHAPTER 1. INTRODUCTION 2

rather than for individuals users, as the shift from server- to service-based IT requires

the consigning of their computing services outside the enterprise’s perimeter to the cloud

providers. Since cloud providers are separate administrative entities than cloud users, in-

cluding both individual users and enterprises, it is of critical importance to realize that the

use of the cloud infrastructure and cloud services implies diminishing control over the

data that are shared in the realms of these services. One fundamental aspect of this shift

is that sensitive and mission-critical data are also outsourced to the cloud, which implies

the inevitable (at least partial) release of control over its fate, which enterprises often find

quite alarming. Therefore, although they may be willing to make certain compromises in

order to lower costs and improve their services, they do not seem to be equally comfort-

able relinquishing control over their sensitive data to the third-party providers of cloud

environments.

1.1 The Problem

Recent surveys [32; 33] found that trust, not money, will ultimately determine cloud com-

puting’s growing adoption and success. Trust is generally related to “levels of confidence

in something or someone”. Hence by trust in the cloud computing context, we refer to the

customers level of confidence in using the cloud services, which is based on several factors,

the most important of which are the degree of control, the level of transparency and

the provider’s reputation. In particular, the level of control clients retain over their

valuable data assets as well as the degree of transparency they have over the services that

handle them can affect how much trust they have in the provider and the service itself,

which will seems to be the main factor for the future uptake of cloud services.

Moving confidential data to the cloud does not remove the requirement for its protec-

tion with the same diligence as before, if not more, and naturally poses concerns for their

owners. This transfer outside of the secured corporate perimeter increases the complexity of

protecting this data as well as the risk of compromise. Therefore, it is no surprise that the

inherent loss of control over sensitive (or mission-critical) data in the cloud, due to its

third-party nature, and consequently the risk of unauthorized access to it are cited [35;

CHAPTER 1. INTRODUCTION 3

47; 7] as the primary inhibitors to further adoption of cloud-based services, especially for

security-sensitive operations. Also contributing to the exacerbation of this problem is the

lack of transparency inside the cloud processing sites, which leads to the perception

that the cloud is less secure than an in-house system. The latest Cloud Security Alliance’s

(CSA) report [7] on the most significant vulnerabilities in cloud computing identified data

breaches as the most critical threat currently (in order of severity), moving up five places

in the corresponding ranking of 2010. These concerns continue unabated as the num-

ber and frequency of real cases of security breaches at major cloud services [67; 22; 63;

12], that gets publicized in the media, increases. In 2011, hackers broke into the Sony

PlayStation Network [30], exposing usernames, passwords, credit card details, security an-

swers, purchase history and addresses of 77 million people around the world. Later in the

same year, the cloud-storage provider Dropbox admitted that a bug in their authentication

mechanism had disabled password authentication [73]. Hence, temporarily visitors were

allowed to log in to any other of Dropbox’s 25 million customers’ accounts using any pass-

word or none at all. More recently, Adobe [62] suffered one of the worst security breaches

in recent times, as almost 150 million “breached records” from a database of Adobe user

data has turned up online at a website frequented by cyber criminals. And the predictions

are not very optimistic regarding similar events in the future.

Briefly, such incidents where data of sensitive nature is exposed to the public, inadver-

tent or not, happen with astonishing regularity and the damages caused to companies and

individuals are estimated to be in the range of millions of dollars. But apart from the direct

financial damage these incidents also lead to catastrophic damages to the overall business

reputation as well as affect the privacy individuals are entitled to. Consequently, especially

in the cloud setting the concerns over sensitive data confidentiality become even more

persistent and lead to strong hesitation from both enterprises and privacy-aware individuals

regarding trusting their mission-critical and/or sensitive user data to such an abstract and

opaque entity as the cloud.

Another significant conclusion that is drawn from the frequency of such incidents is that

personally identifiable and sensitive information (PII) have become a target for attackers

seeking financial gain through the misuse of such information. Cloud infrastructures rep-

CHAPTER 1. INTRODUCTION 4

resent a tempting and highly lucrative target for attackers with such incentives, given the

concentration of services and data, often from different entities into a single location. Data

leaks are often associated with malicious intent originating from individuals or organiza-

tions that aim to exfiltrate information of some value (e.g., trade secrets, personal sensitive

data). Adversarial scenarios aside, in reality, about half of the data breaches reported (PII

disclosure included) are unintentional, caused by vulnerabilities in applications software

(e.g., bugs, sloppy administration practices or other operational problems) or inadequate

security measures. Hence, the security measures in cloud computing infrastructures should

be higher than those in traditional computing.

1.1.1 Misconceptions about cloud security

While there is probably some basis to users’ expectation that the unified and concentrated

administration and management in cloud computing environments as well as their special-

ized expertise enables the use of the latest sophisticated and usually expensive security

measures, implying some form of security assurance in comparison to the (in)security of

enterprise networks, unfortunately this does not always reflect the real world, especially

for issues related to data security and compliance with privacy policies. There are

at least three different delivery service models (Infrastructure-as-a-Service, Platform-as-a-

Service, and Software-as-a-Service) in the cloud and depending on the delivery model used,

the responsibility of security provisioning changes. The optimistic expectation regarding

cloud security may be closer to reality in the case of SaaS services (e.g., Google Docs, Mi-

crosoft Office 365, Salesforce applications etc..), where the service provider is responsible

for the whole software stack and the access to the application, including security, availabil-

ity, and performance. Especially in the case of a reputable service provider, e.g., Google

or Microsoft, that owns the resources and the specialized expertise needed to offer better

security solutions. But even in this best case scenario, reality has proven that security

glitches might still happen even when the provider controls and hosts a sophisticated stack.

An illustrative example of such a security failure is the Google Docs’ security glitch [66;

67] in 2009, where users had inadvertently shared some of their documents with contacts

who were never granted access to them. The cloud security expectations are even further

CHAPTER 1. INTRODUCTION 5

from the reality in the cases of the IaaS and PaaS delivery models, where the security

responsibility lies more on the cloud customer’s efforts.

Therefore, although the hosting setting has shifted from enterprises’ servers to the cloud,

which usually implies a more secure hosting environment, the common security vulnerabil-

ities, pre-existing in the server-based web applications (e.g., cross-site scripting, injection

flaws etc.), do not automatically disappear but on the contrary remain a significant prob-

lem. Experience has shown that software bugs and misconfigurations, which can be abused

for acquiring unauthorized access to data, are inevitable. There is no such thing as bug-free

code, and despite the fact that formal verification of software and systems has demonstrated

some promising results [37], it has yet to be adopted by commercial off-the-self (COTS) soft-

ware. Part of this is due to the significant scalability issues that formal verification faces

(in terms of code size and system complexity), leaving aside the fact that it cannot handle

legacy applications.

Altogether, the responsibility for the application-level security lies in the best

efforts of the service providers, i.e., the application developers, who especially in the cloud

context can be practically anyone and is not unlikely he might be lacking the knowledge,

experience or incentive to build secure applications. Consequently, when the development of

web applications, cloud-hosted or not, is done with little or no security in mind, the presence

of software security holes is still not mitigated.

1.1.2 Current Measures

A common approach for dealing with data leaks, and degrading the impact of such incidents,

is to require the important data in an encrypted form on the cloud side. Even though the

encryption may help with the problem of secure storage in the cloud, it does not solve

the security issues of remote processing of data inside the cloud. There are many other

important security issues raised regarding management of encryption keys, processing the

encrypted data in the cloud etc.. As a result, providers do not uniformly offer encryption

as a solution for the data confidentiality concerns.

Another obvious step is to articulate clear policies that circumscribe the ways in which

the sensitive data can be used. Most cloud providers and service providers (e.g., Amazon,

CHAPTER 1. INTRODUCTION 6

Google, Dropbox etc.) take security precautions for protecting users’ data and use service

level agreements (SLAs) and third-party certifications as a means to promise, among other

features, availability, reliability and compliance with privacy standards (e.g., HIPPA, PCI-

DCS, FISMA, EU Data Protection Directive etc.). But these claims and legal agreements

of a “secure cloud” are not sufficient for boosting clients’ confidence. Their effectiveness

is usually unproven and incidents abound that fuel scepticism and distrust towards cloud

computing. Currently, the technological reality of cloud computing provides very limited

tools to cloud clients to monitor how providers are achieving this and verify compliance

with the promised security guarantees. In a a typical business environment, the customer

is compensated according to the terms included in the signed SLA, in case the service is

not delivered as expected. But in the cloud computing environments the verifiability of

the promised security guarantees is at least challenging (if not impossible) and for most

enterprises, a security breach resulting in the inadvertent exposure of their valuable assets,

i.e., confidential data, is irreparable, because no amount of money can guarantee to restore

the enterprise’s reputation.

Other techniques also fall short of the requirements for cloud computing in different

ways. Since the cloud platforms are general-purpose platforms, the solution should be

able to accommodate all kind of applications that the cloud customers decide to run on

cloud premises. This rules out application-specific techniques used in the traditional server

model, that would require apart from software modifications also knowledge of the specific

requirements of application internals.

Many users in lack of an alternative option (other than not using cloud services at all),

eventually trust the service provider to properly handle their private data. Many companies

though continue testing the waters with non-critical projects and still keep business-critical

operations and data in-house. Unfortunately, relying solely on reputable service providers,

legal agreements and the implied economic and reputational harm as a motive for service

trustworthiness does not mitigate the risks. That being the case, the question that remains

to be answered is what we can do to address this trust challenge and boost customer’s

confidence in cloud computing.

CHAPTER 1. INTRODUCTION 7

1.2 Research Approach

The adoption of cloud computing came before the appropriate technologies appeared to

tackle the accompanying challenges of trust. To ease the tension between user data protec-

tion and the rich computation offered in the cloud and determine which is the best solution

to address this problem and alleviate the security concerns, we explored the trust issues

associated with this IT paradigm from both a technology and a business perspective.

Generally, trust is more of a social concept than a technological one, but we believe that

technology could work as the base for building clients’ trust towards the cloud services. It is

not that much that the cloud clients do not trust the intentions of the service- and the cloud

providers, but more that they lack confidence that the cloud services will behave or deliver

as promised. In order to increase this confidence, there are both preventive and detective

measures. Verifying the correct functioning of a subsystem and the effectiveness of security

controls may not be feasible for the complex cloud-hosted services, however, and therefore

focusing on increasing the accountability and transparency via less preventive approaches

may be more appropriate to establish a level of trust. Therefore, instead of trying to fortify

the software that operates on private user information [74], or striving to enforce data and

network isolation [48], we propose a data-centric security approach for the cloud setting, as

the sensitive data is the valuable aspect that needs to be protected in this setting.

Our approach is also build upon the observation that clients tend to trust a system

less if it gives insufficient information about its internal procedures. Cloud services are

too opaque, like a black-box, which certainly exacerbates users’ uneasiness regarding the

fate of their data after it enters the cloud premises. Therefore, users could benefit from

knowing to what extent a cloud service delivers the promised security measures against such

privacy risks over their data. More concretely, users want to have an insight and assurances

(more than a signed legal agreement) that their data is actually used as expected by the

cloud-hosted services, and also be offered the tools to identify incidents when this does not

happen. Therefore, in this dissertation we claim that by providing auditing capabilities at

a sufficient granularity and across the whole cloud infrastructure, would be a step towards

easing the formidable user concerns regarding confidentiality breaches, information leaks

and cloud transparency.

CHAPTER 1. INTRODUCTION 8

5	

Service Provider A

Service Provider B

Services’ Customers
(End Users)

Cloud Infrastructure
Provider

Service A

Service B

Figure 1.1: Service providers A and B run their respective services on the same cloud infras-

tructure, which are accessed by their customers (end-users) over the Internet.

1.2.1 Scope and Target Applications

The cloud means too many different things to have one solution, that could solve all security

and privacy issues related to it. Figure 1.1 illustrates the target applications and the cloud

computing model we are concerned with in this dissertation. Assume a service provider A is

interested in running its service on the cloud that will be accessed by a group of end-users.

For this purpose, service provider A will use a number of machines from the cloud provider

(IaaS or PaaS model). Service provider B, which also wants to run its service on the cloud

will act similarly with service provider A. The end-users can access both of these services

via the Internet. Note that we chose to present a more complex scenario in Figure 1.1 but

our approach would also be applicable in the case when the service provider and the cloud

infrastructure are the same entity (e.g., Google and its various cloud services).

We chose to focus on an important class of widely-used cloud services, that meet the

following criteria:

• applications that are available to their customers through websites,

• applications that provide services to a large number of distinct end users,

CHAPTER 1. INTRODUCTION 9

• applications that may consist of one or more components (e.g., web-server, database

server etc.),

• applications whose developers (service providers) could be the same or different from

the cloud infrastructure providers,

• applications whose developers do not have malicious intentions

1.2.2 Security Model

We assume benign cloud infrastructure providers, who recognize that having a rep-

utation for security will attract customers and will be the key factor in determining the

dominant players in the future of cloud computing. Our goal is to support benign service

providers, who are willing to enhance the security of the provided services. While we

do not expect that the applications are outright malicious, we assume that their complex

software will very likely have bugs or security vulnerabilities. Note that his situation

is typical for most cloud-based services:

• Most public cloud services are currently being hosted on the infrastructure of large

relatively trustworthy organizations (e.g., Amazon, IBM, Microsoft, Google etc.), that

have the means and the incentive to protect their reputation.

• Developers of cloud services are not necessarily security experts, and therefore re-

gardless of their good intentions any misconfiguration, buggy code, or weak password

could expose their services to critical data breaches.

In this setting, end users have to implicitly trust their data to both the service provider

and the cloud hosting provider in order to use these services, although in most cases they

are not even aware of the existence of the latter as they don’t directly interact with the

cloud hosting provider. (Note that the implicit and explicit trust relationships among the

cloud entities are discussed in more detail in Chapter 2.)

Our approach aims to identify many classes of attacks that can lead to unauthorized

data access (but which do not allow arbitrary code execution), such as SQL injection,

command substitution, parameter tampering, directory traversal, and other prevalent web

CHAPTER 1. INTRODUCTION 10

attacks that are seen in the wild. In case of attackers who gain arbitrary code execution,

we can no longer guarantee accurate data tracking, since they can not only compromise our

framework, but can also exfiltrate data through covert channels. Finally, besides protecting

against external attacks, an equally important goal of ours is to bring into users’ and service

providers’ attentions any unintended data exposure that may lead to unauthorized access.

For example, sensitive data can accidentally be recorded in error logs or included into

memory dumps after an application crash.

1.2.3 Thesis Statement

In this dissertation we argue that we can alleviate cloud users’ trust concerns regarding

sensitive data confidentiality, which hinder the adoption of cloud computing for security-

sensitive operations, by providing more transparency on the use of their cloud-resident data.

The main idea of this thesis is summarized in the following statement:

THESIS STATEMENT: This dissertation examines the claim that information flow

auditing mechanisms in the cloud can be used as the basis for increasing the transparency

on the use of sensitive data by cloud services.

Although the primary purpose of this thesis is to reinforce users’ confidence in trusting

the cloud services with their sensitive data, we also think that cloud hosting providers

and service providers could also benefit from our proposed solution if they chose to adopt it

because it could work as an additional level of protection against data breaches incidents and

subsequently create a competitive business advantage for privacy-conscious cloud customers.

To truly support our idea, we envision cloud providers offering our information flow auditing

service in addition to their existing hosting environment, to both service providers and data

owners, either as a by default mechanism, or as a security-as-a-service option. A large,

reputable cloud provider could help leverage user confidence much more effectively than

a lesser known service provider. Nevertheless, our approach allows service providers to

provide, with minimal effort, an extra feature that reinforces the trust relationship with

their users, knowing that they have an additional way to monitor what happens with their

data. In addition, we empower service providers with the ability to build an additional level

of protection and get a better understanding of how their services really work as they are

CHAPTER 1. INTRODUCTION 11

given the tools to quickly identify inadvertent leaks or suspicious data flows.

1.2.4 Contributions

With data flow tracking as the basic underlying mechanism we designed and built the com-

ponents that constitute the information flow auditing mechanisms, which will help towards

the goal of elevating cloud customers’ trust on cloud services. The main contributions of

this thesis are summarized in the following:

• We designed and implemented TaintExchange, a reusable cross-process and cross-

host taint tracking framework, which operates transparently on unmodified x86 Linux

binaries, allowing real-world legacy applications to take advantage of our framework.

To the best of our knowledge, our system is the first that allows cross-host taint

tracking without requiring full-system emulation.

– TaintExchange transparently enables cross-host and cross-process fine-grained

taint tracking on the existing communication channels that matter to the target

applications, rather than overloading every operation in the entire system with

unnecessary heavyweight taint tracking operations.

– TaintExchange offers flexible configuration of taint sources, in contrast to many

other security-oriented DFT implementations that mark all incoming network

traffic as tainted.

– We evaluated the overhead imposed by TaintExchange, and showed that it incurs

minimal overhead over the baseline DFT tool Libdft [36].

• We designed and implemented CloudFence, a novel data flow tracking framework

for cloud hosting environments that provides transparent, fine-grained data tracking

capabilities to both service providers, as well as their users.

– Our prototype i) enables service providers to easily integrate data flow tracking

in their applications through a simple API and verify the use of sensitive data

within the well-defined domains of their services, offering additional protection

against inadvertent information leakage and unauthorized access. ii) allows users,

CHAPTER 1. INTRODUCTION 12

to independently audit the use of their data by the the third-party cloud-hosted

services.

– CloudFence uses 32-bit wide tags per byte, and introduces new features such as

lazy tag propagation and persistent tagging on disk and across the network It

also incorporates the TaintExchange mechanism.

• We designed a novel mechanism to improve the effectiveness of our cloud-wide auditing

mechanism and provide i) users, even the ones lacking any particular technical back-

ground to better understand the information collected in the audit log files regarding

the treatment of their data by the cloud-hosted services, and ii) service providers,

with an additional layer of protection against illegitimate data flows (e.g.,, inadver-

tent data leaks), by offering a more meaningful representation of the overall service

dependencies and the relationships with third-parties out- side the cloud premises.

– We designed and implemented Cloudopsy, a prototype implementation of this

concept that through visualization mechanisms and automated analysis of the

raw audit trails produces graphical representation of events and sensitive data

flows, as they derive from the collected audit logs.

1.3 Dissertation Roadmap

The remainder of this dissertation is organized as follows: In Chapter 2 we introduce the

core concepts that are discussed throughout this thesis. The following chapters are the

building components of our solution. In Chapter 3 we discuss TaintExchange and how it

implements transparent cross-host and cross-process information flow tracking on binaries,

without requiring full-system emulation. In Chapter 4 we discuss CloudFence, a cloud-wide

data flow tracking mechanism. We explain how it can transparently monitor the flow of

user sensitive data within the cloud premises. In Chapter 5 we present Cloudopsy, a visual

representation of the use of user data in the cloud premises. We explain how this contributes

to alleviate data owners security-related concerns regarding their cloud-resident sensitive

data used by the cloud-hosted services. Finally, the dissertation concludes with Chapter 6.

CHAPTER 2. BACKGROUND 13

Chapter 2

Background

This dissertation has benefited greatly from a large body of prior work in the areas of data

flow tracking and cloud computing security, which either served as inspiration for our design

and/or as building blocks for our prototypes. This chapter intends to give an overview of

the basic concepts required for the better understanding of the following chapters as well

as provide a brief survey of the most relevant and influential research efforts in the related

areas.

Section 2.1 gives a brief description of multi-level security and information flow control.

Section 2.2 describes the basic mechanism of dynamic data flow tracking and its various

forms, depending on the deployment platform and the level of tracking accuracy. Section

2.4 and its subsections describe the basic concepts in cloud environments and the most

recent works in cloud security.

2.1 Multi-level Security

The root of concerns that lead to the design of multi-level security systems (MLS) in the 70’s

is once again current in the cloud computing environment. Having information of different

security levels and of different owners on the same computer systems poses a real threat.

MLS was introduced when time-sharing was starting to provide commercial customers the

ability to share the leasing costs of IBM computers through simultaneous or sequential

use of the expensive mainframe computers. Government and military were such customers

CHAPTER 2. BACKGROUND 14

that wanted to take advantage of this new capability, which promised great savings. But

for those classified government and military circles, it was crucial that files and data of

different security levels would be kept separate and with a high degree of confidence.

The Bell and LaPadula model. The Bell and LaPadula model (BLP) [9], also called

the multi-level security model, was introduced as a response to the concerns regarding time-

sharing mainframes with the primary goal of protecting data confidentiality by enforcing

access control to classified data in government and military applications. In such applica-

tions, subjects (e.g., processes) and objects (e.g., files and user inputs) are often partitioned

into different security levels and are assigned the proper security label. Security labels range

from the most sensitive (e.g., “Top Secret”), down to the least sensitive (e.g., “Unclassified”

or “Public”). The BLP model specifies how information can flow within the system based

on the labels attached to each subject and object, i.e., a subject can only access objects at

certain levels determined by his security level clearance. For instance, those with “Confi-

dential” clearance are only authorized to view “Confidential” documents and they are not

trusted to look at “Secret” or “Top Secret” information.

More specifically, a multilevel secure system for confidentiality enforces the following:

• The simple security property : no process may read data at a higher level. This is also

known as no read up

• The *-property : no process may write data to a lower level. This is also known as no

write down.

The *-property was BLP’s model critical innovation. It was driven by the fear that infor-

mation might be leaked either intentionally by malicious code or unintentionally as a result

of a bug, if applications could write down. These two properties provide the confidentiality

form of a specific mandatory access control (MAC) security scheme.

Although the BLP model was originally proposed to support confidentiality in military

systems, commercial systems now also use multi-level security policies. For instance, Red

Hat Linux has incorporated MAC mechanisms with SELinux [4] and AppArmor [1]. The

general idea is similar: subjects (e.g., processes, programs) and sensitive objects (e.g., files,

CHAPTER 2. BACKGROUND 15

user inputs) are assigned secutity labels, which represent their security sensitivity (level).

The goal is again to make sure that the data are not accidentally written to unauthorized

components.

One major disadvantage of access control of any kind, is that its scope is limited to

the defined subjects, objects, and operations and also that the security labels can not be

changed dynamically, which limits its applications.

The IX system. IX [44] is a MLS variant of Unix, which was built to offer practical

security in the OS-level, for private- and public- sector nonmilitary critical uses. It shares

the same high-level goal with the BLP model, i.e., that files and data of different security

levels should be kept separate and with a high degree of confidence information should not

be disclosed to unauthorized users. But it also has significant differences from the BLP

model.

IX’s features include dynamic security labels to classify information regarding privacy

and integrity, private paths for the safe communication among privileged processes, and

structured privileges.

