
RECURSIVE SANDBOXES: EXTENDING

SYSTRACE TO EMPOWER APPLICATIONS

Aleksey Kurchuk
Columbia University

ak2097@columbia.edu

Angelos D. Keromytis
Columbia University

angelos@cs.columbia.edu

Abstract The systrace system-call interposition mechanism has become a popular method
for containing untrusted code through program-specific policies enforced by
user-level daemons. We describe our extensions to systrace that allow sand-
boxed processes to further limit their children processes by issuing dynamically
constructed policies. We discuss our extensions to the systrace daemon and the
OpenBSD kernel, as well as a simple API for constructing simple policies. We
present two separate implementations of our scheme, and compare their perfor-
mance with the base systrace system. We show how our extensions can be used
by processes such as ftpd, sendmail, and sshd.

1. Introduction

Systrace [Provos, 2003] has evolved to a powerful and flexible mechanism
for containing untrusted code by examining system-call sequences issued by
monitored processes. A user-level process assists the operating system ker-
nel in determining whether a system call (and its associated arguments) are
permitted by some externally-defined policy. This scheme allows unmodified
programs to be effectively sandboxed and, combined with other convenient
features (such as automatic policy generation and a graphical user interface),
has made systrace widely used by OpenBSD [ope,] and NetBSD. However,
the strength of the systrace approach — i.e., keeping applications unaware of
the sandbox — also makes the system less flexible than it could otherwise be.

Consider the case of a simplified sendmail daemon, which listens on the
SMTP port for incoming connections, parses received messages, and delivers
them to the recipient’s mailbox. Typically, sendmail will invoke a separate

program to locally deliver a newly received email message. Different deliv-
ery programs may be invoked, based on parameters such as the recipient, etc.
In a straightforward application of systrace, we would specify a policy that
would limit filesystem accesses (e.g., the open() system call) to files in the sys-
tem mail-spool directory (e.g., /var/spool/mail/) and the sendmail configura-
tion file. Compromise of the sendmail process, e.g., through a buffer overflow
attack, would restrict damage to these files and directories. However, if the lo-
cal delivery program is susceptible to a buffer overflow attack when delivering
to a particular user (i.e., when using a particular local-delivery program), the
subverted child process will be able to read or write to any user’s mailbox and
the configuration file.

More generally, static systrace policies do not allow the system to further
limit its privileges based on information it has learned during its execution.
A roughly similar example of such behavior is use of seteuid(), or of POSIX
capabilities, where processes that do not need specific privileges can simply
revoke them on themselves or their children processes.

We present an extension to systrace that allows sandbox-aware processes
to communicate with their controlling daemon and specify further restrictions
that can be placed on children processes of theirs. These policies can only re-
fine the privileges already bestowed upon the sandboxed process — no “rights
amplification” is possible. Processes that are aware of the sandbox can use
a simple API to specify common restrictions they want to apply to their off-
spring. More elaborate restrictions can be specified by directly issuing systrace
policies.

To ensure the monotonicity of privileges (i.e., the fact that added policies
do not expand the privileges of sandboxed processes), we explored two imple-
mentations. In the first approach, we used the KeyNote trust-management sys-
tem [Blaze et al., 1999] to specify, parse, and evaluate policies in the systrace
daemon. We modified the kernel to allow for indirect communication between
the sandboxed process and the controlling systrace daemon, and modified the
latter to generate and evaluate KeyNote policies. In the second approach, we
used a recursive policy-evaluation model that emulates the KeyNote assertion
evaluation process, which allowed the use of unmodified systrace policies at
the cost of increased implementation complexity. Our benchmarks show that
the added performance penalty of our extensions is negligible.

Paper Organization. The remainder of this paper is organized as fol-
lows. Section 2 discusses related work in process sandboxing and Section 3
gives an overview of the Systrace mechanism and KeyNote. Section 4 de-
scribes our extensions to Systrace, while Section 5 presents a preliminary per-
formance evaluation of our extensions. Section 6 discusses our plans for future
work, and Section 7 concludes this paper.

2. Related Work

The Flask system [Spencer et al., 2000] extends the idea of capabilities and
access control lists by the more generic notion of a security policy. The Flask
micro kernel system relies on a security server for policy decisions and on an
object server for enforcement. Every object in the system has an associated
security identifier, requests coming from objects are bound by the permissions
associated with their security identifier. However Flask does not address the
issue of cooperation amongst clients, servers and networks to deliver reliable
and secure services to clients. Its notion of the security identifier is very lim-
iting, in our system we require any number of conditions to hold before we
provide a service, for example user identification might not be enough to grant
access to a service, the user might also be required to access the service over
a secure channel. As a minor issue, we have demonstrated that our prototype
can be implemented as part of a widely used, commodity operating system, as
opposed to a more fluid experimental micro-kernel.

System call interception, as used by systems such as TRON [Berman et al.,
1995], MAPbox [Acharya and Raje, 2000], Software Wrappers [Fraser et al.,
1999] and Janus [Goldberg et al., 1996] is an approach to restricting appli-
cations. TRON and Software Wrappers enforce capabilities by using system
call wrappers compiled into the operating system kernel. The syscall table is
modified to route control to the appropriate TRON wrapper for each system
call. The wrappers are responsible for ensuring that the process that invoked
the system call has the necessary permissions. The Janus and MAPbox sys-
tems implement a user-level system call interception mechanism. It is aimed
at confining helper applications (such as those launched by Web browsers) so
that they are restricted in their use of system calls. To accomplish this they
use ptrace(2) and the /proc file system, which allows their tracer to register
a call-back that is executed whenever the tracee issues a system call. Other
similar systems include Consh [Alexandrov et al., 1998], Mediating Connec-
tors [Balzer and Goldman, 1999], SubDomain [Cowan et al., 2000] and oth-
ers [Fraser et al., 1999, Ghormley et al., 1998, Walker et al., 1996, Mitchem
et al., 1997].

Capabilities and access control lists are the most common mechanisms op-
erating systems use for access control. Such mechanisms expand the UNIX se-
curity model and are implemented in several popular operating systems, such
as Solaris and Windows NT [Custer, 1993]. The Hydra capability based op-
erating system [Levin et al., 1975] separated its access control mechanisms
from the definition of its security policy. Follow up operating system such as
KeyKOS [Hardy, 1985, Rajunas et al., 1986] and EROS [Shapiro et al., 1999]
divide a secure system into compartments. Communication between compart-
ments is mediated by a reference monitor.

The methods that we mentioned so far rely on the operating system to pro-
vide a mechanism to enforce security. There are, however, approaches that
rely on safe languages [Levy et al., 1998, Tardo and Valente, 1996, Leroy,
1995, Hicks et al., 1998], the most common example being Java [McGraw and
Felten, 1997]. In Java applets, all accesses to unsafe operations must be ap-
proved by the security manager. The default restrictions prevent accesses to
the disk and network connections to computers other than the server the applet
was down-loaded from.

3. Overview of systrace and KeyNote

3.1 systrace

Systrace is a utility for monitoring and controlling an application’s behavior
by means of intercepting its system calls. Systrace provides facilities for con-
fining multiple applications, interactive policy generation, intrusion detection
and prevention, and can be used to generate audit logs. For a full account of
how Systrace works, refer to [Provos, 2003]. Here, we give a brief review of
the basic design of Systrace.

Taking a hybrid kernel/user-space approach, Systrace consists of a user-level
daemon and a small addition to the OS kernel. Once a system call is issued by
the monitored application, it is intercepted by the kernel part of Systrace, and
is matched against an in-kernel policy. The in-kernel policy is a simple table
of system calls and responses. If an entry for that system call exists, the result
– allow or deny – is used in performing the operation. If no entry exists, such
’fast path’ for the system call is impossible, and a user-level daemon is asked
for a policy decision.

When the policy daemon receives a system call to be evaluated, it looks up
the policy associated with the process, translates the system call arguments,
and checks if the policy allows such a call.

Allowing for interactive policy generation, Systrace will prompt the human
user for input on system calls not already described in the policy. If interactive
policy generation is turned off, a system call that is not explicitly described in
the policy will be denied.

3.2 KeyNote

KeyNote is a simple trust-management system and language developed to
support a variety of applications. Although it is beyond the scope of this paper
to give a complete tutorial or reference on KeyNote syntax and semantics (for
which the reader is referred to [Blaze et al., 1999]), we review a few basic
concepts to give the reader a taste of what is going on.

The basic service provided by the KeyNote system is compliance checking;
that is, checking whether a proposed action conforms to local policy. Actions
in KeyNote are specified as a set of name-value pairs, called an Action Attribute
Set. Policies are written in the KeyNote assertion language and either accept or
reject action attribute sets presented to it. Multiple assertions can be combined
in specifying a policy, by constructing a delegation-graph, with each issuer of
an assertion specifying the conditions under which the recipient of the assertion
can perform some action. Ultimately, for a request to be approved, an assertion
graph must be constructed between one or more POLICY assertions and one
or more requesters. Because of the evaluation model, an assertion located
somewhere in a delegation graph can effectively only refine (or pass on) the
authorizations conferred on it by the previous assertions in the graph.

Each service that needs to mediate access, queries its local compliance
checker on a per-request basis (what constitutes a “request” depends on the
specific service and protocol). The compliance checker can be implemented
as a library that is linked against every service or as a daemon that serves all
processes in a host.

4. Extending systrace

In this section, we present two extensions to Systrace: nested policies and
dynamic policy generation. Nested policies allow for a composition of several
policies to be recursively applied to an application, and dynamic policy gener-
ation allows a Systrace-aware application to set an appropriate policy for itself
and even to generate such policy at runtime.

4.1 Nested Policies

The motivation behind nested policies is that priveleges, granted to an appli-
cation should be no greater than priveleges, enjoyed by its parent. We present
two implementations of this idea, using different policy engines.

4.1.1 Systrace-KN. In our first attempt to introduce hierarchical
policies to Systrace, we modified the user-level daemon to use KeyNote as
its policy engine. Making use of KeyNote’s native support for delegation of
trust, we built an implicit graph of processes by making the parent process the
’Authorizer’ of its offsprings’ actions. This construction automatically restricts
the privileges of the child process to those of its parent. Figure 1 shows a
sample policy generated by Systrace-KN.