Security labels are assigned to every file and process and represent its classification.

These labels are checked at every system call involving data flow and are adjusted dynami-

cally during the computation to guarantee that the labels on the output are at least as high

as the labels of the inputs from which they derive. This is one of the main differences with

the BLP model, where the labels of the files can not be changed while the file is in use, and

therefore labels need to be checked only when files are opened. In contrast, IX dynamic

labels require continual rechecking of labels on every data transfer, which as expected in-

curs overhead. Apart from the dynamic labels though, every process and every file system

has a ceiling, which is also a label below which all transactions must stay. Process ceilings

prevent processes from getting into overly sensitive places, and partly resemble the BLP

subject labels.

Although data flow policy covers normal operations, there are some actions, e.g., doc-

ument declassification, mounting file systems, opening external media that fall outside the

territory of normal policies and need a privilege mechanism to be performed safely. Privi-

CHAPTER 2. BACKGROUND 16

leged processes administer their own security policies. Therefore the kernel and the privi-

leged processes constitute the Trusted Computing Base (TCB). Privilege can be exercised

only through trusted code.

Finally, for the safe communication among priviliged processes IX administers private

paths. Briefly, a private path is a special state which exist so that the security is not com-

promised while waiting for some verification, i.e., authentication so that the user clearance

is known.

In order to build the above features in IX the original Unix system had to be changed.

Some special system calls were added, extra kernel memory was required for the labels,

and the layout of the filesystem had to be changed to accommodate the labels and some

utilities programs were written to set and retrieve the labels. Nevertheless, the dynamic

nature of the labels that are updated and checked in every data transfer (through the

system calls) as well as the end-to-end information flow tracking build in IX are techniques

chosen aslo for the implementation of this thesis’ data flow tracking mechanism. Such data-

centric security mechanisms, which track or enforce information flow seem promising on

detecting and preventing sensitive data leaks incidents, especially for the cloud computing

environment where data flows across different services and the environment is more loosely

connected than in the context of the military services.

2.2 Dynamic Data Flow Tracking

Dynamic data flow tracking (DFT), also referred to in literature as dynamic taint analysis

(DTA), has been a prominent technique in the computer security domain, used indepen-

dently or frequently complementing other systems. It has been shown to have a wide

variety of applications including the detection of unknown exploits [53; 65; 59; 16], analysis

of malware [76; 28], the prevention of information leaks [57; 29; 86] and many more, while

researchers seem to continuously find new applications for it, even extending it to different

domains [8; 49].

Dynamic data flow tracking is the mechanism of marking and tracking selected data,

usually referred to as tainted data, as they flow during program execution. The mechanism

CHAPTER 2. BACKGROUND 17

is inductive. Broadly, dynamic taint analysis mechanisms operate by first identifying the

data of interest according to predefined configurations, associating it with metadata, usually

referred to as taint tags or taint labels and then track the flow of the labelled data (and

the data they produce/influence) along with the relevant tags at runtime throughout the

system.

The specifics of dynamic DFT implementations can vary significantly depending on ones

goals, performance considerations, and deployment platform (see Section 2.3). Neverthe-

less, most dynamic data flow tracking implementations can be described by three properties:

the taint sources, the taint propagation rules and the taint sinks.

Taint sources. Taint sources, i.e., the input channels for tainted data, are the locations

of a system, where the data of interest enter the system and where the initial taint tag

is assigned to it. These locations can be of different types, including program variables,

functions, I/O streams (e.g., network connections, file system, keyboard) and many more.

For instance, if a file and/or an IP address are defined as taint sources then the data read

from this file or received from this IP address will be tainted, when it first enters the system.

Taint propagation. The propagation rules specify the taint status for data derived from

one or more operations involving tainted data. Typically, there are two kinds of taint

propagation: data-flow based and control-flow based. The former accounts only for explicit

propagation of taint tags, which occurs through direct or transitive value assignments. The

latter accounts for implicit propagation, which occurs due to control-flow dependences.

The data- and control-flow based propagation, while useful in some domains, it induces a

higher runtime overhead than propagation based on data-flow only and frequently leads

to an explosion in the amount of tagged data as well as to incorrect data dependencies.

Therefore, many DFT implementations [53; 65; 19] of the related work tend to focus on

explicit taint propagation, whereas fewer [21; 34] consider also the implicit taint flows. The

different goals DFT systems allow different taint propagation policies.

Taint sinks. Taint sinks are the locations, where checking operations on the taint status

of data needs to be performed (e.g., the network interface). For instance, if the network is

CHAPTER 2. BACKGROUND 18

defined as a data sink, the process of sending tainted data to the network will trigger an

action according to a predefined policy (e.g., issue a notification or halt program execution).

More generally, user-specified policies may be enforced regarding the use of tainted data at

these sinks, that will determine the further behavior of the monitored program.

Broadly, the purpose of DFT is to monitor the flow of data between taint sources and

taint sinks. For a simple example of how taint sources, propagation policies, and taint sinks

work together, consider the following pseudocode:

c = taint-source()

...

a = b + c

...

network-send(a)

c is tainted, i.e., is assigned a taint tag, tag(c)=1, since it is read from a taint source.

Then a is also tainted (tag(a)=1), since it derives from the tainted variable c and the

untainted b (tag(b)=0). Assuming that the taint sink is the network, when the execution

reaches the network-send() function, it will check the value in tag(a) and act according

to some predefined policy.

2.2.1 Taint Tags Granularity

In addition to specifying the data to be tainted, it is important also to define what taint

tags should be associated with the selected data. In most cases one bit of taint is sufficient.

Many existing dynamic taint analyses [59; 16; 19; 86], have been implemented using a

single taint mode, i.e., tainted or untainted data. But there are also situations [36; 85; 84;

75]) where we need to discriminate between data read from different sources or to distinguish

between trust levels. For instance, if we need to distinguish between data coming from

network hosts with different levels of trust, the single taint mode, would not be sufficient.

To support these applications multiple taint bits are necessary.

Taint tags are usually kept in a separate memory area, usually called shadow memory

[51], which is inaccessible to the program under analysis. Taint is propagated through the

system to all data derived from the tainted values in the shadow memory.

CHAPTER 2. BACKGROUND 19

2.2.2 Taint Accuracy

The accuracy of taint is also a key challenge. By taint accuracy we refer to the smallest

data unit for which we keep track of its taint status. This data unit could be as small as

a single bit or much larger as contiguous chunks of memory or process-level taint tags [81].

The former enables more fine-grained and accurate DFT, while the latter implies coarser

DFT and probably not suitable for the level of accuracy demanded for information leakage

incidents, that are the focus of this work. For instance, with page-level taint tags, moving

a single tainted byte into an untainted location will result into tainting the whole page that

contains the destination, thus “polluting” the adjacent data. There is a trade-off between

accuracy and performance when choosing extremely fine-grained over coarser tainting, as

more memory space is needed for storing the tags and the propagation logic becomes more

complicated. In this work we used byte-level tainting, since that was the necessary level of

accuracy for detecting data leakage incidents.

2.3 Taxonomy of Dynamic DFT Systems

The various dynamic DFT tools can be categorized depending on the deployment platform,

where the taint logic is implemented, and the scope of the monitoring, as shown in Figure

2.1.

2.3.1 DFT Deployment Platforms

One possible classification of existing dynamic DFT mechanisms can be made based on the

means by which the tracking logic is augmented on regular program execution. Building the

tracking logic necessitates integrating some monitoring facilities to the analyzed application.

Such monitoring features have been integrated into full system emulators and modified

virtual machines, retrofitted into unmodified binaries using dynamic binary instrumentation

(DBI) and added to source codebases using source-to-source transformations. Proposals

have also been made to implement it in hardware, although this had little appeal to hardware

vendors.

CHAPTER 2. BACKGROUND 20

Figure 2.1: Taxonomy of Dynamic DFT systems.

2.3.1.1 Software-based DFT

In order to enable data flow tracking facilities on software-only level, we need an environment

where there is full control over the process under analysis. Such taint tracking systems

can be based on source-level instrumentation [74], binary instrumenation ([59; 21; 53; 86;

36]) using DBI frameworks (see Section 2.3.3) or specialized whole-system emulators ([57;

20; 28; 76]).

Dynamic binary instrumentation of unmodified binaries is a very popular technique for

implementing DFT tools, as it runs on existing hardware and can offer flexible and config-

urable solutions. It is applicable to all user executables and library binaries but it incurs

high runtime overheads. This approach can neither support multi-threaded code nor track

information flow across multiple processes. Usually for performance reasons, DBI systems

support a single policy that protects against attacks on control data. TaintCheck [53], one

of the foundational efforts in this area, aims to provide an effective defense mechanism

against fast-spreading Internet worms through automated exploit detection and signature

generation. TaintCheck operates by marking any data that originates from an untrusted

external source (e.g.,, network sockets) as tainted and uses binary rewriting mechanisms to

track the subsequent propagation of such data. To detect attacks, TaintCheck looks for dan-

gerous and potentially illegitimate operations on tainted data, such as the use of a tainted

CHAPTER 2. BACKGROUND 21

value as the destination for a jump instruction, which would be suggestive of an attempt

to redirect control flow. Its implementation is based on Valgrind [52] and can track the

propagation of tainted inputs within the virtual address space of a single user-level process.

TaintTrace [19], LIFT [59] and Dytan [21] are also built on DBI frameworks, DynamoRio,

StarDBT and Pin respectively, but also propose optimization techniques to improve the ef-

ficiency and reduce the overhead from the instruction-level tracking, that make these tools

prohibitive for large-scale real-world applications.

On the other hand, Panorama [76] uses full-system emulation and dynamic taint analysis

to detect malicious access to sensitive user data and identify privacy-breaching malware.

The taint tracking engine monitors how sensitive (tainted) information propagates within

the system and flags any suspicious interaction between the unknown code sample and the

tainted data. Argos [57] is another implementation of DFT logic using an modified emulator,

QEMU. All these emulator-based approaches allow DFT tracking on ther entire system

(including the OS-kernel) and are easily applicable to multi-threaded applications but they

incur significantly higher overhead even from the DBI approaches for single applications.

For interpreted languages, e.g., JavaScript, Python, Perl, PHP, the instrumentation

code can be added to the interpreter [77; 54] or the just-in-time compiler [70]. In particular,

Perl has built-in support for taint, which allows the interpreter to prevent a variety of

common security flaws from being exploited. A more recent effort, Resin [77], proposes a new

application runtime that associates policies with application-level data objects and filters

information transfer at system I/O boundaries. It operates in an interpreted programming

environment (such as Python or PHP) and tracks the propagation of sensitive data at the

level of program variables. Such implementations have been shown to detect high-level

vulnerabilities, e.g., sensitive information leaking, instead of system-compromising security

attacks, due to the lack of information only resolved at runtime. Their main disadvantage

is that any code written in other languages require custom wrappers for safety. Moreover,

this approach cannot track information flow across multiple processes or easily deal with

multi-threaded executables.

Finally, software-based DFT can be implemented by instrumenting programs at the

source code level [74]. Systems like these use source-to-source transformation and auto-

CHAPTER 2. BACKGROUND 22

matically insert the necessary instrumentation code to propagate the tags. Compile-time

optimizations can significantly reduce the space and runtime overhead for these tools. But

this approach is less practical as it requires the source code for the monitored applications,

which is often unavailable for COTS software, and also it can not track information flow

through third party programs, binary libraries, and system calls available only in binary

form.

2.3.1.2 OS-level DFT

Interception of system calls within the kernel coupled with the ability to add extension code

that can be executed before and after the normal system call functionality is a common

approach for OS-level DFT implementations. Asbestos [27] and HiStar [81] are represen-

tative frameworks that integrate the notion of data flow and taint tracking directly in the

operating system. They use labels to indicate the taint level and protect sensitive data by

restricting information flow from more sensitive objects to less sensitive objects without the

use of a trusted agent. DStar [82] and Flume [40] are alternative OS-level DFT mechanisms

used for distributed systems. Laminar [60], one of the more recent proposals, investigates

a hybrid design that integrates language-level and dynamic OS-level DFT in an effort to

combine their strengths. Laminar designs a new operating system, which mediates access

to system resources, and a specialized VM, which enforces fine-grained DFT rules within

the address space of an application.

In general, these DFT-enabled operating systems require lower system call interception

overhead, and more flexibility in terms of what actions can be performed within the exten-

sion code. But they cannot track granularities smaller than coarse-grained high-level OS

objects, i.e., files, processes and sockets, and are oblivious to fine-grained information trans-

fers between variables or data structures within a process. Moreover, they require rewriting

of the monitored applications for these experimental platforms to enable the tracking mech-

anism.

CHAPTER 2. BACKGROUND 23

2.3.1.3 Hardware-assisted DFT

Hardware support has been proposed in order to evade performance penalties imposed by

software-only implementations and to accommodate multithreading. Broadly, hardware

DFT architectures extend each register and memory location by one tag bit. Analogously,

all machine instructions are extended with additional functionality to propagate and check

tags in addition to their regular operation. Therefore, the hardware propagates and checks

tags transparently as instructions execute without additional instrumentation or runtime

overhead.

Minos [24] was one of the first systems to investigate hardware-assisted DFT. Its design

addresses many basic issues pertaining to integration of tags in modern processors and

management of tags in the OS. The architecture by Suh et al. [65] is also one of the first

hardware implementations for DFT. Although these implementations achieve much lower

overhead for the taint tracking and provide compatibility with multi-threading applications,

they suffer from limited flexibility in specifying taint propagation rules, and in the number of

taint bits associated with a value. Recognizing these limitations, there have been efforts to

overcome the problems that limit their practicality. RIFLE [68] proposed a system solution

that uses software binary rewriting to turn all implicit flows into explicit flows that can be

tracked using DFT techniques. But the overall system combines this software infrastructure

with a hardware DFT implementation to track the propagation of sensitive data and prevent

leaks. Raksha[25], a more recent effort, investigates also hybrid DFT architecture that tries

to combine the strengths of hardware- and software-based techniques in order to provide a

flexible low-overhead solution.

One of the key concerns in designing a hardware-assisted scheme is that it requires non-

standard commodity components and a redesign of the entire processor core, which deeply

affects its practicality. Moreover, whereas a software solution can quickly be upgraded to

guard against new attacks, hardware based tools can only be upgraded by replacing the

processor or the entire system. Therefore, unfortunately hardware implementations of DFT

had little appeal to the hardware vendors.

CHAPTER 2. BACKGROUND 24

2.3.2 Scope of Taint Tracking

A different classification can be made based on the scope of the tracking. Dynamic DFT

systems can operate on unmodified binaries of applications or entire systems. Currently,

dynamic tracking approaches range from per-process taint tracking [19; 21; 36; 53; 59; 72;

86], to whole-system tracking [24; 25; 57; 76] using emulation environments or hardware

extensions.

2.3.2.1 Single-process Taint Tracking

Most application-level taint tracking tools, like TaintCheck [53], TaintTrace [19], Libdft [36],

Dytan [21], and LIFT [59] use dynamic binary instrumentation (DBI) frameworks, like

PIN [42], StarDBT [15] and Valgrind [52]. While quite effective and useful, as they do not

require any modifications to source code or customized hardware, they impose significant

impact on the performance, as every instruction needs to be instrumented, and additional

storage, usually called shadow memory [51], is required for storing the tags. As a re-

sult, there has been great interest in optimization techniques in order to improve their

performance. TaintTrace achieved significantly faster taint-tracking by using more efficient

instrumentation based on DynamoRIO, combined with simple static analysis to speed up

the taint-tag access. LIFT also achieved significant additional performance benefits by using

better static analysis and faster instrumentation techniques.

One important disadvantage of single-process level taint tracking is that the taint anal-

ysis loses track of the information flow once the application moves data out of the process-

level, e.g., through network output channels. Because most modern Web services include

multiple applications single-process DFT systems result in false positives and/or negatives

because the lose track of the taint status of the data exchanges between them and therefore

must assume that all values of the cooperating processes are either tainted or untainted.

Note that this limitation was the motivation for building the TaintExchange mechanism

(see Chapter 3).

CHAPTER 2. BACKGROUND 25

2.3.2.2 Cross-process and Cross-host Taint Tracking

A large body of research has also focused on cross-process or system-wide taint tracking,

leading to the creation of many tools [24; 25; 76; 83], mostly based on emulators and

hardware extensions to efficiently handle data tracking for an entire operating system. For

instance, the whole system emulator QEMU [10] is employed by various solutions that

implement DFT [31; 57; 76], while TaintBochs [20] builds on the Bochs IA-32 emulator [14].

The architecture community attempted to integrate or assist dynamic taint tracking with

hardware extensions [24; 25; 65; 68], to alleviate the significant performance impact due to

extra tag processing from DBI frameworks and emulators.

While there is much research aiming at intra-process and system-wide DFT implemen-

tations, it was not until very recently that interest has risen for efficient cross-host taint

propagation systems [8; 26; 83]. Most of these techniques are more problem-specific, and

therefore it would be difficult to adapt the techniques and tools developed for use in other

contexts. For instance, DBTaint [26] is targeting taint information flow tracking specifi-

cally for databases, whereas ConfAid [8] tackles the problem of discovering a set of possible

root causes in configuration files that may be responsible for software misconfigurations.

System tomography [49], which also looks into the concept of propagating taint informa-

tion remotely, builds on the QEMU emulator so it cannot be applied on already deployed

software and incurs large slowdowns. Finally, Neon [83] also requires modifications in the

underlying system to perform dynamic taint tracking. It uses a modified NFS server for

handling the initial tainting, and utilizes a network-filter for monitoring the tainted packets

arriving/leaving the server.

In general, these systems require substantial changes to the underlying hardware or

must emulate the entire system with significant performance penalty. The other category

of system-wide DFT systems, like HiStar [81] and Asbestos [27], which are basically DFT-

equipped OSes are also inappropriate for use with COTS software and Web services.

2.3.3 Dynamic Binary Instrumentation with PIN

In general, dynamic binary instrumentation (DBI) frameworks, analyze programs at run-

time at the level of machine code, whereby the analysis code is added to the original code

CHAPTER 2. BACKGROUND 26

of the monitored program at run-time. They consist of a frond-end and a back-end. The

front-end is an API allowing to specify the instrumentation code and the points at which it

should be introduced at runtime. The back-end introduces the instrumentation an provides

all necessary information to the front-end.

There are two main approaches for controlling the monitored application: emulation

and just-in-time (JIT) instrumentation. The emulation approach consists of executing

the application on a virtual machine while in the JIT approach the instrumentation is

performed after a program has been loaded into memory and immediately prior to execution.

This instrumentation has the advantage that the functionality can be selectively added or

removed from the program without the need to recompile, i.e., the trace functionality is

only present when needed.

Pin [42] is a representative framework of the JIT approach. Pin and the monitored

application are loaded together and Pin is responsible for intercepting the application’s

instructions and analysing or modifying them as described by the analysis code written in

the so-called pintools. Briefly, Pin consists of a virtual machine (VM) library, and an injector

that attaches the VM in already running processes or new processes that launched itself.

Pintools are shared libraries that employ Pin’s API to inspect and modify the binary at the

instruction level. The original application code and the analysis routines are translated by

Pin’s JIT compiler for generating the code that will actually run.

Note that although the design of our mechanisms is independent of the underlying DFT

system for the implementation of our prototypes we chose the Pin framework. The main

reasons for our choice were its availability 1, well-defined programming interface, efficient

instrumentation, and its support for additional operating systems (should we choose to

support them in the future).

Libdft library Libdft [36], the dynamic single-process DFT framework we used for our

implementation, is also a library, which can be used by pintools to transparently apply fine-

grained DFT for the binaries running over Pin. Libdft’s tag propagation is accomplished

1Although the optimizations implemented by LIFT[59] on StarDBT [15] made it an attractive choice,

StarDBT is not publicly available and lacks a programming interface.

CHAPTER 2. BACKGROUND 27

using Pin to both instrument and analyze the target process. In particular, we build our

mechanisms as Libdft-enabled pintools to specify the taint sources and sinks as well as build

our cross-process taint propagation mechanism.

2.4 Cloud-related Concepts

Cloud computing is not a genuinely new concept in the IT world, but more of a buzzword

for the long-held dream of using computing as a utility, or else, the latest extension in

distributed computing that takes advantage of the latest technology advances in networking,

higher throughputs and storage. The concept of the “cloud” dates back to early mainframe

processing, when users connected to a shared computing resource through terminals to

solve their computing needs. The advent of faster and cheaper microprocessors, RAM

and storage brought computing into the client-server model, which grouped sets of users

into networks sharing computing power on decentralized commodity servers. As increased

bandwidth became more available and less costly, these networks interconnected and formed

the Internet, which in its current form made enterprises re-examine their current onsite

implementations and switch to the contemporary cloud services.

2.4.1 Term Definitions

There are a few topics in the IT community that are as promising and as confusing as is cloud

computing. In the simplest of terms, cloud computing is Internet-based computing, done

by a group of third-party shared servers that can provide on-demand hardware resources

and/or software capabilities to users connected to the Internet. A clear and widely accepted

definition for cloud computing has yet been agreed upon, especially since it encompasses so

many different models and potential markets, depending on vendors and services. In fact,

even the National Institute of Standards and Technology (NIST) presented 15 draft versions

of the term before coming up with the current working definition [46]. In the same spirit

as the NIST definition follows my working definition, which will be used for the reminder

of this document.

CHAPTER 2. BACKGROUND 28

My working definition: Cloud computing refers to the model of on-demand, pay-per-use

access to a shared pool of off-premises, third-party, configurable computing resources, (e.g.,

machines, network, storage, operating systems, application development environments, and

application programs) via the Internet or local area network. The details of the hardware

or software infrastructures that support the computations are hidden from the users of the

cloud.

In short, when a client of the cloud is granted the requested access, a fraction of the

resources in the pool is dedicated to the requesting user until he or she releases them. One

of the main characteristics of the “cloud” is that the user cannot actually see or specify the

physical location or organization of the equipment hosting the resources he is ultimately

allowed to use. That is, the resources are drawn from a pool of resources when they are

granted to a user and returned to the pool when they are released. Note that with the term

“cloud” we will be referring to both the applications delivered as services over the Internet

and the hardware and systems software in the data centers that provide those services.

To avoid confusion regarding certain basic concepts used in this thesis, I will explicitly

define the following core terms:

• sensitive data: any data of which the compromise with respect to confidentiality,

integrity and/or availability could have an adverse effect to business interests or to the

privacy to which individuals are entitled. This term is used for both individual users’

personally identifiable data (PII) and for enterprises’ mission-critical and private data.

Synonym terms used: privacy-sensitive data, important data.2

• data privacy: keeping data safeguarded from disclosure to unauthorized parties. In

this document, it is interchangeably used with data confidentiality.

• privacy restrictions: regulations on the storage, dissemination and, processing of

sensitive data. Synonym term: privacy preferences.

• data breach: disclosure of data to unauthorized parties. Synonym terms used: data

leak, data exfiltration, privacy abuse.

2A formal description of sensitive data can be found, among others, in the HIPAA and PCI-DSS regula-

tions.

CHAPTER 2. BACKGROUND 29

Cloud Infrastructure
Provider

Service Provider
(Cloud User)

Service’s Customers
(End Users)

Utility
Computing

Web Service

Figure 2.2: Cloud entities. The service provider uses the cloud infrastructure to deploy and

host its service. End users access the service through its web interface.

• assurance: refers to the need for a system to behave as expected. In this context,

it is important that the cloud provider provides what the client has specified. This

is not simply a matter of the software and hardware behaving as the client expects

but that the needs of the organization are understood, and that these needs are accu-

rately translated into information architecture requirements, which are then faithfully

implemented in the cloud system.

• cloud provider: the provider of cloud resources, that offers its customers storage or

software services available via a private (private cloud) or public network (cloud). It

also refers to the storage and software that is provided to customers. Synonym term:

cloud infrastructure provider.

• service provider: the provider of applications on top of a cloud platform. He directly

utilizes the Infrastructure-as-service (IaaS) model provided by the cloud provider.

Synonym terms used: cloud tenant, cloud user.

• end-user: usually refers to the individuals using the applications of the cloud tenants

or software-as-a-service (SaaS) instances. Synonym term: SaaS users.

CHAPTER 2. BACKGROUND 30

Figure 2.3: Cloud service models. Comparison of traditional (on-premises) software solutions

and the cloud computing service models (IaaS, PaaS, SaaS).

• cloud client: refers to the service provider (as the client of the cloud provider), or

the end-user (as the client of the service provider) or both of them.

Figure 2.2 clarifies the main entities in the cloud. Note that in this work the focus

is mostly on the cloud-hosted web services model. The service provided by the cloud

infrastructure providers is utility computing, and the end users are provided a web service,

which is hosted on the cloud infrastructure.

2.4.2 Cloud Service Models

The type of computing resource that is offered in a cloud defines the cloud’s service model.

The three common service models that are based on what cloud services are provided are:

applications (SaaS), platform (PaaS) and/or infrastructure (IaaS).

Software-as-a-Service (SaaS). Sometimes referred to as “on-demand software”, SaaS

is a software delivery model in which software and its associated data are hosted in the cloud

and are typically accessed by end-users using a thin client, normally a Web browser over the

Internet. SaaS’ clients use the software applications from the cloud provider (or the service

provider if they are different entities). The end-user uses the software as an application,

CHAPTER 2. BACKGROUND 31

while the underlying platform software and infrastructure hardware is abstracted to the

end-user. SaaS provides the most integrated functionality built directly into the offering,

with the least consumer extensibility, and a relatively high level of integrated security (at

least the provider bears a responsibility for security). Examples of SaaS include Microsoft

Office 365, Google Apps, and Salesforce.com applications.

Platform-as-a-Service (PaaS). In the PaaS model, the cloud client (a developer) uses

specialized APIs for programming languages, tools, and the runtime platform provided by

the cloud provider for application development and deployment. The platform may include

databases and middleware in addition to application development tools. PaaS abstracts

the underlying hardware cloud infrastructure. Popular PaaS platforms include the Google

AppEngine (GAE) and Microsoft Windows Azure.

Infrastructure-as-a-Service (IaaS). As it is implied by Figure 2.3, in the IaaS model

the cloud provider manages the underlying physical cloud infrastructure (servers, storage,

network, and the associated virtualization), while the cloud client is provided with one (or

more) virtual machine with the required specifications and has control over the OS, storage

and deploys and runs his or her own application and platform software. Amazon’s Elastic

Compute Cloud (EC2) is a good example of the IaaS model.

Note: As we move from SaaS to PaaS to IaaS, cloud providers gradually release controls

over security to the cloud clients, i.e., the service providers. In the SaaS model the burden of

security relies with the the cloud provider (and the service provider, if they are different) to

perform all security functions, whereas at the other extreme, at the IaaS model the security

functions are the cloud client’s (service provider) responsibility. SaaS users have the least

control over security among the three fundamental delivery models in the cloud.

2.4.3 Trust Relationships

In the conventional company dedicated IT environments model, where a provider is offering

an online service to its clients - the service is hosted on the provider’s dedicated IT infrastruc-

ture - the explicit relationship among the participating entities is a simple provider-user

CHAPTER 2. BACKGROUND 32

Cloud Infrastructure
Provider

Service Provider

Service’s Customers
(End Users)

Figure 2.4: Users explicitly trust their data to service providers, but also implicitly trust the

cloud provider that hosts these services.

relationship. This relationship involves to some extent an implicit level of trust, that the

hardware and software provided by the technology vendors and used inside these companies

are safe and secure. In this setting it is the provider’s responsibility to make sure that the

service was conforming to the security requirements of the relevant service level agreement

(SLA). Where operational requirements dictate for more demonstrable levels of trust, they

can be achieved through implementation of high assurance technologies and testing.

On the contrary, on-site testing and getting a clear insight of cloud services internals is

not an option, at least to the extent that would alleviate user’s concerns. Cloud systems

execute in an abstract environment, located in physical data centers whose precise loca-

tion may be unknown or obscured. Gaining access to those data centers to evaluate their

integrity would invalidate the very controls established to ensure they deliver the security

and integrity necessary for multiple other customers.

For cloud services a longer trust chain must be accommodated than the traditional

provider-user relationship. For example, the application end-user could potentially use an

application built by an SaaS provider, with the application running on a platform offered by

a PaaS provider, which in turn runs on the infrastructure of an IaaS provider. While to our

CHAPTER 2. BACKGROUND 33

knowledge this extreme example cannot occur in practice today due to a lack of sufficient

APIs, it illustrates that with any model of cloud computing, the traditional provider-user

trust relationship is transformed into a multi-party system [17], as shown in Figure 2.4,

in which users are often not aware of the existence of the cloud infrastructure provider at

all (unless it is the same entity that also offers the service, as for example is the case with

many of the services offered by Google or Amazon). The solid lines in Figure 2.4 represent

the interactions between cloud service customer’s and their providers as well as between

service provider’s and the cloud infrastructure provider hosting them. The unrecognized

relation, denoted in the dashed line, occurs when the cloud service provider and the cloud

infrastructure provider are different administrative entities and represents the implicit

trust relation between the end users and the cloud infrastructure provider.

Users of online cloud services trust the providers of those services to securely handle and

protect their data. In turn, service providers place their trust in the cloud infrastructure

that hosts their services. From the users’ perspective, there is an inherent shared respon-

sibility between the cloud and the service providers regarding the security guarantees of

the provided service. Although end users do not interact directly with cloud providers,

they implicitly trust their infrastructure—the systems in which their data are kept. Con-

sequently, cloud-hosted applications depend on the trustworthiness of both their providers

and the cloud infrastructure providers. This thesis proposes to exploit this implicit trust for

the benefit of all parties by introducing a direct relationship between end users and cloud

providers.

Understanding the implicit and explicit relationships and dependencies between cloud

computing entities is critical to understanding and evaluating cloud computing security

risks.

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 34

Chapter 3

Generic Cross-Host Taint

Propagation Mechanism

In this Chapter we discuss the design and implementation of TaintExchange [79], a generic

mechanism for efficiently performing cross-process and cross-host data flow tracking. As

suggested by the name of our tool, our goal was to create a mechanism that allowed collabo-

rating processes (on the same or different hosts) to transfer taint information together with

the data exchanged between them. With TaintExchange, fine-grained taint information is

transparently multiplexed with user data through the existing communication channels (i.e.,

sockets or pipes), allowing us to mark individual bytes of the transferred data as tainted.

3.1 Introduction

Most real-world services are quite complex, and are usually built by “glueing” together a

multitude of components, e.g., Web services. These feature-rich services consist of multiple

applications exchanging data, that in many cases run on different hosts. Bugs and vulnera-

bilities in existing code, misconfigurations and incorrect assumptions about the interaction

between different components can leave these services vulnerable.

Dynamic data flow tracking has been a prominent technique in the computer security do-

main, used for various tasks, including detecting software vulnerabilities, analyzing malware,

preventing information leaks, while researchers seem to continuously find new applications

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 35

for it. Originally, taint tracking systems enabled the tracking of tainted data throughout the

execution of a single process [59; 53; 21; 19], or an entire host in the case of virtual machine

(VM)- and emulator-based systems [31; 57; 76]. The latter enabled researchers to track the

interactions between processes running within a virtual machine. Existing cross-application

and cross-host taint propagation systems frequently make use of VMs and emulators [49;

83] incurring unnecessary overhead and requiring extensive maintenance and setup. Other

implementations of cross-process DFT are very problem-specific, requiring extensive modi-

fications for reuse by the research community to solve new problems. Therefore, the motiva-

tion behind TaintExchange was to create a valuable tool for rapidly developing prototypes

that utilize cross-process information flow tracking, without severely impacting application

performance.

This chapter presents TaintExchange, a generic cross-process and cross-host taint track-

ing framework. TaintExchange is build on the Libdft open source data flow tracking frame-

work [36], which performs taint tracking on unmodified binary processes using Intel’s Pin

dynamic binary instrumentation framework [42]. We have extended Libdft to enable the

transfer of taint information for data exchanged between hosts through network sockets,

and between processes using pipes and unix sockets. Taint information is transparently

multiplexed with user data through the same channel (i.e., socket or pipe), allowing us to

mark individual bytes of the communicating data as tainted. Additionally, users have the

flexibility to specify which communication channels will propagate or receive taint infor-

mation. For instance, a socket from HOST A can contain fine-grained taint information,

while a socket from HOST B may not contain detailed taint transfer information, and all

data arriving can be considered as tainted. Similarly, users can also configure TaintEx-

change to treat certain files as tainted. Currently, entire files can be identified as a source

of tainted data.

TaintExchange can be a valuable asset in the multi-component Web services setting,

providing transparent propagation of taint information, along with the actual data, and

establishing accurate cross-system data flow monitoring for data of interest. TaintExchange

could find many applications in the system security field. For example, in tracking and

protecting privacy-sensitive information as it flows throughout a multi-application environ-

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 36

ment (e.g., from a database to a web server, and even to a browser). In such a scenario,

the data marked with a “sensitive” tag, will maintain their taint status throughout their

lifetime, and depending on the policies of the system, TaintExchange can be configured to

raise an alert or even restrict their use on a security-sensitive operation, e.g., their transfer

to another host. In a different scenario, a TaintExchange-enabled system could also help

improve the security of Web applications by tracking unsafe user data, and limiting their use

in JavaScript and SQL scripts to protect buggy applications from XSS and SQL-injection

attacks.

3.2 Design

We designed and implemented a prototype for TaintExchange based on the Libdft data flow

tracking framework [36], to produce a generic system for efficiently performing cross-process

and cross-host taint tracking. Nevertheless, TaintExchange could be easily retargeted to nu-

merous other taint tracking systems similar to Libdft, e.g., TaintCheck [53], TaintTrace [19],

LIFT [59], or Dytan [21], as TaintExchange is a broadly applicable design. Libdft was cho-

sen because it is one of the fastest process-wide taint-tracking frameworks, which performs

at least as fast, if not faster than similar systems such as LIFT and Dytan.

We will present the main aspects of TaintExchange, following the three-dimensions

described in Chapter 2. Figure 3.1 shows an overview of TaintExchange, the various sources

of tainted data that can be configured, and the mechanisms for exchanging taint information

between processes and hosts.

3.2.1 Taint Sources

The taint sources are the “starting points” of the system, where taint is first assigned to the

data of interest. Our current framework supports configurable taint sources from the two

most common input channels, the file-system and the network. In the current implementa-

tion, the user of TaintExchange directly interacts with the underlying framework (i.e., both

TaintExchange and Libdft) to define the taint sources, as they each time depend on the

problem being tackled. Although the configuration of the taint sources is straightforward,

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 37

socket

Taint informationData

Tainted
files

Unix
socket

Internet

Filesystem

.......

.......
Processes Processes

Pipe

Host A Host B

Filesystem

TCP

Taint−ExchangeTaint−Exchange Taint−ExchangeTaint−Exchange

Figure 3.1: TaintExchange overview. Taint information can be exchanged using network sockets

and pipes. Sockets and files can also be configured as taint sources.

we stress that a better user interface for this purpose would further improve its usability.

But this is beyond the scope of our work for now.

Configuring taint sources from the filesystem is a straightforward process. In particular,

a shadow file taint config is maintained for listing all tainted files in the system. The

designer has to update this file with the tainted files, using full-path format, and then

all data originating from files listed in taint config will be marked as tainted. Network

sockets and pipes can also be among the taint sources, so data arriving from them can be also

tagged as tainted. Sockets and pipes can be also configured to receive and transmit detailed

taint information regarding the data being exchanged (described later in this section).

A global array, state sfd, is used for keeping track of the important “channels” that

comprise TaintExchange’s taint sources. The open(), socket(), accept(), dup(), and

close() system calls are intercepted and augmented with the necessary code for updating

the state sfd array accordingly. Once the tainted channels are identified, they start being

monitored for tainted data. Briefly, once read-like calls, such as read(), readv(), recv()

etc., read data from one of the identified tainted sources, the taint-header processing mech-

anism (described later in the chapter) should be initiated. This includes the extraction of

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 38

a taint-header from the received data stream, including information for the taint status of

the data received, and then the tainting of the received data accordingly.

3.2.1.1 Data Tags

In addition to specifying the data to be tainted it is important also to define what taint tags

should be associated with the selected data. The first prototype of our system supports only

binary mode taint status, i.e., tainted or clean data, but this is only a limitation because of

the chosen underlying taint tracking system Libdft [36] version. In fact, for the later version

of TaintExchange, that is incorporated in the CloudFence framework (see Chapter 4), we

use a later future version of Libdft that supports multiple labels/colors for tracked data.

Therefore, the latest version of our prototype takes advantage of the richer data tags. Of

course, the larger tags have a larger impact on the performance of data transfers, but with

several other optimizations we managed to reduce the performance penalty from the larger

data tags.

3.2.2 Taint Propagation

We examined three different scopes for the propagation of the tainted data. Firstly, the

intra-propagation of taint values during the execution of a single process. As we discussed in

Chapter 2, this has been thoroughly explored by past work, and there exist many tools [19;

21; 36; 53] for efficiently handling this issue. In general, all these tools allocate a separate

shadow memory for every process to keep track of the taint status of data. In our design we

refer to this shadow memory as a tagmap. The second case of taint propagation we consider

is the cross-process propagation of taint tags for the data exchanged between processes.

Note that previous research has mostly addressed this topic by performing system-wide

taint tracking using modified VMs and specialized hardware [24; 25; 57; 76], mostly based on

emulators and hardware extensions for efficiently handling system-wide tracking of tainted

information. The last case we examine is the cross-host transfer of tainted tags. Relatively

little research has explored this path [8; 26; 49; 83]. For the last two scopes, we build a

separate taint transfer mechanism.

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 39

Taint transfer mechanism. For TaintExchange, taint transfer refers to the propagation

of taint information along with the data, when processes on the same host or on different

hosts communicate. Our mechanism supports processes that communicate using sockets

and pipes. Briefly, the main idea is to monitor the information flow between the taint sinks

and taint sources, and intercept the system calls from the read/receive and write/send

families that are used to read from and write to these tainted channels. For data leaving the

current process (or host), a taint-header is composed and attached to the data, indicating

which bytes of the data payload, if any, are tainted. We will describe the taint-header in

detail in Section 3.2.4. On the receiving side, as the “extended by the taint-header” data

enters the process (or host), and assuming that the source descriptor is among the taint

sources described earlier, the taint header will be extracted from the received data, and the

relevant taint tags storage structure of the process will be updated accordingly.

Cross-process taint transfer is handled the same way as cross-host taint transfer. The

only difference is the source descriptor, which in the case of pipes is the pid or name of the

application we are communicating with. IPC through UNIX sockets is very similar to TCP

sockets, so the mechanism remains almost entirely the same.

3.2.3 Taint Sinks

Taint sinks refer to the locations in the system, where the user needs to perform some

assertions on the data. For example, tainted data may not be allowed to be transmitted

over a certain socket, or used as program control data (e.g., a function return address). Taint

sinks are problem-specific, and can be configured by the user. Libdft offers an extensive

API for the users to check for the presence of tainted data on instructions and on system

or function calls.

3.2.4 Taint Headers

3.2.4.1 Taint Header Structure

To multiplex data and taint information, TaintExchange prefixes each data transfer with

a taint header, which essentially encapsulates the transferred data into a new “packet”

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 40

Figure 3.2: TaintExchange encapsulates data using a header to transparently inject taint infor-

mation in data transfers.

protocol, following the format shown in Figure 3.2. The fields of the taint header are

described in Table 3.1.

Taint Header Field Description

fmt the format version of that taint information

hdr len the length of the header including that taint information

data len the length of the data payload (i.e., the data the application

is actually transferring)

taint information fine-grained taint information regarding the payload, and

following the format specified by fmt

data the data payload

Table 3.1: Taint-header’s fields. They include information regarding the taint status of the data,

that is being transferred. The taint-header is transferred along with the real data.

3.2.4.2 Composing the Taint Header

A taint header is created when write-like system calls, such as write(), writev(),

send() etc., are executed and the destination descriptor of the system call is among the

ones configured to transfer taint. The process’ tagmap is referenced to determine which

parts of the outgoing data message is tainted. Depending on the number of tainted bytes

and their distribution, TaintExchange determines which format to use to encode the taint

information for the data. We support two formats for encoding taint information. The first,

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 41

E
x
tr

a
 t
a
in

t−
b
y
te

s

9

17

25

33

41

49

57

65

73

Original number of bytes transferred

 between processes

0 16 32 48 64 80 96 112 128

segs=0

segs=1

segs=2

segs=3

segs=4

segs=5

segs=6

segs=7

Vector

Bitmap

Figure 3.3: Space overhead of the different TaintExchange taint information transfer formats.

For both formats, the fixed header size is 9 bytes. The overhead of the bitmap format is linear

with the number of bytes transferred, while with the vector protocol it depends solely on the

number of tainted data segments.

is a bitmap which contains one bit for every byte of data being transferred, and the second

using a vector for each segment of data that is tainted. For example, if bytes 5 through

15 in the buffer to be transferred are tainted, the vector describing this segment will be

[5,10]. That is, there is a segment of tainted data starting at offset 5 of the data and

lasting for 10 bytes. The space overhead of these two formats is drawn in Figure 3.3. We

see that depending on the number of tainted segments included the data payload a different

format is preferable. Usually, for large continuous areas of tainted bytes, a vector proves to

be a more efficient choice, whereas for sparsely tainted bytes the bitmap is preferable.

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 42

3.3 Implementation

3.3.1 The Libdft Data Flow Tracking Framework

TaintExchange operates by intercepting and instrumenting the system calls used for inter-

process as well as for cross-host communication, while it relies on an already available

tool, Libdft [36], to perform the taint tracking within each process. For this purpose, we

instrumented the socketcall family of system calls (i.e., socket(), and accept()), the

dup() system call, and the read/receive-like and write/send-like system calls. We also

intercept the open(), close() and mmap() system calls for handling files.

For the intra-process dynamic taint tracking we chose Libdft [36], a dynamic data flow

tracking (DFT) framework, designed to transparently perform DFT on binaries. Although

our design is independent of the underlying data flow tracking system, for our implementa-

tion we chose Libdft because of its availability, well-defined API, and efficient instrumen-

tation, which makes it one of the fastest process-wide taint-tracking frameworks. Libdft

is used as a shared library offering a user-friendly API for customizing intra-process taint

propagation, and can be used on unmodified multi-threaded and multiprocess applications.

It relies on PIN [42], a dynamic binary instrumentation framework (DBI) from Intel, widely

used in the implementation of other DFT tools [21; 86].

Similarly to PIN’s, the Libdft API allows both instrumentation and analysis of the target

process. In particular, Libdft’s I/O interface component, offers an extensive system call

level API, enabling instrumentation hooks before (pre syscall) and after (post syscall)

every system call, while making use of the underlying DFT services. We have registered

analysis callbacks for the “interesting” system calls, which get invoked when these system

calls are encountered, to observe the process’ communication channels, and to inject taint

information along with the native data (i.e., the data the application is communicating). For

the system calls that are not explicitly handled by TaintExchange, the default behavior is

to clear the tags of the data being read (i.e., the data written in the process’ memory). This

way, over-tainting is avoided since “uninteresting” system calls, that overwrite program

memory with new inputs read from the kernel, are not ignored. It is worth mentioning

that Libdft does not suffer from taint-explosion (i.e., over-tainting data that should not

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 43

be tagged), because it does not consider control-flow dependencies and it operates in user-

space. Control-flow dependencies, kernel data structures, and pointer tainting have been

identified as the prominent causes of taint-explosion [61].

3.3.2 Taint-Exchange Data Structures

Tagmap structure. The tagmap is the taint-tag storage, or else shadow memory, main-

tained by Libdft, reflecting the taint status of the running process’ memory and CPU

registers for each running thread. Its implementation plays a crucial role in performance

and memory overhead. Libdft supports byte-level memory tagging, which is mapped to

a single-bit tag in the process’ tagmap, and four 1-bit tags for every 32-bit GPR. Libdft

offers an extensive API for the update of the taint-tags in tagmap (e.g., tagmap setb,

tagmap getb, tagmap clrb are handling the taint-tag per byte of addressable memory).

State sfd global array. The state sfd is the global array of tainted descriptors, that

designates the data streams, being monitored for tainted data. It is updated by the system

call subset used for handling files and creating/closing sockets, and is indexed by the file

(or socket) descriptor. Initially, all elements of the array are empty. The array is updated

by the instrumented versions of open(), socket(), accept(), dup() and close() system

calls, and variations of them.

Taint config configuration file. taint config is the configuration file for filesystem

taint sources. The files listed in it should be written in full-path format.

3.3.3 Filesystem Taint Sources

Currently, our framework supports configurable taint sources from the file-system and the

network. The taint config file, lists the files that contain data of interest, which should

be tainted and tracked throughout the monitored system. This is implemented, by the

instrumented open() system call, which marks as tainted the state sfd elements, that

correspond to the files listed in taint config. The descriptors of these files are considered

input channels for tainted data. Therefore, whenever a system call, like read(), tries to

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 44

read data from them the corresponding taint tags in the tagmap structure are updated

accordingly.

3.3.4 Taint Propagation Over the Network

The main purpose of TaintExchange is the delivery of taint-tags along with the transferred

data in all the tainted channels. To establish information about the TCP channels the

socket() and accept() system calls are instrumented. For simplicity, in the current im-

plementation, every network connection is considered capable of propagating tainted data,

but this could be easily limited to work only on specific IPs. When a TCP connection is

established, state sfd structure is updated accordingly to add the new socket descriptor

to the monitored channels.

The cross-host taint propagation mechanism is handled by the instrumented versions

of write/send-like system calls on the sending side, and read/receive-like system call

on the receiving side. When the sender transmits data by invoking a write() (or an

equivalent) system call, TaintExchange constructs the corresponding taint-header according

to the relevant taint-tags as reflected in the tagmap of the sending process and attaches it

to the original data. The receiving side, will invoke an instrumented read() call (or an

equivalent) to process the extended data, and update the process’ tagmap with the taint-

tags corresponding to the received data.

3.3.5 Cross-process Taint Propagation

Interprocess communication can happen through unix sockets, TCP/UDP sockets, pipes,

and shared memory. If the processes are communicating via sockets or pipes, taint tags

can propagate between communicating processes in the same manner we described in the

previous section. The main difference is the source descriptor, which in the case of pipes

is linked to the pid or name of the application the process is communicating with. IPC

through UNIX sockets is very similar to TCP sockets, so the mechanism remains almost

entirely the same. We are currently not handling data exchanged through shared memory

segments.

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 45

3.4 Evaluation

Our aim is to demonstrate the communication overhead induced by the TaintExchange

mechanism, when transparently passing taint information, along with real data, across

the network. To assess the impact imposed by TaintExchange, we performed several micro

benchmarks using utilities from the lmbench3 [45] Linux performance analysis suite. During

the tests we only used the bitmap format to represent taint information, as the overhead of

the vector format can vary significantly depending on the application scenario.

Our testbed consisted of two identical virtual machines located on a server equiped

with 3.50GHz eight core Intel Xeon E3-1270 V2 CPUs and 32GB RAM, running Xen 4.1.4.

The virtual machines are assigned 1 virtual CPU and 1 GB RAM each and are running

Linux (Debian ”squeeze”, with kernel version 2.6.32). The version of Pin used during the

evaluation was 2.10 (build 45367). When conducting our experiments, the hosts were idle

with no other user processes running under taint-tracking apart from the evaluation suites.

3.4.1 Bandwidth

Since TaintExchange intercepts socket connection calls to inject the additional taint in-

formation, we used lmbench’s bandwidth benchmark bw tcp to measure the impact of our

approach when moving the “extended” data over the network. bw tcp measures TCP band-

width by creating two processes, a server and a client, that are moving data over a TCP/IP

connection. We repeated our tests with data of different sizes and against four different

scenarios:

(a) native execution of the benchmark.

(b) using Pin’s runtime environment alone, loading no pintool. We chose to use this setting,

to establish the overhead imposed by the Pin runtime environment alone as lower bound

for the overhead from the DBI.

(c) using Libdft-dta, a tool based on Libdft to employ basic dynamic taint analysis. We

used this tool to achieve an estimation of the overhead imposed by Libdft and the data

flow tracking tool.

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 46

(d) using TaintExchange with the bitmap format for the taint information.

We repeated the measurements 100 times for each of the different message sizes, i.e., 128,

256, 512, 1024, 2048 and 4096 bytes, sending a total of 50 MB (lmbench M parameter) in

each iteration, while we left all other options to their defaults settings. The results presented

in Table 3.2 are mean values (MB/sec) and the standard deviation for the different message

sizes, as shown at the leftmost column, and for the three different settings mentioned in

the first line of the table. Note that the numbers in the parentheses at the leftmost column

represent the additional bytes, i.e., the taint-header, that are tranferred along with the

application data when employing the TaintExchange mechanism. When using Pin and

Libdft-dta bytes transferred are the original application data. For instance, when bw tcp

client is running over Pin alone or over Pin and Libdft-dta it is reading 256 bytes of data.

But in the setting employing TaintExchange the client will receive 41 more bytes along with

the original 256 bytes.

Pin Libdft-dta TaintExchange

Total Bytes Mean (MB/s) St.Dev. Mean(MB/s) St.Dev. Mean(MB/s) St.Dev.

128 (+25) 20.41 0.20 13.18 0.19 10.79 0.40

256 (+41) 36.58 1.00 24.21 0.38 22.09 0.96

512 (+73) 66.95 4.13 45.03 0.97 37.21 0.21

1024 (+137) 124.89 17.47 84.91 4.96 57.99 0.43

2048 (+264) 255.31 36.84 163.28 15.41 89.71 0.94

4096 (+521) 524.76 56.39 333.49 9.18 136.87 2.95

Table 3.2: Throughput (MB/sec) per message size when running bw tcp. The num-

bers in the parentheses represent the additional bytes sent along with the real data, when using

TaintExchange. There is an obvious impact on the throughput of the TCP sockets in the case

of TaintExchange justified by the additional data sent along with the application data, the over-

head of intercepting the system calls and finally by the additional read() calls inserted by our

mechanism, for every TCP socket read().

The results from the throughput measurements are also illustrated graphically in Fig-

ure 3.4 for better interpretation. The right subfigure of Figure 3.4 represents the throughput

of bw tcp when running natively. Note that the effect of Pin is quite pronounced espe-

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 47

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

0

50

100

150

200

250

300

350

400

450

500

550

Buffer size

 128B 256B 512B 1KB 2KB 4KB

Pin

DTA−libdft

Taint−Exchange (bitmap)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

Buffer size

 128B 256B 512B 1024B 2048B 4096B

Native

Figure 3.4: TCP socket throughput measured with lmbench for various buffer sizes.

The numbers in the parentheses represent the additional bytes sent along with the real data, when

using TaintExchange. We draw the mean and standard deviation. Note that the effect of Pin

with the buffers drawn here is quite pronounced compared with the native execution of bw tcp.

Note though that the overhead diminishes as the size of the data read increases.

cially for the smaller-sized buffers but it diminishes as the size of the data read increases.

Therefore, we chose to draw the results of the native execution separately for the chosen

buffer-sizes as our goal is to illustrate the TaintExchange overhead over the one imposed

by the underlying taint tracking system and it would not be as clear if we included all four

scenarios in the same graph.

There is an obvious impact on the throughput of TCP sockets for the three settings

shown at the left subfigure, in comparison to the native execution, which becomes more

severe as the size of data transferred increases. As expected, TaintExchange has the largest

impact of the three scenarios. This is justified by the number of additional data sent every

time in comparison to the other settings but also by the overhead caused by the interception

of the system calls as well as the two additional read() system calls that are performed for

every application’s read().

When running our tests we also noticed that the standard deviation was smaller in

the case of small-sized buffers in all three settings and increases as the number of data

transferred grows. The total system call cost in the case of a read() system call is affected

primarily by three factors:

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 48

• the mode switch cost, which is independent of the amount of data read,

• the time to transfer data from the network driver to the kernel and

• the time to copy the data to user space for the user process.

The last two factors are affected by the number of bytes read each time. Therefore, in

the case of small-buffers the mode switch cost essentially hides the cost for the copying

of the bytes and the oscillation in the read() system call cost seems to be quite small in

comparison to larger read buffers. In conclusion, the bandwidth is smaller when reading

small data buffers but the variation in the bandwidth results is also quite small.

Another observation that comes out from Figure 3.4 is that althought the bandwidth

is degrading when applying the TaintExchange mechanism, there is smaller variation in

the bandwidth results than in the other two scenarios for the same data sizes. Regarding

the bandwidth the degrading was quite expected since we are sending more data, i.e., the

taint-header, along with the application data.

As described in Section 3.3.4 every read() system call of the application (in this case

bw tcp) is invoking the relevant instrumented version of the system call, which introduces

two additional read() system calls for every application read() from the TCP socket.

These additional read() calls are used for reading the taint-header in two pieces. The first

one reads the fixed part of the taint-header, i.e., the fmt, the hdr len and the data len

which add up to 9 bytes. The second one reads the bitmap with the taint information for

the corresponding application data. Therefore, the read() calls of the small-sized buffers

are also responsible for lowering the bandwidth more thanwould be expected based on the

additional bytes transferred.

The dominant instrumentation and processing inserted by Pin and Libdft-dta have

an effect on the standard deviation of the results. The respective wait time hides the

translation, tag propagation and other processing required by the three settings on top of

the native version of the application. Also, in TaintExchange the two additional read()

calls of small-sized parts of the taint header are also contributing to the reduction of the

variation of the results in comparison to the other two scenarios.

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 49

We draw also the average slowdown observed when running the bandwidth benchmark

using Pin alone, Libdft-dta and our TaintExchange, compared with native execution. We

obtained the average slowdown Sslow using the following formula:

Sslow =
ThroughputTaintExchange(avg)

ThroughputNative(avg)

for the slowdown factor imposed by TaintExchange.

Total Bytes Pin Libdft-dta TaintExchange

128 (+25) 10.2x 15.9x 19.4x

256 (+41) 11.7x 17.7x 20.6x

512 (+73) 13x 19.3x 23.7x

1024 (+137) 8.2x 12.1x 17.7x

2048 (+264) 4.1x 6.9x 11.7x

4096 (+521) 2x 3.5x 7.8x

Table 3.3: Slowdown factor over native execution of bw tcp. The numbers in the parenthe-

ses represent the additional bytes sent along with the application data, when using TaintExchange.

The columns represent the slowdown factor for each of the three settings.

Table 3.3 shows the slowdown factor for the three settings in comparison to the native

execution of bw tcp. Figure 3.5 illustrates the same results graphically. There is an obvious

slowdown on the performance of the bandwidth benchmark when executed over each one of

the three settings. Pin alone imposes a slowdown ranging from 2x to 13x. As expected, the

slowdown is larger in the case of TaintExchange, although large part of this is attibuted to

Pin and Libdft-dta, as it is built on top of these two and inherits their slowdown. It is worth

noticing though that the relative slowdown rises in all three settings for the small packets

(<1KB), but it shows the exact opposite trend for all the larger files. The throughput

measurements for the native execution illustrated in Figure 3.4 can explain to some extent

the slowdown trends. As it is obvious from the relevant subfigure, the throughput is rising

as the size of the data-buffers becomes larger, but for larger buffers (1KB, 2KB and 4KB)

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 50

S
lo

w
d
o
w

n
 f
a
c
to

r
o
v
e
r

n
a
ti
v
e
 e

x
e
c
u
ti
o
n

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Buffer size

 128B 256B 512B 1KB 2KB 4KB

Pin

DTA−libdft

Taint−Exchange (bitmap)

Figure 3.5: Slowdown factor in comparison with the native execution of bw tcp. Note

that the native execution reaches a lower bound for buffers larger than 1KB (as seen in Figure 3.4).

Therefore, the relative overhead for the three settings diminishes when reading these larger buffers.

the throughput does not differ significantly among them. This obeservation implies that the

benchmark seems as if it reaches an upper bound of how many bytes it can read per second.

Therefore, to read more bytes the whole wait time becomes larger, which works in favor

of the other three settings, since their processing time is affecting less the total slowdown.

Another reason for this drop on the slowdown for buffer sizes larger than 1KB, is that each

benchmark’s native read() system call implies two additional read() calls. The first one is

reading always 9 bytes, but the second one is reading equivalent number of data as large as

1/8 of the size of data that the application’s read() is going to receive. Therefore, in the

case of 4KB of application data, the second read() call will read 512 bytes, which causes a

significant overhead as depicted in Table 3.3. Therefore, as the size of the application data

to be read becomes larger, the relative slowdown caused by TaintExchange will become less

observable.

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 51

Operations Native Pin Libdft-dta TaintExchange

Upload a 4-min video (30MB) 0.028 sec 0.057 sec 0.09 sec 0.219 sec

Upload 100 Photos (200MB) 0.187 sec 0.381 sec 0.6 sec 1.461 sec

Upload CD 80min (700MB) 0.652 sec 1.334 sec 2.099 sec 5.114 sec

Upload 1-hour HD movie (3GB) 2.867 sec 5.854 sec 9.212 sec 22.445 sec

Upload files to the cloud (10GB) 9.558 sec 19.514 sec 30.706 sec 74.816 sec

Table 3.4: Operational overhead. The numbers in the parentheses represent the total size of

bytes read for the specific activity. Assuming that the files are read in 4KB chunks, the expected

time overhead for the four settings is presented in the relevant columns.

Finally, another parameter worth exploring for the evaluation of TaintExchange is the

operational overhead, i.e., the perceived impact for the user when employing TaintEx-

change for his operations (e.g., uploading files on a remote server). Table 3.4 shows some

user operations and how they would be impacted if TaintExchange mechanism was in use.

3.4.2 Latency

Since the implementation of TaintExchange is mostly based on the instrumentation of sys-

tem calls, we also employed the lat syscall benchmark to measure the latency impact of the

three implementations. We used lat syscall with the read() and write() system calls, to

show how these operations are affected. We chose these system calls since they are the ones

handling the transfer of the tainted information and therefore they were affected the most

by TaintExchange. In the performed tests, “lat syscall read” measures how long it takes

to read one byte from /dev/zero, whereas “lat syscall write” measures how long it takes

to write one byte to /dev/null. The results are presented in Figure 3.6. The conditions dur-

ing these measurements were the same as with the bw tcp benchmark, regarding repetitions

and the calculation of the mean and standard deviation from the original measurements.

Note that Pin, as probably most DBI frameworks, greatly affects system call latency

(approximately 20x slower than native) because it receives control before and after every

call. The observed overhead is attributed to the overhead of Pin for the dynamic instru-

mentation analysis of the process, as well as the overhead inserted by Libdft performing the

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 52

Latency (microsec)

0 5 10 15

S
y
s
te

m
 c

a
ll read

write Pin

DTA−libdft

Taint−Exchange (bitmap)

Figure 3.6: System call latency measured with lmbench’s benchmark lat syscall. The buffer

read and written is 1 byte. Note that the additional latency imposed by TaintExchange for

write() system calls is due to the extra analysis that TaintExchange employs to determine

whether the output stream is among the taint sinks.

taint-tracking. The additional overhead imposed by TaintExchange, apart from the obvious

reasons, such as the instrumentation of these system calls for handling the taint-headers and

the continuous update of the taint data structures, is also implementation-specific. Specifi-

cally for the write() call used by lat syscall, the overhead imposed by TaintExchange in

Figure 3.6 is due to the extra analysis that TaintExchange has to do to determine whether

the output stream is among the taint sinks. No additional taint-headers are involved in

this case. The oscillation in the results presented is small as expected, since lat syscall

uses small sized buffers (1 byte) for the measurements, but this attributes to the general

increase in the system call overhead.

3.5 Discussion

We presented a preliminary implementation of TaintExchange, our approach for handling

cross-application and cross-host transfer of tainted information. There are some extensions

to this work presented in this chapter, which we addressed in the next version of TaintEx-

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 53

change (see Chapter 4). In the current implementation, every TCP socket is by default

considered among the monitored “channels”, that participate in the taint-propagation pro-

cess. We build a more fine-grained configuration procedure in the next version, so that

certain IPs can be included (or excluded) from participating into the propagation of the

taint-tags over the network.

In addition, we support persistent taint information storage for files, to be able to handle

both tainted and untainted data stored in a file. Briefly, an auxiliary file per original file

is used to maintain the information on the tainted bytes of the original file. A similar

scheme with the one used for passing taint information over the network is also explored

(e.g., bitmap for files with interleaved tainted and clean data, and vectors for files that

store tainted data in large blocks). Coarser-grained tracking can already be performed. For

instance, when tainted data are written to a file, taint-exchange can consider the entire file

as tainted.

Finally, in order to reduce the overhead of the inserted taint header we explore the use

of TCP optional headers to pass the taint information. This option would not only help

us trivially implement communication between a native and a taint-exchange application,

but it could also potentially improve the overall performance of our proposed mechanism.

Unfortunately, we found certain limitations in this approach when trying to implement it

for the CloudFence framework, but we did manage to employ it in the Cascading Rescue

Points mechanism (see Appendix I), that also incorporates the logic of the taint transfer

mechanism described in this chapter.

3.6 Conclusions

We presented TaintExchange, a generic cross-host and cross-process taint tracking frame-

work. TaintExchange enables the transfer of fine-grained taint information across processes

and the network. It does so by intercepting I/O system calls to transparently inject and

extract information regarding the taintness of every byte transferred between processes

running under TaintExchange. It also provides a flexible mechanism for easily customizing

the sources of tainted data, be it a network socket, a file, or an IPC mechanism like a pipe

CHAPTER 3. GENERIC CROSS-HOST TAINT PROPAGATION MECHANISM 54

or UNIX socket. Our evaluation of TaintExchange shows, as expected, that I/O is affected

because of the additional data being sent, and the utilization of the same channel to do so.

Nonetheless, we believe that the overhead is small, specially when compared with the high

overheads imposed by the various dynamic taint tracking systems.

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 55

Chapter 4

Cloud-wide auditing mechanism

In this Chapter we discuss the design and implementation of CloudFence, a cloud-wide

fine-grained data flow tracking framework for cloud-hosted services. CloudFence is a generic

facility offered by the cloud hosting provider enabling the service providers to easily integrate

data flow tracking techniques in their applications and thus enhance the security of their

services.

4.1 Introduction

The motivation behind CloudFence was to create a data tracking service offered by the

cloud hosting providers in addition to their existing hosting environment, to both service

developers as well as the users of their services, the data owners. We envision that this

service offered by a large, reputable cloud provider could help build users’ confidence much

more quickly and effectively than small individual service companies otherwise might.

As suggested by the name of our framework, the goal was to create a mechanism that

allowed data flow tracking within the boundaries of a well defined data flow domain, i.e.,

the component applications of a composite cloud-hosted service (e.g., web server, back-end

database etc.) or inside the domain of many services offered by the same cloud provider

(e.g., Google, Amazon etc.).

Our goal is two-fold. We first want to support benign service providers, who are willing to

integrate CloudFence in their applications to enhance the security of their provided services

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 56

and build the security reputation of their services. Although we trust the intentions of

these service providers to protect sensitive user data, we don’t trust that their applications

are free from software vulnerabilities and misconfigurations. Therefore, our approach offers

protection against many classes of attacks that can lead to unauthorized data access (but

which do not allow arbitrary code execution), such as SQL injection, command substitution,

parameter tampering, directory traversal, and other prevalent web attacks that are seen in

the wild. Note that in case of attackers who gain arbitrary code execution, we can no longer

guarantee accurate data tracking, since they can not only compromise our framework, but

can also exfiltrate data through covert channels.

But besides protecting against application-level vulnerabilities, an equally important

goal is to bring into users’ and service providers’ attention any unintended data exposure

that may lead to unauthorized access. In particular, we seek to reinforce the confidence of

end users for the safety of their data, beyond any assurances offered by the online service, by

giving users the ability to independently audit their cloud-resident data through a different—

and potentially more trustful—entity than the actual provider of the service. Therefore, we

envision that DFT will be offered as a service by the cloud infrastructure provider not only

to their tenants but also to their tenants’ customers, i.e., the data owners.

This can be achieved by taking advantage of the multi-party trust relationships (see

Chapter 2) that exist in typical cloud environments [17], in which the service provider is

different than the provider of the infrastructure on which the service is hosted. From the

users’ perspective, there is an inherent shared responsibility between the cloud and the ser-

vice providers regarding the security guarantees of the provided service. Although end users

do not interact directly with cloud providers, they implicitly trust their infrastructure—the

systems in which their data are kept. We aim to exploit this implicit trust for the benefit

of all parties by introducing a direct relationship between end users and cloud providers, as

shown in Figure 2.4. With data flow tracking as the basic underlying mechanism, the cloud

provider enables users to directly inspect the audit trail of sensitive data that was handled

by services hosted on the cloud provider’s infrastructure.

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 57

4.1.1 Incentives

While the trust relationship between users and service providers is not altered, CloudFence

gives users an elevated degree of confidence by allowing them to independently monitor

their private data as it propagates through the cloud. In fact, users are more likely to trust

a large, well known, and highly reputable cloud provider, as opposed to a lesser-known

developer or company (among the thousands that offer applications and services through

online application distribution platforms).

CloudFence offers service providers two main benefits. First, with minimal effort, it

allows them to provide an extra feature that reinforces the trust relationship with their

users. This can also be considered as a competitive advantage: among two competing

services, privacy-conscious users may prefer the CloudFence-enabled one, knowing that they

will have an additional way of monitoring their data. Second, it empowers service providers

with the ability to confine the use of sensitive user data in well-defined network and file

system domains, and thus prevent inadvertent leaks or unauthorized data access. Besides

guarding user data, service providers can also take advantage of CloudFence to implement

an additional level of protection for their own digital assets, such as back-end credentials,

source code, or configuration files.

Finally, by integrating CloudFence in its infrastructure, a cloud provider offers added

value to both its tenants and their users, potentially leading to a larger customer base.

Given the shared responsibility between cloud and service providers regarding the safety of

user data, both have an incentive to adopt a system like CloudFence as a means of providing

an additional level of assurance to their customers

4.1.2 Challenges

While a promising approach to security problems in the cloud setting, integrating data flow

tracking mechanisms in this setting requires the consideration of several issues. First, the

on-demand consolidation of computing elements in cloud settings allows service providers

to easily “glue” together functionality and content from third-party sources, and build

feature-rich applications. For instance, the term mashup is colloquially used to refer to

web application hybrids that combine services—from potentially untrusted principals—to

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 58

offer “rich web experience.” As the benefits of this approach are numerous, it is critical

not to interfere with that paradigm while enabling data tracking. We consider this as

the transparent tracking requirement. The applied DFT method should support incre-

mental deployment by not requiring intrusive changes, such as manually annotating source

code [58], custom OSs [81], or modified hypervisors [83].

Second, tracking granularity plays a crucial role in the effectiveness of DFT. A service

provider can choose between tracking data as small as a single byte [51], which enables robust

protection against extreme cases of data leakage, or employing a more coarse-grained (and

hence error-prone) approach [48]. However, fine-grained DFT has a significant performance

cost, as tracking logic becomes more intricate (e.g., consider the case of two 32-bit numbers

with only some of their bits marked as sensitive). We consider this as the fine-grained

tracking requirement, which suggests performing DFT at the appropriate granularity for

balancing overhead and accuracy.

Third, given the range of cloud delivery mechanisms with different compositional char-

acteristics (e.g., IaaS, PaaS), it is important to ensure that dynamic collaboration is taken

into consideration when performing DFT. The domain-wide tracking requirement refers to

the precise monitoring of data flows beyond the process boundary. Examples include intra-

host application elements that communicate through the file system or OS-level IPC, or

consolidated application components running on remote endpoints.

Finally, a major challenge in supporting data auditing for these online services, that

tend to have a very large number of users, is to allow for concurrent propagation of tagged

data that carry different tags for each user. Therefore, since the main concept behind

CloudFence requires that personal data is marked with a respective user ID, the goal is to

support applications with a practically unlimited number of users, and thus the DFT

component should be able to handle a respectively large number of tags. This requirement

is highly challenging, as most DFT frameworks provide either a single tag [59; 16; 19] or

just a few—usually eight [36; 85; 84].

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 59

Figure 4.1: Main interactions between the different parties involved in CloudFence-enabled

applications. Users register with the cloud provider (1), and then use the services offered by

various service providers using the same set of credentials (2). Sensitive data is tagged and tracked

transparently throughout the cloud infrastructure (3). Users can audit their data through a web

interface exposed directly by the cloud provider (4).

4.2 System Overview

Figure 4.1 shows the main interactions among the different parties that are involved in

CloudFence-enabled services. Initially, users register with the cloud provider (1) and acquire

a universally unique ID, distinctive within the vicinity of the cloud provider’s infrastructure.

Then, they use the online services offered by various service providers by providing the ID

acquired from the previous step (2).

The actual mechanism used for conveying user IDs to CloudFence is not addressed

in this work. As possible solutions, the service provider can either request from users

to provide their ID during the sign up process on the corresponding application, or in

case a cloud-wide identity management system is in place, the application can access the

respective ID transparently by requesting it directly from the cloud provider (after the

user has successfully authenticated). Such functionality is gaining traction among cloud

providers. Indicatively, Amazon recently launched the “Login with Amazon” feature [3],

which allows users to login to Amazon-hosted services with a single account, while it also

supports federated login using Google and Facebook identities [2].

Sensitive data is tagged by the service provider with the supplied user ID, and is tracked

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 60

throughout the cloud infrastructure, while audit information is gathered and stored at

the cloud provider (3). At any time, users can monitor the audit trails of data directly

through the cloud provider using a user-friendly web interface (4). Service providers also

have read access to the collected audit data through a specialized API. Besides user data,

CloudFence can be used to protect the service providers’ own assets, such as back-end

credentials, configuration files, and source code. This can be achieved by tagging them as

sensitive, tracking their propagation through the cloud infrastructure, and enforcing fine-

grained perimetric access control based on the applied tags.

4.3 Design

Our design takes into consideration all the challenges presented in section 4.1.2, while

providing fine-grained auditing capabilities for the cloud-hosted services. It consists of

three main components: the data flow tracking (DFT) subsystem, the API stub, and

the audit trails generation component.

DFT subsystem. The data flow tracking component is the nucleus of CloudFence and

an essential part of our architecture. It performs fine-grained, byte-level explicit data flow

tracking without requiring any modification to applications or the underlying OS, while

at the same time handles 232 different tags. Briefly, our DFT component is application

agnostic; it uses dynamic binary instrumentation for retrofitting the DFT logic into un-

modified binaries dynamically, at runtime, and supports tracking across processes running

on the same or remote hosts by utilizing the TaintExchange mechanism (see Chapter 3).

Specifically, it piggybacks tags on the data exchanged through IPC mechanisms or network

I/O channels, keeps persistent tag information for marked data written to files, and handles

(un)marshalling transparently.

API stub. The CloudFence API allows service providers to tag, i.e., attach metadata

information, on sensitive user data that enters their applications. Note that CloudFence does

not require application modifications regarding data tracking (e.g., extensive annotations).

However, it requires small changes to application code for marking sensitive information.

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 61

Figure 4.2: The CloudFence architecture. Process1 and Process2 are components of a

consolidated application, hosted on the CloudFence enabled cloud.

Audit Trails Generation. The main purpose of CloudFence’s auditing mechanism is to

generate detailed audit trails for tagged data. Therefore, we implemented a generic “ver-

bose” logging mechanism that collects information for tagged data accesses and generates

audit logs. The generated trails are stored in a database outside the vicinity of the service

provider in an “append-only” fashion to prevent tampering of archived audit trails. The

DFT component pushes audit information to the audit component whenever tagged data

is written to a cloud storage device or pass through I/O channels to endpoints inside or

outside the cloud.

Figure 4.2 illustrates the overall architecture of CloudFence. The two processes in the

upper part of the figure represent components of a consolidated application, while the rest of

the components are part of the cloud provider’s infrastructure. Note that for the rest of our

discussion, we assume that the service provider relies on an IaaS delivery mechanism, and

in this example both processes run on the same (virtual) host. However, CloudFence can be

seamlessly employed in PaaS and SaaS setups. Data that are tagged as sensitive (denoted

by the solid line in the figure) is tracked across all local files, host-wide IPC mechanisms, and

selected network sockets. Tagged bytes that are written to storage devices, or transmitted

to remote hosts, result in an audit message.

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 62

4.3.1 Data Flow Tracking

Although our DFT component is inspired by previously proposed DFT tools [36; 16], for

reasons that are explained in detail in Section 4.4, we built it from scratch to provide a

transparent, fine-grained, and domain-wide tracking framework suitable for the target cloud

environment. We employ Intel’s Pin [42], a dynamic binary instrumentation toolkit in order

to retrofit the DFT logic into unmodified binaries at runtime. Pin injects a tiny user-level

virtual machine monitor (VMM) in the address space of a running process, or in a program

that launches itself, and provides an extensive API that CloudFence uses for inspecting

and modifying (dynamically at run-time) the process’ code at the instruction level. In

particular, CloudFence uses Pin to analyze all instructions that move or combine data to

determine data dependencies. Then, based on the discovered dependencies, it instruments

program code by injecting the respective tag propagation logic before the corresponding

instructions. Both the original and the additional instrumentation code, i.e., the data

tracking logic, are re-translated using Pin’s just-in-time compiler. However, this process is

performed only once, right before executing a previously unseen sequence of instructions,

and the instrumented code is placed into a code cache to avoid paying the translation cost

multiple times.

Note that the instrumentation happens at the user level, which offers not only perfor-

mance benefits, but also alleviates any “semantic gap” issues due to VMM introspection [50].

We also decided to implement our DFT design at the user level to make it more easily de-

ployable by a cloud provider, compared to a modified hypervisor-based solution, since it

does not require intrusive changes in the underlying cloud infrastructure.

4.4 Implementation

From a high-level perspective, most of CloudFence’s functionality is built around the DFT

component, except the user interface, which is a user-accessible web application coupled

with a back-end database. Our current prototype is implemented using Pin 2.10, and works

with unmodified applications running on x86-64 Linux. The data auditing component is

layered on top of CloudFence using system call interposition.

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 63

4.4.1 32-bit Wide Tags and 64-bit Support

The shadow memory used for keeping data tag information plays a crucial role in runtime

performance. Previously proposed DFT systems mainly use two approaches for tagging

memory: (i) bit-sized tags [59], whereby every byte of addressable memory is tagged using

a single bit in the shadow memory, and (ii) byte-sized tags [36; 19; 16], whereby each byte

of program memory has a sibling in the shadow arena. In between, systems like Umbra [85]

and TEMU [75] allow for various byte-to-byte and byte-to-bit configurations, as well as

for lossy encodings (e.g., four bytes of addressable memory can be tagged using one byte).

TEMU, in particular, enables very flexible tagging, by supporting tag values of arbitrary

size, at the expense of higher runtime performance overhead [76]. CloudFence trades some

of this flexibility for a lower runtime slowdown.

Implementing 32-bit wide tags requires re-designing the shadow memory from scratch.

Driven by the fact that data from different sources, carrying dissimilar tags, are rarely

combined in our context (e.g., the memory bytes of two different credit card numbers are

unlikely to be combined), we opted for a solution that greatly increases the number of

tags stored per datum, but unavoidably also increases the overhead of tag combination

operations. More precisely, each tag value is stored as a different number, and when two

tags are combined, a new tag value is created. Still, incorporating this change alone in

commodity DFT systems [36; 16] would only increase the number of tags from 8 to 256,

using byte-size tagging. Hence, our next step was to expand the tag size from one to four

bytes, allowing for 232 tags.

The transition to 64-bit not only helps overcoming available memory limits, but also

enables further optimizations. The relatively expensive translation that involves shadow

page table lookups is replaced by a faster one. Taking advantage of the ample address

space, we split it in two parts: the shadow memory and the actual process memory. This

is achieved by reserving the shadow memory as soon as the process is started, forcing it to

allocate memory only in its own part. Address translation then becomes as simple as scaling

the virtual address and adding an offset. For example, the memory tags of address vaddr

can be obtained as follows: taddr = (vaddr << 2) + toff, where toff corresponds to

the offset of the shadow memory. CloudFence reserves 16TB of user space for the application

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 64

and 64TB for the shadow memory, resulting in an offset value of 0x100000000000. However,

it allocates pages in the shadow region on demand, i.e., only when a page contains tag

information. As every byte of tracked program data needs four more bytes for its tag, part

of the physical memory footprint of a process increases by a factor of four.

4.4.2 Lazy Tag Propagation

Most x86-64 instructions fall into one of two major categories: arithmetic and data transfer.

For the latter, tags are always propagated following the flow of data, i.e., we always copy

the tags of the source operand over the tags of the destination operand. On the other hand,

whenever the destination operand is derived from a combination of its own value and that

of the source operand, there are three possible cases, each having a different impact in terms

of performance:

/* arithmetic instructions */

if (shadow[src] != 0)

if (shadow[dst] == 0)

shadow[dst] = shadow[src];

else if (shadow[dst] != shadow[src])

shadow[dst] = combine(shadow[src], shadow[dst]);

Starting from the worst case, (else if), if both operands have different tags, a lookup is

performed and a new tag is generated. If only the source operand is tagged, its tag is copied

to the destination. If the source operand is not tagged, no action needs to be taken. Given

that only a small amount of data is usually tagged in our scenarios (recall that we care for

discrete pieces of sensitive information), we optimized our design for the last case using Pin’s

API for fast conditional instrumentation. Arithmetic instructions are instrumented with

a lightweight check of whether the source operand is tagged (fast path). In case it is, the

appropriate propagation actions are performed according to the code snippet above (slow

path). This avoids in the common case the excessive register spilling that usually occurs by

larger instrumentation code that needs more registers [42]. Finally, tag information is kept

into an array-like data structure, indexed by tag value. For every tag, we store whether it

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 65

is basic or compound, and in the latter case, the tag values it stems from. Compound tags

can be traced back to the basic tags they are made of, by recursively querying this data

structure.

4.4.3 Tag Persistence

Accurate data flow tracking throughout a cloud-based application requires persistent data

tags and tag propagation across different processes, which may run on different (physical

or virtual) hosts. To this end, we have built a layer on top of our prototype for supporting

tag propagation across BSD sockets, Unix pipes, files, and shared memory.

Sockets and Pipes. Exchange of tag information over sockets and pipes is handled by

embedding all relevant data tags along with the actual data that is being transferred. Main-

taining the tag propagation logic completely transparent to existing applications, without

modifying them or breaking the semantics of their communication, is the most challenging

part of this effort. In our prototype, the exchanged tag information consists of a copy of

the relevant area of the shadow memory that CloudFence maintains for the transmitted

data, encoded in RLE (Run Length Encoding). Recall that only a very small part of data

is usually tagged, so most of the time there will be minimal communication overhead—just

a header field that contains the number of triplets.

Synchronous I/O. We hook the write, send, and writev system calls using Pin’s hook-

ing API, and transmit tag information before the actual data of the original system call.

Similarly, we hook the read, recv, and readv system calls, and read the tag information

before the actual data. Messages can be received (i) at once, (ii) split in multiple parts, or

(iii) interleaved. In the first case, the tag data and the original data are received within

the same receiving operation, so they are simply decoded and attached to the original data.

For messages received through several read operations, the receiver initially buffers the tag

information, and each time a new part is received, its corresponding tag information is

appended until the whole message is received. The most difficult case is when the size of

the send buffer does not match the size of the receive buffer. Such cases are handled by

changing the return value of the read operation to match the end of the current message.

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 66

Non-blocking I/O. For non-blocking I/O, the above system calls may return a special

error code as if the requested operation would block (EAGAIN). If such an error occurs

when trying to read the embedded tag information, control returns immediately to the

application, as if its read operation failed. If some, but not all, of the tag data is available,

the available part is buffered and CloudFence emulates a “would block” error, as if the read

operation would block. Similarly, for write operations, we keep accounting of the relevant

encoded shadow memory data that is actually sent, and emulate EAGAIN errors until all

relevant shadow data has been completely transmitted.

Multiplexed I/O. For select, poll, and epoll, we chose to trade a small performance

overhead in favor of a safer hooking implementation. Before read or write operations, the

system blocks until all tag information is received or sent, as in synchronous I/O. A more

robust implementation would check if any of the ready-to-read file descriptors are waiting

to receive a new message, and attempt to first retrieve its tag information. If only partial

information is available, we can buffer it, and remove the file descriptor from the returned set

of select or poll, as if it were not ready to be read. However, such an implementation could

break application semantics, since the actual intention of the application after a select or

poll invocation is not known in advance, e.g., the application could use recvmsg, or not

read any data at all.

Files. Tag information should persist even when data is written into files, so that it can be

later retrieved by the same or other processes. CloudFence supports persistent tagging of file

data by employing shadow files. Whenever a file is opened using one of the open or creat

system calls, CloudFence creates a second shadow file, which is mapped to memory and is

associated with the original file descriptor. Whenever a process writes a file using write,

writev, or pwrite, the tag information of the relevant buffer (or buffers, in case of writev)

is also written in the appropriate offset of the mapped shadow file. Similarly, after a read

operation using read, readv, or pread, the relevant tag information from the corresponding

shadow file is represented at the destination buffer. To limit space requirements, we take

advantage of sparse files, which are supported by most modern OSs. For the common case

of a file with just a few tagged bytes, the shadow file will consume just 4× the size of only

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 67

the tagged data, while shadow files that contain no tag information require no extra space

at all.

Shared Memory. Our current implementation supports shared memory regions allocated

with mmap, but it can be easily extended to cover POSIX API calls (e.g., shm open) or SysV

API calls (e.g., shmget). CloudFence hooks calls to mmap, and for each shared memory

region, it creates a shadow copy to hold tag information.

4.4.4 Data Flow Domain

Data flow tracking is performed within the boundaries of a well-defined data flow domain,

according to the components of the online service. Whenever some tagged data crosses

through the defined boundary, e.g., when a destination file or host does not belong to the

specified domain, CloudFence logs the action in the audit database, and, depending on the

configuration, may block it.

To automate the configuration of tag propagation between processes that exchange

data through the network, CloudFence maintains a global registry of active sockets for the

domain by hooking the connect and accept system calls. For each connection attempt,

the initiator’s IP address and port are recorded in a list of endpoints that support tag

propagation. At the same time, the other endpoint’s address is queried in the list, and

if it exists, this means that both endpoints support it, and consequently tag propagation

is enabled for this connection. At the server side, upon a call to accept, and before the

call actually returns, the server’s address is inserted in the list of sockets that support tag

propagation (if not already present). After accept returns, the client’s address is queried

in the list, and if it exists, then tag propagation is enabled. Note that service providers

must only specify the programs that comprise the cloud application, and then the rest of

the tag propagation logic is determined automatically.

4.4.5 User Interface

CloudFence’s user interface leverages Cloudopsy [78], a web-based data auditing dashboard,

which is described in details in Chapter 5. Cloudopsy uses visualization and automated au-

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 68

dit log analysis to provide users who lack technical background with a more comprehensible

view of audit information. For example, the event of a user’s credit card number being

sent to an external host other than those included in the trusted domain, which could be a

data leak incident, would be clearly depicted in the audit graph presented to the user. In

particular, this suspicious data flow would be presented in the audit graph by a directed

link in a pre-defined color (e.g., red) indicating the possible data leak. Details regarding the

different formats of the audit graphs presented to the end users and the service providers are

out of the scope of this chapter but are discussed in our paper [78]. Although this service

targets mostly end users, it also provides administrators with a graphical overlook of the

overall application dependencies and data flows of the service. The visualization of audit

events allows for the immediate verification of legitimate operations and the identification

of unexpected transmissions, which otherwise might have remained hidden much longer in

the reams of raw audit logs, thus reducing decision and reaction latency.

4.5 Evaluation

We evaluate CloudFence in terms of ease of deployment in existing applications, runtime

performance, and effectiveness against data leakage attacks, using two real-world applica-

tions: an e-commerce framework and a bookmark synchronization service. Our experimen-

tal environment consists of three servers, each equipped with two 2.66GHz quad core Intel

Xeon X5500 CPUs and 24GB of RAM, interconnected through a Gigabit switch. To better

match a cloud infrastructure environment, two of the servers run VMWare ESXi v4.1, and

all CloudFence-enabled applications were installed in virtual machines. The third server

was used to simulate clients and drive the experiments. In all cases, the operating system

was 64-bit Debian 6.

4.5.1 Deploying CloudFence

4.5.1.1 Online Store

The first scenario we consider is an online store hosted on a cloud-based infrastructure.

Typically, during a purchase transaction, sensitive information, such as the credit card

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 69

number and the recipient’s postal and email address, is transmitted to the online store, and

from there, usually to third-party payment processors. The service provider can incorporate

CloudFence in the e-store application to allow users to monitor their data, as well as to

restrict the use of sensitive data within the application’s domain. The developers of the

e-store know in advance the entry points of sensitive user data, as well as which processes

and hosts should be allowed to access this data. For instance, after users input their credit

card information through the e-store front end, it should only be accessed by the e-store’s

processes, e.g., its web and database servers. The only external channel through which it

can be legitimately transmitted is a connection to the third-party payment processor, i.e.,

a well-known remote server address.

The application we chose for this scenario, called VirtueMart [69], is an open source e-

commerce framework developed as a Joomla component, and is typically used in PHP/MySQL

environments. We configured VirtueMart to accept payments only through credit card, and

set up actual electronic payments through the Authorize.Net payment gateway service us-

ing a test account. To incorporate CloudFence, we had to add just a few lines of code

at the user registration and order checkout modules. Specifically, we added a new input

field in the registration form for the user’s unique ID, a new column in the user’s database

table, and a few lines of code for storing the ID in the database along with the user’s info.

For the checkout phase, we added a few lines of code in the script that processes the pay-

ment information. First, the user ID for the current session is queried from the database.

Then, the HTTP POST variable that holds the credit card number is tagged by calling

the add tag API function through a PHP wrapper. Finally, the data flow domain of the

application comprises the web server, the database server, and any other processes these

two may spawn.

4.5.1.2 Bookmark Synchronization

This use case stems from the increased demand for data synchronization services, as users

typically have many internet-connected devices. The scenario in this case is to host a book-

mark synchronization service on the cloud based on SiteBar, an online bookmark manager

written in PHP. When adding a link to SiteBar, users have the option to set it as public

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 70

or private, and may change it later. From the side of the service provider, we would like to

tag any private links as sensitive.

Incorporating CloudFence in SiteBar was very similar to the previous case, as both

applications are written in PHP and use MySQL as a database back-end. On the other

hand, changing the source code to tag the sensitive data (user links marked as private) was

slightly more elaborate, as the sensitivity level of data can change dynamically. Thus, we

had to change the code that adds a link so as to tag it in case it is marked as private, as

well as the code for editing a link. It is essential to update the copy in the database on edit,

in order for the change to be persistent.

4.5.2 Effectiveness

To evaluate the effectiveness of CloudFence, we tested whether it can identify illegitimate

data accesses performed as a result of attacks. We used exploits against two publicly

disclosed vulnerabilities in the studied applications. The first allows authenticated users

of SiteBar versions earlier than v3.3.8 to read arbitrary files [5]. This is the result of

insufficiently checking a user-supplied value through the dir argument, which was used as

the base directory for reading language specific files, as shown below:

sprintf($dir.’/locale/%s/%s’,$var1,$var2);

Passing a file name that ends with the URL-encoded value for the zero byte (%00) causes

the open system call to ignore any characters after it and read the supplied file:

http://SB_APP/translator.php?download&dir=/var/lib/mysql/SCHEMA/TABLE.MYD%00

Using SiteBar v3.3.8 on top of PHP v5.2.3, we repeatedly read files by exploiting this bug

through a browser on a remote machine. CloudFence reported successfully all accesses to

data with persistent tags in the file system, which in our case corresponded to files belonging

to MySQL.

Another type of attack that usually leads to information leakage is SQL injection. The

main cause, again, is the insufficient user input validation. To demonstrate the effectiveness

of CloudFence on preventing this type of attacks, we used another real-world vulnerability

in VirtueMart version 1.1.4 [6]. The value of the HTTP GET parameter order status id

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 71

is not properly sanitized, allowing malicious users to change the SQL SELECT query by

using a URL like the following:

http://VM_APP/index.php?option=com_virtuemart&page=order.order_status_form

&order_status_id=-1’ UNION ALL SELECT ... where order_id=’5

which results in the execution of the following query:

SELECT * FROM jos_vm_order WHERE order_status_id=-1’ UNION ALL SELECT ...

FROM jos_vm_order_payment where order_id=’5’;

The above query returns a row from the jos vm order payment table, which holds the credit

card numbers, instead of the table jos vm order. As in the previous case, we installed the

vulnerable version of VirtueMart on top of PHP v5.3.3, and tried to access the credit card

numbers by exploiting this bug. In all cases, CloudFence identified the exfiltration attempt,

as the relevant data had been tagged as sensitive upon entry.

4.5.3 Performance

To assess the runtime overhead of CloudFence we compare it against Libdft [36], a data flow

tracking framework for commodity systems, as well as the unmodified application in each

case. We chose Libdft because it is publicly available, and it also uses Pin for runtime binary

instrumentation. Libdft maintains a shadow byte for each byte of data, and thus supports

only eight tags per byte, represented by individual bits. Compared to CloudFence, which

uses four shadow bytes per actual byte of data, Libdft has thus significantly lower shadow

memory requirements. Furthermore, representing each tag using a single bit allows Libdft

to implement aggressive optimizations for tag propagation using bitwise OR operations.

In contrast, CloudFence has to synthesize a new tag whenever two existing tags must be

combined, and then maintain their association. As we show in this section, despite the

increased requirements of CloudFence in terms of memory consumption and computation

for supporting 32-bit tag propagation, its runtime overhead is comparable to Libdft for the

cloud-based applications we consider.

4.5.3.1 Microbenchmark

We begin by focusing on the overhead of tag propagation, and specifically exploring tag

generation, which is the worst case scenario for CloudFence. The test program we used

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 72

S
lo

w
d

o
w

n

0

2

4

6

8

10

Combined tagged data (%)

0 5 10 15 20

Libdft

CloudFence

Figure 4.3: Slowdown as a function of the percentage of data with different tags that must be

combined (worst case). CloudFence not only supports 232 tags (instead of just eight for Libdft),

but also is faster for the cases we consider in our setting (< 10%).

allocates two buffers, buf a and buf b, of the same size. The bytes of buf a are tagged

with the value 1. Each byte of a specified part of buf b is tagged with a different value,

starting from 2. Then, each byte of buf a is added to the corresponding byte in buf b, and

the process repeats for a number of times. For each add operation, if the current byte in

buf b is not tagged, then buf a’s tag is copied over, otherwise, their tags are combined and

a new one is generated.

Figure 4.3 shows the slowdown imposed by data flow tracking for CloudFence and Libdft.

CloudFence not only provides extra functionality that is crucial for cloud environments,

but at the same time it is even faster than Libdft for the cases we consider, i.e., minimal

combination of data marked with different tags, as the personal data of different users are

not likely to be intermixed. The extreme case in which each add operation generates a new

tag results in a 20× slowdown (upper bound).

4.5.3.2 Real-world Applications

We decided to focus our experiments on VirtueMart, as it represents the most complicated

scenario among the chosen applications. VirtueMart stresses a larger part of CloudFence’s

functionality, and therefore results in a larger but more representative performance impact

in comparison to SiteBar. In our experiment, we measure the sustained throughput of user

requests that VirtueMart can handle when processing concurrent purchase transactions

from multiple users. We installed two instances of VirtueMart on virtual machines in our

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 73

R
e
q
u
e
s
ts

/s
e
c

0

1

2

3

4

5

Number of concurrent clients

0 20 40 60 80 100

Native

Libdft

CloudFence

Figure 4.4: Request throughput for Virtue-

Mart using the default web server configura-

tion.

R
e
q
u
e
s
ts

/s
e
c

0

1

10

100

Number of concurrent clients

0 20 40 60 80 100

Native

Libdft

CloudFence

Figure 4.5: Request throughput for Virtue-

Mart using Facebook’s HipHop.

testbed. One runs on top of Apache using the PHP module, and the other was compiled

after transforming the PHP to C++ using Facebook’s HipHop. In both cases, MySQL

was the database back-end. To generate a realistic and intensive workload, we used a

second host connected through a Gigabit switch that emulated typical client requests for

placing product purchases. The Gigabit network connection minimizes network latency,

increasing this way the imposed stress on the server when emulating multiple concurrent

user transactions.

Instead of performing the same request over and over, we simulated more realistic con-

ditions by replaying complete purchase transactions. Each transaction consists of nine

requests: retrieve the front page, login, navigate to the product page for a specific item,

add that item in the shopping cart, verify the contents of the shopping cart, checkout, enter

payment info, confirm the purchase, and logout. For each of these requests, the web clients

also download any external resources, such as images, scripts, and style files, emulating the

behavior of a real browser, without performing any client-side caching. We should stress

that VirtueMart was fully configured as in a real production setting, including properly

working integration with Authorize.Net for processing credit card payments using a test

account.

Figure 4.4 shows the sustained request throughput for a varying number of concurrent

web clients, when VirtueMart is running i) natively, ii) on top of Libdft, and iii) on top of

CloudFence. The request throughput was calculated by dividing the number of requests by

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 74

the total duration of each experiment. In all runs, each client was configured to perform

three end-to-end transactions, so that the number of requests per client remains consistent

across all experiments. We see that although CloudFence reduces the throughput in half,

its performance is comparable to Libdft despite its much more CPU and memory intensive

tag propagation logic. A significant fraction of the slowdown for both systems can be

attributed to Pin’s overhead for runtime binary instrumentation. We should note that the

server throughput in the native case is not bounded due to limited computational resources,

but rather due to the default configuration of Apache, which uses a pool of 10 processes

for serving concurrent clients. Thus, to be more precise, CloudFence took advantage of the

available cycles and imposed additional overhead.

Figure 4.5 shows the results of the same experiment using the compiled version of Virtue-

Mart and the built-in multi-threaded web server that comes with the HipHop code trans-

former. This time, the native throughput is bound due to CPU saturation. In the worst

case, the request throughput is roughly 13 times slower when CloudFence is enabled. An-

other contributing factor to performance degradation as concurrency increases lies in the

underlining binary instrumentation framework. To provide thread-safe execution of system

call hooks, Pin serializes their execution using a process-level global lock. This kind of hooks

are used by both CloudFence and Libdft, which again achieve comparable performance.

4.6 Discussion

Over-tagging. We opted for a design that does not suffer from over-tagging or tag pol-

lution. Specifically, CloudFence does not tag pointers nor it propagates tags due to implicit

flow, which prior work has shown to produce over-tagging [21; 61]. Moreover, it takes

into consideration that certain system calls write specific data to user-provided buffers. For

instance, consider gettimeofday, which upon every call overwrites the user space memory

that corresponds to one, or two, struct timeval data structures. Such system calls always

result in sanitizing (untagging) the data being returned, unless CloudFence has installed a

callback that selectively tags returned data.

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 75

Under-tagging. CloudFence only supports explicit data flows, which can lead to under-

tagging whenever the service provider uses a code construct that copies sensitive data

using branch statements. As an example, consider the code snippet if (in == 1) out

= 1;. Although the value of in is copied to out, any tags associated with it are not.

DTA++ [34] addresses this issue by identifying implicit flows within information-preserving

transformations and generating rules to add additional tags only for a certain subset of

control-flow dependencies. During our evaluation, we identified a couple of such cases,

in AES encryption (used in SSL, MySQL, and the Suhosin PHP hardening extension)

and Base64 encoding. Such cases should be handled manually by the service provider, by

hooking the corresponding functions and copying the tag information from their source to

the target operand using the copy tag function.

Binary Instrumentation. The choice of a DFT framework based on binary instrumen-

tation unavoidably comes with an increased runtime penalty. However, we have man-

aged to support 32-bit wide tags per byte while maintaining a similar, or even lower,

overhead compared to existing systems, allowing the practical use of CloudFence in real

settings. Alternative implementations of this functionality within language runtimes [11;

13], or even at hardware, have been shown to decrease the imposed overhead.

Fine-grained Tracking. CloudFence is a general framework designed for use with all

the components of a cloud-based service without modifications. To achieve this, we chose

fine-grained over coarse-grained (process-level) tags, although this comes with an increased

overhead. Other implementations [48] that tried to avoid this overhead by coloring each

time the entire process serving the HTTP request for user data with the tag or color

representing this specific user, ended keeping extra information in the application level,

when its processes where handling data from multiple users at the same time. As expected,

in this case the process would be assigned a tag representing both users, but if there was

no merge of the data, this data would still carry the new tag instead of the initial unique

user tag. Therefore, the audit capability provided to the end users for their cloud-based

data would not be as precise in the case of process-level tags as it is in our fine-grained

implementation.

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 76

Alternative DFT Tools. CloudFence has been influenced by previous DFT proposals,

with the closest being Libdft [36], but none of them would suffice for our goal. In particular,

although CloudFence and Libdft share the same underlying DBI framework (Pin), they differ

completely in (i) shadow memory design, (ii) tag propagation logic, and (iii) I/O interface.

Libdft uses dynamically allocated shadow memory (tracks memory allocations) and a page-

table-like structure for performing virtual-to-shadow memory translations. CloudFence, on

the other hand, reserves part of the abundant 64-bit address space for storing the 4-byte

wide tags (per byte of program memory), thus making memory-to-tag translation without a

lookup. Regarding the low-level optimization that Libdft uses, we retained what it considers

as fast vcpu and huge tlb. Finally, the system call interface of 64-bit Linux is slightly

different from the 32-bit version and the system call numbers are shuffled. Hence, the I/O

system call descriptors that CloudFence uses had to be adapted.

Universally-unique User IDs. The use of the same ID across all services may raise

privacy concerns, as this allows the cloud provider to track user activity within its premises.

Although cloud providers could track users even if a cloud-wide user ID was not used, e.g.,

by combining user-identifying features such as browser fingerprints and HTTP cookies [39],

a unique ID per user certainly makes tracking easier. Cloud providers, however, have

already started offering access to hosted services through in-house [3] or third-party web

identity providers [2], and this trend is expected to continue, as it improves user experience

by having to manage fewer accounts.

4.7 Conclusions

One of the most highly cited concerns regarding cloud-hosted services is the fear of unautho-

rized exposure of sensitive user data. Users have to trust the efforts of both the third-party

service provider and the cloud infrastructure provider for properly handling their private

data as intended. In this work, we take a step towards increasing the confidence of users for

the safety of their cloud-resident data by introducing a new direct relationship between end

users and the cloud infrastructure provider. CloudFence is a service provided by the cloud

infrastructure, that offers data flow tracking abilities to both service providers and their

CHAPTER 4. CLOUD-WIDE AUDITING MECHANISM 77

users for user data collected in the realm of cloud-based services. In particular, CloudFence

allows users to independently audit their data by the cloud-based services, and additionally

enables service providers to confine data propagation and protect their digital assets within

well-defined domains.

CHAPTER 5. CLOUDOPSY 78

Chapter 5

Cloudopsy

In this Chapter we discuss the design and implementation of Cloudopsy, a generic facility

offered by the cloud hosting provider directly to the customers of the cloud-hosted services

with the goal of providing them with secure and comprehensible auditing capabilities with

respect to the handling of their sensitive user data collected in the realm of these third-party

online services. While the framework is targeted mostly towards the end users, Cloudopsy

provides also the service providers with an additional layer of protection against illegitimate

data flows, e.g., inadvertent data leaks, by offering a graphical more meaningful represen-

tation of the overall service dependencies and the relationships with third-parties outside

the cloud premises, as they derive from the collected audit logs. The novelty of Cloudopsy

lies in the fact that it leverages the power of visualization when presenting the final audit

information to the end users (and the service providers), which adds significant benefits to

the understanding of rich but ever-increasing audit trails created by our auditing framework

in chapter 4.

5.1 Introduction

As businesses and individuals rely on the cloud for most of their everyday tasks, it is

inevitable that personally identifiable information (PII) are also stored and processed on

third parties premises, like the cloud, outside the administrative control of its owners. From

the data owner’s perspective, users are usually not interested in, or are simply lacking the

CHAPTER 5. CLOUDOPSY 79

technical background to understand the specifics of the security mechanisms employed to

ensure that their data is not being abused or leaked. Users though wish to have a better

understanding on how data is being handled by the cloud-hosted online services, or at least

have an indication in case a misuse event occurs.

To address this privacy challenge, we take a step towards increasing cloud transparency

with respect to the handling of sensitive user data, by providing secure and comprehen-

sible data auditing capabilities to the clients of the cloud-hosted services. Auditing has

been long employed with success as an added security measure in alleviating user security

concerns in domains like banking, where information security is mission critical. Unlike

other privacy protection technologies that are built on enforcing policies and preventing

data flows, auditing focuses on keeping data usage transparent and trackable. Even though

information flow policies and enforcement techniques have the same goals and use similar

mechanisms with our approach, we chose to focus our efforts in auditing, due to the con-

cerns that enforcement could have adverse effects, like breaking parts of services, which is a

highly probable case for the feature-rich, constantly changing and multi-component cloud-

hosted services. Thorough, efficient auditing in cloud computing remains a challenge even

for straightforward web services, but more research is directed towards this goal [71; 38; 43;

18]. Regular auditing and compliance with security frameworks will not only insure safety

of the cloud systems but also be a point of differentiation for marketing of cloud services.

In Chapter 4 we discussed the design and implementation of our cloud-wide data flow

tracking framework, CloudFence, which apart from sensitive data flow tracking it is also

enabling logging capabilities of these flows among the services running within the cloud

infrastructure provider’s premises. CloudFence is a great tool for creating detailed and

verbose audit logs for the cloud-resident sensitive user data collected in the realm of the

cloud-hosted services. However, since the audited online services continuously increase in

size (i.e., number of users, components, etc.), our mechanism has the potential to create

massive numbers of audit logs and trails of information. Therefore, although a successful

auditing mechanism its usefulness is limited because the task of interpreting the raw logs

and identifying interesting details would be extremely challenging for end users, especially

for the ones that are lacking the technical background. In consequence, in order to increase

CHAPTER 5. CLOUDOPSY 80

the effectiveness of the audit information collected by CloudFence, we decided to structure

and present our results in a way that would be comprehensible by end users, which led to

the introduction of Cloudopsy, an enhanced auditing cloud service.

5.2 Approach

To address the limitations of CloudFence and increase cloud data owners’ understanding

with respect to the handling of their sensitive data, we worked on a more meaningful

representation of the sensitive data flows, as they derive from the events captured in the

audit logs. The novelty of our approach lies in the fact that our mechanism leverages the

power of visualization and automatic analysis when presenting the final audit information to

the data owners. This novel feature can significantly reinforce end-user awareness regarding

the use and exposure of their sensitive data by the cloud-hosted services. In a few words,

we claim that audit visualization is a necessary feature in the analysis of audit logs, as it

helps in recognizing events and associations recorded in the logs that might have otherwise

remained unnoticed or would have taken longer to realize.

As was the case with CloudFence, to truly support our vision, we envision cloud providers

offering the Cloudopsy service in addition to their existing hosting environment, to both

service providers and data owners. A large, reputable cloud provider can help leverage user

confidence much more effectively than a smaller lesser-known developer or company (among

the thousands that offer applications and services through online application distribution

platforms). In addition, the Cloudopsy platform architecture could dramatically reduce

the per-service development effort required to offer data auditing, while still allowing rapid

development and maintenance.

5.2.1 System Overview

A high-level overview of Cloudopsy’s mechanism is depicted in Figure 5.1. The participating

entities are the same as with CloudFence: the cloud provider, who offers the cloud infras-

tructure or platform, the service providers deploying the online services, and the end users

or data owners, who are the clients of the online services. The main interactions between

CHAPTER 5. CLOUDOPSY 81

Figure 5.1: Cloudopsy Architecture. Sensitive data is tagged and tracked transparently through-

out the cloud infrastructure, while audit information is gathered and stored at the audit database.

The audit logs are analysed and transformed to meaningful graphs depicting the sensitive data

flows for all the services hosted on the same cloud infrastructure. Users can see these audit graphs

through the Cloudopsy web interface exposed directly by the cloud provider.

the different parties involved remain the same. Initially, users of the cloud-hosted services

are assigned a unique ID, which will be their unique cloud-wide identification. Each end

user has to register/sign in with this ID every time he uses one of the services offered by one

or more service providers and are hosted on the same cloud provider’s premises, if he wishes

to have his sensitive data audited for the these services (e.g., Google Apps). On the other

hand, the providers of the cloud-hosted services need to define the boundaries of their data

flow domain (described in Section 4.4.4), i.e., the component applications of their composite

service (e.g., web server, back-end database etc.). and also tag the sensitive data of each

user with the supplied user ID the first time it enters their applications. Sensitive data

is then tracked transparently throughout the cloud infrastructure, while audit information

is gathered and stored in audit databases hosted on the cloud provider’s infrastructure.

At any time, users can monitor the audit trails of their data directly through the cloud

provider using Cloudopsy’s web interface. Although end-users are the main focus of this

approach, mostly because they are usually the ones that lack the technical background to

understand the collected raw logs, service providers can also benefit from Cloudopsy, for

quickly identifying unexpected behaviour of their service, e.g., “suspicious” flows of user

data outside of the service’s data-flow domain.

From a high-level perspective, Cloudopsy utilizes the underlying CloudFence tracking

mechanism (described in Chapter 4), for the domain-wide tracking as well as for the creation

CHAPTER 5. CLOUDOPSY 82

of the audit trails, but extends it with analysis and transformation components with the

purpose of effectively converting the raw textual audit logs to more meaningful graphical

outputs before presenting them on the Cloudopsy user interface.

5.3 Design

Cloudopsy’s mechanism can be divided in three main components: (a) the generation of

the audit trails, (b) the transformation of the audit logs for efficient processing, and (c)

the visualization of the resulting audit trails.

5.3.1 Audit Logs Generation

To generate audit logs, Cloudopsy relies on information flow tracking techniques to track

the entire flow of information in the realm of participating services hosted on the same cloud

provider [55]. Separate audit logs are created for each cloud-hosted service and they are

later correlated and filtered for creating the different audit logs that will be presented to data

owner or the service provider requesting the audit. From a high level view, after one user’s

data enter the service, they are colored with a unique ID bound to that particular user, and

audit information is generated every time it crosses the defined boundary of the data flow

domain of the service, e.g., when colored data is about to be send to a cloud storage device

or host inside or outside of the cloud, that does not belong to the defined components of

the service. These events are recorded in an audit back-end database in an “append-only”

fashion. Each component of the online service hosted on the cloud provider premises pushes

audit messages to the audit database. Note that the auditing mechanism of Cloudopsy is

designed to generate “verbose” and detailed audit logs. Although the same audit trails

will be used to provide audit information to both service providers and end users, the final

information displayed to them will be different. The end user sees information regarding his

own data, whereas the service provider has access to the audit logs of all user data handled

by his service.

In addition to identifying individual user’s data, the colors that are assigned to user

data can also reflect their type. That can be accomplished by assigning them a second ID

CHAPTER 5. CLOUDOPSY 83

or sacrificing some bits of information, previously part of the user ID, and using them for

indicating their type or class. For instance, possible classes of data could refer to credit

card numbers, e-mails, social security numbers (SSN), etc. The class of user data can be

assigned by the service provider, or otherwise would be automatically determined by content

scanners [23] that identify known patterns of PII like SSNs.

5.3.2 Audit Trails Processing

The audit logs produced from the auditing component include raw log data in a textual

form and need further processing before reaching the visualization component.

16/Feb/2013:12:56:25 send 192.168.1.42:443 [DATA-uid1]

The necessary transformations include: (a) mapping of the applications that comprise

the cloud-hosted services, (b) filtering out irrelevant information from the “verbose” audit

logs according to the request and transforming the result to a format understood by the

visualization component, and (c) correlating relevant information stored in several log files

that were generated for the different cloud applications exchanging user data.

More specifically, Cloudopsy maintains a global registry of the active connections for the

cloud-wide domain that it monitors. In order to transform the audit logs in an appropriate

format for the next phase, technical details are used from this registry, and through auto-

mated procedures audited events are combined to create a more appropriate presentation

of the collected audit information for input to the visualization component. Several other

mechanisms are applied to the “verbose” audit logs to extract only the necessary segments

for the final log information that will be presented to the end users (or the service providers).

For example, information unrelated to “suspicious” flows of user data will not be extracted

for the next phase.

5.3.3 Audit Trails Visualization

The visualization mechanism of Cloudopsy is a significant enhancement to previous audit-

ing mechanisms as the power of images can offer to both service providers and end users,

a better understanding as well as deeper insights in the real flows of user data. It was a

challenge though to choose the appropriate and meaningful graphical representation of the

CHAPTER 5. CLOUDOPSY 84

collected audit data, which we discuss in more details in Section 5.4.3. In a few words, the

visualization component receives the transformed audit logs and processes them according

to a set of different parameters and represents the graphic results in a circular layout repre-

senting the cloud on Cloudopsy’s web interface. The services monitored by Cloudopsy are

included in the final graphical representation and the recorded transfers of the colored user

data will be represented by links between them as well, colored and directed according to

the information from the audit logs. As expected, the generated output from the visualiza-

tion component differs not only between users but also between the data owners and the

providers of the online service.

5.4 Implementation

5.4.1 Cloud-wide auditing mechanism

In previous work we implemented a cloud-wide fine-grained data flow tracking frame-

work [55] for cloud-hosted services. This DFT framework is used for the auditing of the

data flows and the generation of the raw audit logs that will be analyzed by Cloudopsy.

We assume that the service providers have integrated this mechanism in their applications

to enhance the security of the provided services and leverage the generic facility offered by

the cloud provider.

From a high-level perspective, the auditing mechanism is built on top of a user-level data

flow tracking framework libdft [36], based on runtime instrumentation and is integrated into

the components of the service and works as follows: the data that is “tagged” as sensitive

is tracked across all local files, host-wide IPC mechanisms, and selected network sockets.

Audit information selected by the auditing component is kept in a back-end database located

outside the vicinity of the service providers, and more importantly operates in an append-

only fashion for preventing tampering of the archived audit trails. The audit information

collected by the DFT component captures leakage events that result from writing the marked

data into files or remote endpoints. Each entry of the audit log will include information

about the time, the running application, the action, the destination stream (a network

address or a file path) and the tagged data.

CHAPTER 5. CLOUDOPSY 85

Our first prototype of the auditing component is implemented using Intel’s binary instru-

mentation tool Pin 2.10, and works with unmodified applications running on x86-64 Linux.

It performs byte-level data flow tracking and supports 32-bits tags, allowing support for

232 different tags values (colors) per byte – consequently, the same number of different

users. In a newest version of the auditing mechanism we used the last two digits of the tag

to represent different classes of user’s sensitive data. The auditing component provides a

transparent, fine-grained and domain-wide data flow tracking mechanism suitable for our

target cloud environment.

5.4.2 Visualization component

Our decision on enhancing our audit log analysis mechanism with visualization techniques

was influenced by user studies comparing the effectiveness of visual presentations, in com-

parison to linear textual presentations of similar results to the ones we are handling in our

audit logs analysis. In particular, in our case, since we wanted to represent the relationships

and flow patterns of user data within the services in and outside of the cloud, Circos [41]

seemed as a good candidate. Although Circos was originally developed to provide a better

display of the chromosomal relationship between various species, it has been successfully

used also for the graphical representations of other types of data, i.e., network traffic. We

chose Circos also due to its support for a circular data domain layout, which resembles the

cloud, and its multiple customizations opportunities, and finally due to its competence of

smoothly partitioning the final image into any number of disjoint regions, drawing attention

to multiple different events in a single display. Circos uses a circular ideogram layout to

facilitate the display of relationships between pairs of services running on the cloud by the

use of links (straight lines or Bezier curves), which can visually encode the position, size,

and orientation of interacting elements.

Circos requires a specific format for the input data, which we generate through the

transformations described in Section 5.3. In addition to our transformed audit log files, we

also created configuration files including the necessary parameters for correctly generating

the output required. The goal was to effectively present, in the final output, the monitored

data flows within the cloud, as well as the ones “leaking” information out of the cloud

CHAPTER 5. CLOUDOPSY 86

premises, faithfully matching what is described in the initial audit files.

We provide two types of visual representations of data flows. For end users, we present

a graphical display of the flow of their sensitive data that the cloud-hosted online service

obtained as the result of their interactions with this service, e.g., a purchase from an online

store would result into the storage of a user’s credit card number in the service’s back-end

database. Cloudopsy in this case summarizes the transfers of this data in a circular graph,

representing each data exchange as a link between the involved services. This can help users

gain a deeper understanding of how their data are handled in a facile way.

On the other hand, Cloudopsy’s output for the provider of the service is a much “richer”

graph of the audited transmissions entailing information for all clients’ sensitive data col-

lected. In particular, since the service provider needs to analyze the very large and usually

complex audit log files, the visualization of the audited events is extremely beneficial for

him as he can immediately verify legitimate operations or identify unexpected “suspicious”

transmission patterns that might have otherwise remained opaque in the reams of the audit

logs. Furthermore, the service provider can also see the flow of data between components

of his service that could help him identify internal errors.

Sample results of this process can be seen in figures 5.2 and 5.3. Figure 5.2 displays

the movement of a single user’s “marked” sensitive data, i.e., credit card number and email

address, as they move in time between the audit-enabled applications. On the other hand,

Figure 5.3, which is aimed for the provider of the service, is a much “richer” image showing

at a first glance patterns in the data flows. In general, the final audit images presented on

Cloudopsy’s web interface include the communicating applications of the composite cloud-

hosted services running over the Cloudopsy mechanism, as well as hosts outside the cloud

which according to the logs participated in sensitive data transmissions. In general, the

final circular graphs consist of an outer ring representing the cloud-hosted applications

(colored blocks) running over the auditing infrastructure, whereas the colored arcs depict

the recorded transmissions of monitored user data. More specifically, in these two figures

the blue and orange colored directed links represent different classes of sensitive data. In

particular, in Figure 5.3, the different colors could also represent the different users of the

service. It is on the provider’s discretion to customize the parameters on Cloudopsy’s web

CHAPTER 5. CLOUDOPSY 87

V
irt

ue
m

ar
t

0

15

Visa

0

15

A
uthorize.net

0

15

Exte
rn

al

0

15

AdService

0

15

Credit card

E-mail

Figure 5.2: A user’s view of a transaction.

interface, in respect to the information he is interested in on different occasions.

5.4.3 Illustrative Scenario: Testing Cloudopsy with an E-store

To test Cloudopsy we chose an e-store application, namely VirtueMart [69], hosted on a

cloud-based infrastructure. We configured VirtueMart to accept only payments with credit

card, and set up actual electronic payments through the Authorize.Net service using test

accounts. Typically during a purchase transaction, users enter their personal data, credit

card, email etc., through the web front end of the application, which then is transmitted to

the back-end database of the e-store, and to the payment processor. After their credit card

CHAPTER 5. CLOUDOPSY 88

V
irt

ue
m

ar
t-

W
eb

0

15

Virtu
emart-D

B

0

15

Visa

0

15

A
ut

ho
riz

e.
ne

t

0

15

External

0

15

AdService

0

15

Credit card

E-mail

Figure 5.3: A service provider’s view of user transactions.

is verified, the e-store approves the purchase and the transaction completes successfully.

The personal data that the user enters remain stored (as is frequently the case) in the

database of the e-store.

Figure 5.2 depicts the movement of the credit card number for one user that completed

a successful purchase through VirtueMart. It also represents the email of this user also

stored in the backend database of the e-store. Apart from the exchanged data though, this

figure shows also the time that each event took place. (For each segment time progresses

clockwise). Therefore, we can immediately identify two events. First, that the email is sent

to the AdService. This might be a legitimate action in case the client did not opt out of

CHAPTER 5. CLOUDOPSY 89

sending his information for advertising reasons while using the online service. But the most

interesting event presented in this figure is that credit card number seems to transfer to

an unknown IP outside the cloud premises at a later point in time, which definitely looks

suspicious and should be further investigated as a possible inadvertent data leak. Note that

this cannot be the legitimate channel of the user, as this was known from the start of the

transaction and should be whitelisted by the auditing mechanism as a legitimate flow and

therefore would not be part of the audit logs. Even with this simple figure this unexpected

event was very easily identified.

5.5 Conclusions

We argue that the concerns of the end users of cloud-hosted services about the usage of

their data can be a major deterrent for users looking to embrace cloud-hosted services. We

focused our efforts on enhancing the effectiveness of the information collected in the audit

log files and presented Cloudopsy, a framework that through visualization and automated

analysis of the results and based on the graphs produced with the Circos visualization tool,

remediates cloud users security concerns and enables even users without any particular

technical background to get a better understanding of the treatment of their data by third-

part cloud-hosted services.

CHAPTER 6. CONCLUSIONS 90

Chapter 6

Conclusions

Cloud Computing appears as a computational paradigm as well as a distribution architec-

ture with its main objective being to provide quick, convenient data storage and computing

services, with all computing resources visualized as services and delivered over the Internet.

Many of the most successful and most visible services in the cloud today are consumer

services, such as social networks, e-stores, and business solutions. The companies providing

these services end up collecting terabytes of data, much of it sensitive, personal information,

which are being stored in cloud-hosted databases. Because of its popularity and its trum-

peted benefits, the adoption of cloud computing came before the appropriate technologies

were integrated in the cloud to tackle the accompanying security challenges. Therefore,

moving critical applications and sensitive data beyond the control of the enterprise’s net-

work to public cloud environments is of great concern for them.

Data security remains the overriding barrier against the wide-spread adoption of cloud

technologies, especially for security-sensitive operations, followed by issues regarding pri-

vacy, compliance and availability. More specifically, these security concerns are caused by

the lack of control over data, the limited transparency in the cloud and finally the risk of

unauthorized data access, which is inherited by the traditional online services. The data

leaks can be either inadvertent (code bugs, bad configuration) or advertent (SQL injections,

XSS attacks). Data breaches are not at all uncommon incidents even for major cloud ser-

vices, and apart from the direct financial repercussions for the companies involved, they

can have severe impact on the reputation of the involved companies as well as affect the

CHAPTER 6. CONCLUSIONS 91

privacy that individuals are entitled to.

To address this very important problem, we propose a data-centric security approach

for the cloud setting, as the sensitive data is the valuable aspect that needs to be protected.

Our approach was built upon the observation that people tend to trust a system less, when

it gives insufficient information about its internal procedures. Therefore, in this dissertation

we argue that providing information flow auditing capabilities in the cloud helps reveal data

leakage incidents and can also serve as the basis for increasing the transparency on the use of

sensitive data by the cloud-hosted services. Unlike other privacy protection technologies that

are built on enforcing policies and preventing data flows, auditing focuses on keeping data

usage transparent and trackable. Even though information flow policies and enforcement

techniques have the same goals and use similar mechanisms with our approach, we chose to

focus our efforts in auditing, due to the concerns that enforcement could have adverse effects,

like breaking parts of services, which is a highly probable case for the feature-rich, constantly

changing and multi-component cloudhosted services. Thorough, efficient auditing in cloud

computing remains a challenge even for straightforward web services. Therefore, to evaluate

the efficacy and applicability of our proposed information flow auditing mechanism we

developed three prototype systems: TaintExchange, CloudFence and Cloudopsy.

TaintExchange is a generic mechanism for efficiently performing cross-process and cross-

host data flow tracking. As suggested by its name, its goal is to enable the transfer of

taint information between collaborating processes (on the same or different hosts) along

with the data exchanged between them. It does so by intercepting I/O system calls to

transparently inject and extract information regarding the taintness of every byte transferred

between these processes running under TaintExchange. Note that, unlike previous works,

in TaintExchange the taint information is transferred through the existing communication

channels (i.e., sockets or pipes) between the collaborating processes. To the best of our

knowledge, our system is the first that allows cross-host taint tracking without requiring

full-system emulation.

CloudFence is a novel data tracking framework for cloud hosting environments, imple-

mented with the vision of supplying cloud providers with an auditing service in addition to

their existing hosting environment. As suggested by its name, CloudFence offers data flow

CHAPTER 6. CONCLUSIONS 92

tracking abilities, transparent and fine-grained, within the boundaries of a well-defined data

flow domain. This domain consists of the component applications of a single composite

cloud-hosted service or many separate services offered by the same cloud provider (e.g.,

Amazon services). CloudFence effectively offers protection against many classes of web

attacks that can lead to unauthorized data access. But besides protecting against these

application-level vulnerabilities, it also provides an additional functionality; the logging of

tainted data transfers out of the vicinity of the defined data flow domain. More specif-

ically, the DFT component pushes audit information to relevant CloudFence component

whenever tagged data is written to a cloud storage device or pass through I/O channels to

endpoints inside or outside the cloud. CloudFence is the nucleus of our proposed solution

and apart from extending the original TaintExchange mechanism with optimizations, it

supports 32-bit wide tags as well as persistent tagging on disk and across the network.

Finally, we designed and implemented Cloudopsy with the goal of enhancing the presen-

tation and the effectiveness of the information collected in the CloudFence-generated audit

logs. Cloudopsy is a generic facility offered by the cloud hosting providers, that through

visualization techniques and automated analysis of the rich but textual audit logs offers

the service providers and their customers more comprehensible auditing capabilities with

respect to the handling of the sensitive user data collected in the realm of these online ser-

vices. More specifically, it utilizes the visualization tool Circos to transform CloudFence’s

textual audit logs to circular graphs depicting the sensitive data flows among the collaborat-

ing components of compound cloud-hosted services as well as flows outside of the authorized

data flow domain. Cloudopsy serves as an additional layer of protection against illegitimate

data flows, which can be very useful to both the service providers and the end-users, act-

ing as a fast and effective mechanism for indicating “supsicious” data flows, that could

potentially be inadvertent data leaks.

We have implemented all of these systems, and extensively measured their efficacy and

performance. Our examination with real applications and known bugs and vulnerabilities

shows that our technique can be used to detect data leakage incidents for all examined

cases. In case of attackers who do arbitrary code execution, we can no longer guarantee

accurate data tracking, since they can not only compromise our framework, but can also

CHAPTER 6. CONCLUSIONS 93

exfiltrate data through covert channels.

To conclude, we envision cloud providers offering our information flow auditing service

in addition to their existing hosting environment, to both service providers and data owners,

either as a by default mechanism, or as a security-as-a-service option. A large, reputable

cloud provider could help leverage user confidence much more effectively than a lesser known

service provider. Nevertheless, our approach allows service providers to provide, with min-

imal effort, an extra feature that reinforces the trust relationship with their users, knowing

that they have an additional way to monitor what happens with their data. In addition,

we empower service providers with the ability to build an additional level of protection and

get a better understanding of how their services really work as they are given the tools to

quickly identify inadvertent leaks or suspicious data flows. The work proposed in this thesis

is not expected to provide the ultimate solution, but we consider it to be a good starting

point for establishing the trust foundation for large enterprises and security-conscious users

to adopt cloud services for privacy-sensitive operations.

BIBLIOGRAPHY 94

Bibliography

[1] Apparmor. http://wiki.apparmor.net.

[2] AWS taps social networks for identity verification. http://www.theregister.co.uk/

2013/05/29/aws_social_identity_verification.

[3] Login with Amazon. http://login.amazon.com/.

[4] Security enhanced linux (selinux). http://selinuxproject.org/.

[5] SiteBar: Multiple issues. http://www.securityfocus.com/archive/1/483364.

[6] VirtueMart Multiple SQL Injection Vulnerabilities. http://www.securityfocus.com/

bid/37963.

[7] Cloud Security Alliance. The notorious nine: cloud computing top threats

in 2013, February 2013. https://cloudsecurityalliance.org/download/

the-notorious-nine-cloud-computing-top-threats-in-2013/.

[8] Mona Attariyan and Jason Flinn. Automating configuration troubleshooting with

dynamic information flow analysis. In Proceedings of the 11th Symposium on Operating

Systems Design and Implementation (OSDI), pages 1–11, 2010.

[9] E. D. Bell and J. L. La Padula. Secure computer system: Unified exposition and

multics interpretation. Technical Report ESD-TR-75306, Mitre Corporation, 1976.

[10] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In Proceedings of the

2005 USENIX Annual Technical Conference, pages 41–46, 2005.

http://wiki.apparmor.net
http://www.theregister.co.uk/2013/05/29/aws_social_identity_verification
http://www.theregister.co.uk/2013/05/29/aws_social_identity_verification
http://login.amazon.com/
http://selinuxproject.org/
http://www.securityfocus.com/archive/1/483364
http://www.securityfocus.com/bid/37963
http://www.securityfocus.com/bid/37963
https://cloudsecurityalliance.org/download/the-notorious-nine-cloud-computing-top-threats-in-2013/
https://cloudsecurityalliance.org/download/the-notorious-nine-cloud-computing-top-threats-in-2013/

BIBLIOGRAPHY 95

[11] Luciano Bello and Alejandro Russo. Towards a Taint Mode for Cloud Computing Web

Applications. In Proceedings of the 7th ACM SIGPLAN Workshop on Programming

Languages and Analysis for Security (PLAS), pages 1–12, 2012.

[12] Hal Berghel. Identity Theft and Financial Fraud: Some Strangeness in the Proportions.

Computer, 45(1):86–89, January 2012.

[13] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V. N. Venkatakrishnan.

WAPTEC: Whitebox Analysis of Web Applications for Parameter Tampering Exploit

Construction. In Proceedings of the 18th ACM Conference on Computer and Commu-

nications Security (CCS), pages 575–586, 2011.

[14] Bochs. The cross platform IA-32 emulator, 2001. http://bochs.sourceforge.net.

[15] Edson Borin, Cheng Wang, Youfeng Wu, and Guido Araujo. Software-based transpar-

ent and comprehensive control-flow error detection. In Proceedings of the 4th Annual

IEEE/ACM International Symposium on Code Generation and Optimization (CGO),

pages 333–345, 2006.

[16] Erik Bosman, Asia Slowinska, and Herbert Bos. Minemu: The World’s Fastest Taint

Tracker. In Proceedings of the 14th International Symposium on Research in Attacks,

Intrusions, and Defenses (RAID), pages 1–20, 2011.

[17] Yanpei Chen, Vern Paxson, and Randy H. Katz. What’s New About Cloud Computing

Security? Technical Report UCB/EECS-2010-5, EECS Department, University of

California, Berkeley, Jan 2010.

[18] Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. A software-hardware ar-

chitecture for self-protecting data. In Proceedings of the 19th ACM Conference on

Computer and Communications Security (CCS), pages 14–27, 2012.

[19] W. Cheng, Qin Zhao, Bei Yu, and S. Hiroshige. TaintTrace: Efficient Flow Tracing with

Dynamic Binary Rewriting. In Proceedings of the 11th IEEE Symposium on Computers

and Communications (ISCC), pages 749–754, 2006.

http://bochs.sourceforge.net

BIBLIOGRAPHY 96

[20] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum. Un-

derstanding Data Lifetime via Whole System Simulation. In Proceedings of the 13th

USENIX Security Symposium, pages 321–336, 2004.

[21] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A Generic Dynamic Taint

Analysis Framework. In Proceedings of the 2007 International Symposium on Software

Testing and Analysis (ISSTA), pages 196–206, 2007.

[22] Computerworld. Microsoft BPOS cloud service hit with data breach, Decem-

ber 2010. http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_

cloud_service_hit_with_data_breach.

[23] Cornell University. Open-source Forensics Tools for Network and System Administra-

tors – Spider, February 2010. http://www2.cit.cornell.edu/security/tools/.

[24] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control Data Attack Preven-

tion Orthogonal to Memory Model. In Proceedings of the 37th Annual International

Symposium on Microarchitecture (MICRO), pages 221–232, 2004.

[25] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Real-world buffer overflow

protection for userspace & kernelspace. In Proceedings of the 17th USENIX Security

Symposium, pages 395–410, 2008.

[26] Benjamin Davis and Hao Chen. DBTaint: cross-application information flow tracking

via databases. In Proceedings of the 2010 USENIX Conference on Web Application

Development (WebApps), pages 135–146, 2010.

[27] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David Ziegler,

Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. Labels and event

processes in the asbestos operating system. In Proceedings of the 20th ACM Symposium

on Operating Systems Principles (SOSP), pages 17–30, 2005.

[28] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song. Dynamic

spyware analysis. In Proceedings of the 2007 USENIX Annual Technical Conference,

pages 1–14, 2007.

http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www.computerworld.com/s/article/9202078/Microsoft_BPOS_cloud_service_hit_with_data_breach
http://www2.cit.cornell.edu/security/tools/

BIBLIOGRAPHY 97

[29] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick

McDaniel, and Anmol N. Sheth. TaintDroid: An Information-Flow Tracking System for

Realtime Privacy Monitoring on Smartphones. In Proceedings of the 11th Symposium

on Operating Systems Design and Implementation (OSDI), pages 393–407, 2010.

[30] The Guardian. PlayStation Network hack: why it took Sony seven days to tell

the world, April 2011. http://www.theguardian.com/technology/gamesblog/2011/

apr/27/playstation-network-hack-sony.

[31] Alex Ho, Michael Fetterman, Christopher Clark Andrew Warfield, and Steven Hand.

Practical taint-based protection using demand emulation. In Proceedings of the 1st

European Conference on Computer Systems (EuroSys), pages 29–41, 2006.

[32] BearingPoint Institute. In cloud we trust?, September 2012. http://http://www.

bearingpoint.com/en-uk/7633-6211/in-cloud-we-trust/.

[33] Fujitsu Research Institute. Personal data in the cloud: The importance of trust,

November 2010. http://www.fujitsu.com/downloads/WWW2/news/publications/

FSL-0016_A4_TrustReport_online-final.pdf.

[34] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song. DTA++:

Dynamic taint analysis with targeted control-flow propagation. In Proceedings of the

18th Symposium on Network and Distributed System Security (NDSS), 2011.

[35] Lori M. Kaufman. Data security in the world of cloud computing. IEEE Security and

Privacy, 7(4):61–64, July 2009.

[36] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D. Keromytis.

libdft: Practical Dynamic Data Flow Tracking for Commodity Systems. In Proceedings

of the 8th Annual International Conference on Virtual Execution Environments (VEE),

pages 121–132, 2012.

[37] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-

rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal Verification

http://www.theguardian.com/technology/gamesblog/2011/apr/27/playstation-network-hack-sony
http://www.theguardian.com/technology/gamesblog/2011/apr/27/playstation-network-hack-sony
http://http://www.bearingpoint.com/en-uk/7633-6211/in-cloud-we-trust/
http://http://www.bearingpoint.com/en-uk/7633-6211/in-cloud-we-trust/
http://www.fujitsu.com/downloads/WWW2/news/publications/FSL-0016_A4_TrustReport_online-final.pdf
http://www.fujitsu.com/downloads/WWW2/news/publications/FSL-0016_A4_TrustReport_online-final.pdf

BIBLIOGRAPHY 98

of an OS Kernel. In Proceedings of the 22nd ACM Symposium on Operating Systems

Principles (SOSP), pages 207–220, 2009.

[38] Ryan K. L. Ko, Peter Jagadpramana, Miranda Mowbray, Siani Pearson, Markus Kirch-

berg, Qianhui Liang, and Bu-Sung Lee. TrustCloud: A framework for accountability

and trust in cloud computing. In 2011 IEEE World Congress on Services (SERVICES),

pages 584–588, 2011.

[39] Georgios Kontaxis, Michalis Polychronakis, Angelos D. Keromytis, and Evangelos P.

Markatos. Privacy-preserving social plugins. In Proceedings of the 21st USENIX Secu-

rity Symposium, pages 631 – 646, 2012.

[40] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans, Kaashoek

Eddie, and Kohler Robert Morris. Information Flow Control for Standard OS Abstrac-

tions. In Proceedings of the 21st ACM Symposium on Operating Systems Principles

(SOSP), pages 321–334, 2007.

[41] Martin I. Krzywinski, Jacqueline E. Schein, Inanc Birol, Joseph Connors, Randy Gas-

coyne, Doug Horsman, Steven J. Jones, and Marco A. Marra. Circos: An information

aesthetic for comparative genomics. Genome Research, 19:1639–1645, June 2009.

[42] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

customized program analysis tools with dynamic instrumentation. In Proceedings of

the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), pages 190–200, 2005.

[43] Philippe Massonet, Syed Naqvi, Christophe Ponsard, Joseph Latanicki, Benny Rochw-

erger, and Massimo Villari. A monitoring and audit logging architecture for data loca-

tion compliance in federated cloud infrastructures. In 2011 IEEE International Sym-

posium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),

pages 1510–1517, 2011.

[44] M. Douglas McIlroy and James. A. Reeds. Multilevel security in the unix tradition.

Software - Practise and Experience, 22(8):673–694, August 1992.

BIBLIOGRAPHY 99

[45] Larry McVoy and Carl Staelin. lmbench, 2005. http://lmbench.sourceforge.net/.

[46] Peter Mell and Timothy Grance. The NIST definition of cloud computing, January

2011. http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_

cloud-definition.pdf.

[47] David Molnar and Stuart Schechter. Self Hosting vs. Cloud Hosting: Accounting for

the security impact of hosting in the cloud. In Proceedings of the 9th Workshop on the

Economics of Information Security (WEIS), pages 1–18, 2010.

[48] Yogesh Mundada, Anirudh Ramachandran, and Nick Feamster. SilverLine: Data and

Network Isolation for Cloud Services. In Proceedings of the 3rd USENIX Conference

on Hot Topics in Cloud Computing (HotCloud), 2011.

[49] Shashidhar Mysore, Bita Mazloom, Banit Agrawal, and Timothy Sherwood. Under-

standing and visualizing full systems with data flow tomography. In Proceedings of the

13th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 211–221, 2008.

[50] Kara Nance, Matt Bishop, and Brian Hay. Virtual Machine Introspection: Observation

or Interference? IEEE Security and Privacy, 6(5):32–37, September 2008.

[51] Nicholas Nethercote and Julian Seward. How to Shadow Every Byte of Memory Used

by a Program. In Proceedings of the 3rd Annual International Conference on Virtual

Execution Environments (VEE), pages 65–74, 2007.

[52] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dy-

namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI), pages 89–100, 2007.

[53] James Newsome and Dawn Song. Dynamic Taint Analysis for Automatic Detection,

Analysis, and Signature Generation of Exploits on Commodity Software. In Proceedings

of the 12th Symposium on Network and Distributed System Security (NDSS), 2005.

http://lmbench.sourceforge.net/
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

BIBLIOGRAPHY 100

[54] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David Evans.

Automatically hardening web applications using precise tainting. In Proceedings of the

20th International Information Security Conference (IFIP), pages 372–382, 2005.

[55] Vasilis Pappas, Vasileios P. Kemerlis, Angeliki Zavou, Michalis Polychronakis, and

Angelos D. Keromytis. CloudFence: Data Flow Tracking as a Cloud Service. In

Proceedings of the 16th International Symposium on Research in Attacks, Intrusions,

and Defenses (RAID), pages 411–431, 2013.

[56] Georgios Portokalidis and Angelos D. Keromytis. REASSURE: A self-contained mech-

anism for healing software using rescue points. In Proceedings of the 6th International

Workshop on Security (IWSEC), pages 16–32, 2011.

[57] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an Emulator for

Fingerprinting Zero-Day Attacks. In Proceedings of the 1st ACM SIGOPS/EuroSys

European Conference on Computer Systems 2006 (EuroSys), pages 15–27, 2006.

[58] Sören Preibusch. Information Flow Control for Static Enforcement of User-Defined

Privacy Policies. In Proceedings of the IEEE International Symposium on Policies for

Distributed Systems and Networks (POLICY), pages 157–160, 2011.

[59] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng

Wu. LIFT: A Low-Overhead Practical Information Flow Tracking System for Detect-

ing Security Attacks. In Proceedings of the 39th Annual International Symposium on

Microarchitecture (MICRO), pages 135–148, 2006.

[60] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett

Witchel. Laminar: practical fine-grained decentralized information flow control. In

Proceedings of the 2009 ACM SIGPLAN conference on Programming language design

and implementation (PLDI), pages 63–74, 2009.

[61] Asia Slowinska and Herbert Bos. Pointless tainting? Evaluating the practicality of

pointer tainting. In Proceedings of the 4th ACM SIGOPS/EuroSys European Confer-

ence on Computer Systems 2009 (EuroSys), pages 61–74, 2009.

BIBLIOGRAPHY 101

[62] Naked Security (Sophos). Adobe customer data breached - lo-

gin and credit card data probably stolen, all passwords reset,

October 2013. http://nakedsecurity.sophos.com/2013/10/04/

adobe-owns-up-to-getting-pwned-login-and-credit-card-data-probably-stolen

-all-passwords-reset/.

[63] Naked Security (Sophos). Groupon subsidiary leaks 300k logins, fixes

fail, fails again, 2011 June. http://nakedsecurity.sophos.com/2011/06/30/

groupon-subsidiary-leaks-300k-logins-fixes- fail-fails-again/.

[64] W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Chapter 24. Out-of-Band

Data. In UNIX Network Programming Volume 1, Third Edition: The Sockets Net-

working API. Addison Wesley, 2003.

[65] G. Edward Suh, Jaewook Lee, and Srinivas Devadas. Secure program execution via dy-

namic information flow tracking. In Proceedings of the 11th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 85–96, 2004.

[66] TechCrunch. Google Privacy Blunder Shares Your Docs With-

out Permission, 2009. http://techcrunch.com/2009/03/07/

huge-google-privacy-blunder-shares-your-docs-without-permission/.

[67] The Wall Street Journal. Google Discloses Privacy Glitch, March 2009. http://blogs.

wsj.com/digits/2009/03/08/1214/.

[68] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guilherme

Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani, and David I. August.

RIFLE: An architectural framework for user-centric information-flow security. In Pro-

ceedings of the 37th Annual International Symposium on Microarchitecture (MICRO),

pages 243–254, 2004.

[69] VirtueMart eCommerce Solution. VirtueMart shopping cart software. http://

virtuemart.net.

http://nakedsecurity.sophos.com/2013/10/04/adobe-owns-up-to-getting-pwned-login-and-credit-card-data-probably-stolen
http://nakedsecurity.sophos.com/2013/10/04/adobe-owns-up-to-getting-pwned-login-and-credit-card-data-probably-stolen
-all-passwords-reset/
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-
http://nakedsecurity.sophos.com/2011/06/30/groupon-subsidiary-leaks-300k-logins-fixes-
fail-fails-again/
http://techcrunch.com/2009/03/07/huge-google-privacy-blunder-shares-your-docs-without-permission/
http://techcrunch.com/2009/03/07/huge-google-privacy-blunder-shares-your-docs-without-permission/
http://blogs.wsj.com/digits/2009/03/08/1214/
http://blogs.wsj.com/digits/2009/03/08/1214/
http://virtuemart.net
http://virtuemart.net

BIBLIOGRAPHY 102

[70] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher Kruegel,

and Giovanni Vigna. Cross-site scripting prevention with dynamic data tainting and

static analysis. In Proceedings of the 14th Symposium on Network and Distributed

System Security (NDSS), 2007.

[71] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public audit-

ing for data storage security in cloud computing. In Proceedings of the 29th Conference

on Information Communications (INFOCOM), pages 525–533, 2010.

[72] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. TaintScope: A checksum-aware

directed fuzzing tool for automatic software vulnerability detection. In Proceedings of

the 2010 IEEE Symposium on Security and Privacy, pages 497–512, 2010.

[73] Wired. Dropbox left user accounts unlocked for 4 hours, June 2011. http://www.

wired.com/threatlevel/2011/06/dropbox/.

[74] Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-Enhanced Policy Enforcement: A

Practical Approach to Defeat a Wide Range of Attacks. In Proceedings of the 15th

USENIX Security Symposium, pages 121–136, 2006.

[75] Heng Yin and Dawn Song. TEMU: Binary code analysis via whole-system layered

annotative execution. Technical Report UCB/EECS-2010-3, EECS Department, Uni-

versity of California, Berkeley, 2010.

[76] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.

Panorama: Capturing System-wide Information Flow for Malware Detection and Anal-

ysis. In Proceedings of the 14th ACM Conference on Computer and Communications

Security (CCS), pages 116–127, 2007.

[77] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Improving

Application Security with Data Flow Assertions. In Proceedings of the 22nd ACM

Symposium on Operating Systems Principles (SOSP), pages 291–304, 2009.

[78] Angeliki Zavou, Vasilis Pappas, Vasileios P. Kemerlis, Michalis Polychronakis, Georgios

Portokalidis, and Angelos D. Keromytis. Cloudopsy: an Autopsy of Data Flows in

http://www.wired.com/threatlevel/2011/06/dropbox/
http://www.wired.com/threatlevel/2011/06/dropbox/

BIBLIOGRAPHY 103

the Cloud. In Proceedings of the 15th International Conference on Human-Computer

Interaction (HCI), pages 366–375, 2013.

[79] Angeliki Zavou, Georgios Portokalidis, and Angelos D. Keromytis. Taint-Exchange: a

Generic System for Cross-process and Cross-host Taint Tracking. In Proceedings of the

6th International Workshop on Security (IWSEC), pages 113–128, 2011.

[80] Angeliki Zavou, Georgios Portokalidis, and Angelos D. Keromytis. Self-healing mul-

titier architectures using cascading rescue points. In Proceedings of the 28th Annual

Computer Security Applications Conference (ACSAC), pages 379–388, 2012.

[81] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Making

Information Flow Explicit in HiStar. In Proceedings of the 7th Symposium on Operating

Systems Design and Implementation (OSDI), pages 263–278, 2006.

[82] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing Distributed

Systems with Information Flow Control. In Proceedings of the 5th USENIX Symposium

on Networked Systems Design and Implementation (NSDI), pages 293–308, 2008.

[83] Qing Zhang, John McCullough, Justin Ma, Nabil Schear, Michael Vrable, Amin Vah-

dat, Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. Neon: System Support

for Derived Data Management. In Proceedings of the 6th Annual International Con-

ference on Virtual Execution Environments (VEE), pages 63–74, 2010.

[84] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Efficient memory shadowing for

64-bit architectures. In Proceedings of the 2010 International Symposium on Memory

Management (ISMM), pages 93–102, 2010.

[85] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Umbra: efficient and scalable

memory shadowing. In Proceedings of the 8th Annual IEEE/ACM International Sym-

posium on Code Generation and Optimization (CGO), pages 22–31, 2010.

[86] David Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall. Tain-

tEraser: Protecting Sensitive Data Leaks Using Application-Level Taint Tracking.

ACM Operating Systems Review, 45(1):142–154, 2011.

104

Part I

Appendices

APPENDIX A. USES OF THE TAINTEXCHANGE MECHANISM 105

Appendix A

Uses of the TaintExchange

Mechanism

TaintExchange is a generic cross-process and cross-host dynamic data flow tracking, and

therefore with few changes and by combining it with REASSURE [56], a tool for deploying

rescue points on binaries, we used it as a building block for the Cascading Rescue Points

(CRPs) mechanism, which is presented in details in our paper [80].

The Cascading Rescue Points protocol is a mechanism we proposed to address the state

inconsistency issues that can arise when using software self-healing techniques using res-

cue points (RPs) to recover from errors in interconnected applications. Briefly, with CRPs,

when an application is executing within a RP and transmits data, the remote peer is notified

to also perform a checkpoint, so the communicating entities checkpoint in a coordinated,

but loosely coupled way. Notifications are also sent when RPs successfully complete execu-

tion, and when recovery is initiated, so that the appropriate action is performed by remote

parties. We developed a tool that implements CRPs by dynamically instrumenting binaries

and transparently injecting notifications in the already established TCP channels between

applications. With the aid of TaintExchange, the proposed checkpointing protocol is piggy-

backed on the existing communication channels. More specifically, TaintExchange is used

to convey the state-related signals between the applications of the multitier architecture,

which are necessary to retain a consistent state while employing the self-healing techniques

APPENDIX A. USES OF THE TAINTEXCHANGE MECHANISM 106

provided by REASSURE.

A.1 The Problem

Previous software self-healing approaches cannot apply rescue points on functions that have

side effects, such as transmitting data to other entities on the network. Doing so can result

in inconsistent states between the communicating parties, as shown in Figure A.1, because

the effects of process p1 sending a message to p2 cannot be undone. The problem with

this scenario is that the client’s state has been rolled back and the client believes that

an error, such as being unable to communicate with the server, occurred. However, data

has been exchanged with the server, which is oblivious of the error that occurred in the

client. Depending on the nature of the communicating applications this can lead to various

problems and can require additional mechanisms, like transactions employed by database

(DB) servers, for restoring them to a consistent state. By consistent state, we refer to every

party having a correct view of what is the state of their peer. For example, if p1 tries to

issue a command to p2 to switch it to state state′ and it fails, p1 can still think that p2 is

in state state.

Previous designs simply ignore data exchanges and rely on the protocols implemented

by applications to discover and correct such inconsistencies (e.g., they use transactions).

Moreover, the problem cannot be trivially addressed by simply delaying the transmission

of messages. Figure A.2 depicts an example where the application expects to receive a

response to a message send from within a RP. Buffering the transmitted message would

break function bug(), causing it to fail or wait forever because no data is sent as a response

from p2.

A.2 Protocol Overview

The CRP protocol is transparently implemented over the application’s TCP connections.

The protocol encapsulates application data, and serves the sole purpose of allowing us to

convey signals between applications of the architecture.

Consider process p1 shown in Figure A.3. All of its communications with other processes

APPENDIX A. USES OF THE TAINTEXCHANGE MECHANISM 107

b = send();

b = recv();

array[++idx]= d;

return 0;

bug()

....

....

b = send();

....

....

send()

send()

recv()

p1 p2

state

state

Rollback

state'

state'

state

Figure A.1: A rescue point deployed on function bug() of process p1 needs to both send and

receive data to and from p2. When an error triggers a roll back, p1 can end up in an inconsistent

state with p2. Deploying rescue points in routines that communicate with other parties over the

network can be problematic because their effects cannot be reversed.

in the architecture are modified to implement our CRP protocol. When p1 executes within

a RP, it is essentially checkpointing, indicated by the highlighted areas in Figure A.3. This

means that a fault will cause all the changes performed within the RP to be undone, and we

will simulate the return of an error code from the RP routine. When p1 transmits data to

another process (while in a RP), we use our protocol to instruct the remote peer to also begin

checkpointing. Later on, if an errors occurs in p1, the RP will recover the process. Since

we piggyback our protocol on existing communications, p1 does not immediately notify p2

that it discarded the state generated in the RP, and p2 will continue checkpointing until

the next message is received by p1. Figure A.3(a) depicts this process, which is propagating

in time to the other processes. If p2 sends any data to another process (e.g., p3), that

process also begins checkpointing, and so forth

If no fault occurs, the process is almost entirely the same, and it is shown in Fig-

ure A.3(b). Like before, the RP of p1 causes the checkpointing to cascade to p2 and p3.

However, in this case no error occurs and p1 successfully exits the RP. When this happens,

APPENDIX A. USES OF THE TAINTEXCHANGE MECHANISM 108

b = send();

b = recv();

array[++idx]= d;

return 0;

bug()

....

....

b = send();

....

....

send()

p1 p2

Buffer

Never

receives

Figure A.2: Adopting a naive approach to address the issue in Figure A.1 will not work. For

example, buffering the data being send from a rescue point, and only transmitting them after

determining that an error did not occur, can break applications. In this case, p2 never receives

the data that will cause it to respond to p1.

we immediately notify the other processes by utilizing TCP’s out-of-band (OOB) data [64].

OOB data are not part of the regular data stream, so we can signal p2 and p3 without

corrupting the application data stream and without requiring data to be read by the pro-

cesses. Instead, we can rely on the OS to notify the process when such a packet is received

(e.g., by raising a signal or exception). TCP does not support multiple OOB signals on a

particular stream (i.e., a second OOB would overwrite the first and would be the only one

to raise a signal on the receiver). For this reason, we can only use it to signal successful

exits from RPs. Our approach is an optimistic one, assuming that errors will be rare.

A.3 Implementation

We built our tool using Pin [42], a framework that we also used for the original implementa-

tion of TaintExchange, which enables the development of tools that can at runtime augment

or modify a binary’s execution at the instruction level through an extensive API. The tar-

APPENDIX A. USES OF THE TAINTEXCHANGE MECHANISM 109

Enter

rescue point Rollback

send() recv()

send() recv()

p1

p2

p3

Fault

send()

send()

Rollback

Rollback

Process checkpointing
Normal message
Message while checkpointing

(a) Fault occurs. The next transmission from p1 to

p2 will notify the latter to also roll back. p2 will

eventually notify p3.

Enter

rescue point

Exit

rescue point

send() recv()

signal

send() recv()

signal

p1

p2

p3

Process checkpointing
Normal message
Message while checkpointing

(b) No fault. When p1 exits the rescue point, it im-

mediately notifies p2, which also exits checkpointing

and notifies p3, and so forth.

Figure A.3: Cascading rescue points overview. When process p2 receives a message from

process p1, which executes within a rescue point, it also begins checkpointing. Other processes,

like p3, that receive messages from a checkpointing process also begin checkpointing. This way

the original rescue point cascades to the communicating processes.

get binary executes on top of Pin’s virtual machine (VM), which essentially consists of a

just-in-time (JIT) compiler that combines the binary’s original code with the code inserted

by the tool and places the produced code blocks into a code cache, where the application

executes from. Pin facilitates the instrumentation of binaries by enabling developers to

inspect and modify a program’s instructions, as well as intercept system calls and signals.

It is actively developed and supports multiple hardware architectures and OSs. Pintools

can be applied on binaries by either launching them through Pin or by attaching on al-

ready running binaries. The latter behavior is highly desirable, as it allows us to deploy

RPs without interrupting an already executing application. Our tool currently runs on x86

Linux systems, however there are no significant challenges in porting it to other OSs and

architectures supported by Pin.

Note. For the purpose of this thesis, we will focus on the part of the CRP implementation

that is incorporating the TaintExchange mechanism. The specifics of the CRP protocol is

out of the scope of this thesis, but are described in much detail in our paper [80].

APPENDIX A. USES OF THE TAINTEXCHANGE MECHANISM 110

A.3.1 I/O Interception

The cascading rescue point protocol is used to communicate events between peers exchang-

ing data over TCP sockets. The protocol is implemented transparently over the sockets

used by the application. This is done by intercepting system calls used with TCP sockets

(as described in detail in the relevant section). We can classify these system calls into two

groups. The first group consists of calls handling socket creation and termination, and the

second group is dealing with data transmission and reception. We intercept system calls

socket(), close(), shutdown(), connect(), accept(), socketpair(), and the dup()

family of calls to track the state of descriptors used by the application (i.e., distinguish

TCP socket descriptors from others, like files). For this reason, we maintain a global array

to store information on active descriptors, like their type and protocol state data. We also

intercept the read(), write(), recv(), and send() family of system calls that are used to

transmit and receive data from sockets to implement our protocol.

PAYLOAD

Header

{{

Encapsulated data (LEN bytes)

LEN CMD

Figure A.4: The cascading rescue points protocol encapsulates user data using a small header

prepended to every data write made by the user.

The protocol consists of variable length messages that encapsulate user data as shown in

Figure A.4. In particular, we use a small header that comprises of a 4-byte field specifying

the length of user data, and a single-byte CMD field used to communicate events to remote

peers.

The header is inserted into existing TCP streams using Pin to replace system calls used

to write data, like write() and send(), with writev() which allows us to transmit data

from multiple buffers by performing a single call. This minimizes the number of operations

(data copies and system calls) required to transparently inject the header into the stream.

If the message cannot be written in its entirety, for instance because non-blocking I/O is

performed and the kernel buffers are full, we keep trying until we are successful.

To extract the header from the stream, the reverse procedure is followed. Initially, we

APPENDIX A. USES OF THE TAINTEXCHANGE MECHANISM 111

replace calls used to receive data with readv() to read into multiple buffers. If necessary,

we repeat the process until the whole header is received. User data is placed directly in the

buffer supplied by the application. However, we can read into the next message, which will

be placed into the application’s buffer. When this happens, we move the data belonging to

subsequent messages into a buffer associated with the socket descriptor. Consequent reads

will read data from this buffer instead of performing a system call. Reading one message

at a time may be suboptimal performance-wise, but allows us to pair read system calls

with particular events received on a socket (e.g., a request to begin checkpointing), which

is necessary for rolling back.

A.3.2 Protocol Commands

The CMD field in the protocol is used to inform remote peers of changes in the state of the

running thread. For instance, when data are written to a socket while in a rescue point,

CMD changes to indicate that the destination should also begin checkpointing, the socket

is marked as having been signaled to checkpoint, and is placed in a list containing other

similar sockets (fd checkpointed). If an error occurs and the thread rolls back, sockets

in fd checkpointed are marked accordingly, so that the next write will convey the status

change. If the next write occurs within a RP, the fact is also passed to the remote process,

so that it first rolls back memory changes and then enters a new checkpoint.

On the receiving end, if a thread receives a command to checkpoint, it begins check-

pointing similarly to entering a RP. The socket descriptor number where the command was

received is saved, so that a consequent request to roll back is only honored, if it was received

on the same socket. On rollback, execution resumes right before the system call that caused

the thread to checkpoint. Note that receiving requests to begin checkpointing from other

sockets, while already checkpointing or executing in a RP are ignored.

Checkpoint Commits Through Out-of-band Signaling To notify remote peers of

a successful exit from a RP, we utilize out-of-band (OOB) signaling, as provided by the

TCP protocol and the OS. In particular, we make use of TCP’s OOB data to notify a

remote application that it should also commit changes performed within a checkpoint. We

APPENDIX A. USES OF THE TAINTEXCHANGE MECHANISM 112

send OOB data by using the send() system call and supplying the MSG OOB flag for every

descriptor in fd checkpointed.

On the receiver, the reception of an OOB signal by the OS, causes the signal SIGURG to

be delivered to the thread, which previously took ownership of the socket descriptor that

triggered the checkpointing by calling fcntl().1 The signal is intercepted, and execution

is switched from checkpointing to normal execution. If a RP is entered very frequently,

multiple OOB signals can be transmitted in succession. On account of TCP’s limitations,

only a single OOB byte can be pending at any time, so previous OOB signals are essentially

overwritten. This does not affect the correct operation of our system, but unfortunately

implies that we cannot also use OOB signaling to notify remote peers of roll backs.

1In Linux a thread can take ownership of a descriptor, causing the OS to deliver all descriptor related

asynchronous events to the specific thread, instead of a randomly selected thread of the process.

	List of Figures
	List of Tables
	1 Introduction
	1.1 The Problem
	1.1.1 Misconceptions about cloud security
	1.1.2 Current Measures

	1.2 Research Approach
	1.2.1 Scope and Target Applications
	1.2.2 Security Model
	1.2.3 Thesis Statement
	1.2.4 Contributions

	1.3 Dissertation Roadmap

	2 Background
	2.1 Multi-level Security
	2.2 Dynamic Data Flow Tracking
	2.2.1 Taint Tags Granularity
	2.2.2 Taint Accuracy

	2.3 Taxonomy of Dynamic DFT Systems
	2.3.1 DFT Deployment Platforms
	2.3.2 Scope of Taint Tracking
	2.3.3 Dynamic Binary Instrumentation with PIN

	2.4 Cloud-related Concepts
	2.4.1 Term Definitions
	2.4.2 Cloud Service Models
	2.4.3 Trust Relationships

	3 Generic Cross-Host Taint Propagation Mechanism
	3.1 Introduction
	3.2 Design
	3.2.1 Taint Sources
	3.2.2 Taint Propagation
	3.2.3 Taint Sinks
	3.2.4 Taint Headers

	3.3 Implementation
	3.3.1 The Libdft Data Flow Tracking Framework
	3.3.2 Taint-Exchange Data Structures
	3.3.3 Filesystem Taint Sources
	3.3.4 Taint Propagation Over the Network
	3.3.5 Cross-process Taint Propagation

	3.4 Evaluation
	3.4.1 Bandwidth
	3.4.2 Latency

	3.5 Discussion
	3.6 Conclusions

	4 Cloud-wide auditing mechanism
	4.1 Introduction
	4.1.1 Incentives
	4.1.2 Challenges

	4.2 System Overview
	4.3 Design
	4.3.1 Data Flow Tracking

	4.4 Implementation
	4.4.1 32-bit Wide Tags and 64-bit Support
	4.4.2 Lazy Tag Propagation
	4.4.3 Tag Persistence
	4.4.4 Data Flow Domain
	4.4.5 User Interface

	4.5 Evaluation
	4.5.1 Deploying CloudFence
	4.5.2 Effectiveness
	4.5.3 Performance

	4.6 Discussion
	4.7 Conclusions

	5 Cloudopsy
	5.1 Introduction
	5.2 Approach
	5.2.1 System Overview

	5.3 Design
	5.3.1 Audit Logs Generation
	5.3.2 Audit Trails Processing
	5.3.3 Audit Trails Visualization

	5.4 Implementation
	5.4.1 Cloud-wide auditing mechanism
	5.4.2 Visualization component
	5.4.3 Illustrative Scenario: Testing Cloudopsy with an E-store

	5.5 Conclusions

	6 Conclusions
	Bibliography
	I Appendices
	A Uses of the TaintExchange Mechanism
	A.1 The Problem
	A.2 Protocol Overview
	A.3 Implementation
	A.3.1 I/O Interception
	A.3.2 Protocol Commands