At run time, the ’Licensees’ and ’Authorizer’ fields are filled with the PIDs
of the monitored process and its parent respectively. When a system call needs
to be evaluated, its description is translated from the native Systrace format into
a KeyNote request. The request is then evaluated by KeyNote, returning one of

KeyNote-version: 2
Authorizer: "POLICY"
Licensees: "systrace"
Conditions:

(bin=="/bin/foo")->{
(state=="default")->{
(syscall=="fswrite")->{
((filename == "/usr/libexec/ld.so"));
((filename == "/var/run/ld.so.hints"));
...
};
((syscall == "munmap"));
((syscall == "fsread") && (filename ==

"/<non-existent filename>: /etc/malloc.conf"));
...
((syscall == "exit"));
};
};

Figure 1. Example of a policy, automatically generated by Systrace-KN.

the following values: {ask,deny,permit}. Stepping away from the recommen-
dation in the KeyNote RFC, the first result - ask - is treated not as having the
fewest permissions, but rather as a default one, which is returned if the request
does not match the Action Attribute Set. If ask is returned in interactive mode,
the user is asked for input. If the mode is automatic, the result is downgraded
to deny just as in the original Systrace.

4.1.2 Systrace-H. Unsatisfactory performance of Systrace-KN (see
Section 5) led us to extending the original Systrace policy engine to emu-
late support for nested policies. Following the idea of KeyNote, we define
a notion of compolicy (complex policy). Each compolicy has a single
policy (as defined in the original Systrace) as well as a link to an authoriz-
ing compolicy. Compliance with a compolicy is achieved by satisfying
restrictions imposed by the associated policy and by all policies associated with
each compolicy in the chain of authorizers. Effectively, this means that the sys-
tem call, issued by a process, has to satisfy the policies of all of its ancestor
processes.

A seemingly simpler solution of adding to the original Systrace policy a link
to the authorizer proves not to be sufficient, since processes, associated with
the same binary (and thus the same policy) might have a different set of ances-
tors. For example, consider program binaries /bin/foo, /bin/bar, and

Figure 2. Side-by-side comparison of policy objects, created by original Systrace and those,
created by Systrace-H.

/bin/sh, and the policies associated with them. The behavior of /bin/foo
and /bin/bar is as follows:

/bin/foo: fork()
child: exec("/bin/bar")
parent: exec("/bin/sh")

/bin/bar: exec("/bin/sh")

Running /bin/foo under Systrace will create the following policy chains:
foo←bar←sh and foo←sh. Since the two processes are running /bin/sh,
the behavior of the original systrace would be to use the same policy (bin sh)
for both of them. With hierarchical policies, this approach is incorrect since
the privileges of one of the processes are restricted by policies of /bin/foo
and /bin/sh, and the privileges of the other are further limited by policy
/bin/bar.

Figure 2 illustrates the difference between the old approach and the one
taken by our extension.

4.2 Run-time Policy Modification

In an effort to improve security, a Systrace-aware application might want
to restrict its set of permissions to the minimum required by a particular code
fragment. We present two approaches to run-time policy modification. The
first one uses pre-generated policies, allowing the program to switch between
them. The second one allows the program to modify (further restrict) its current
Systrace policy with a dynamically generated one.

4.2.1 States. It is often convenient to view an application as a state
machine. Being in different states, a program might naturally require different
sets of privileges. For example, consider sendmail. While being in one state
might require permission to establish network connections, these privileges are
extraneous if the task at hand is to deliver a message to a local user’s mailbox.
The idea of narrowing the range of program’s privileges is especially useful
for further restricting the privileges of the children processes. Execution of a
program always starts in default state.

State transitions. Naturally, not all state transitions will be valid. A
subverted process should not be able to switch to an arbitrary state, aquiring
excessive privileges. A separate policy is kept for rules associated with state
switching. Every time an application requests to set a different state, this policy
is queried. Instead of inventing a new policy engine for state transitions, we
used the original Systrace policy engine. Each ’set state’ operation is viewed
as a system call set in emulation state, which has two possible arguments:
newstate and oldstate.

File format. Using states required small changes to be made to the Sys-
trace policy file name convention and to the file format itself. The state of the
policy is used as an extension to the policy file name. For example, the policy
file for /bin/sh in its default state should be named bin sh.default.
State is also reflected in the first line of the policy file as in the following ex-
ample:

[bin sh.default]
Policy: /bin/sh, Emulation: native, State: default

The state policies are written in the same language used for creating regu-
lar Systrace policies, and are stored in files with extension state. Thus, state
SHOULD NOT be used as a state identifier. Also, state names that start with
an underscore are reserved for use by Systrace as explained in Section 4.2.2.
Consider the following code snippet in an application:

fork();
if (child) {

systrace setstate("risky");
do risky();
...

}
else if (parent) {

...
}

Here, the state of the child process is switched to risky, possibly restricting
the range of actions the process can perform. Note also that since the state
transition policy below does not explicitly allow a risky→default transi-
tion, a rogue process will not be able to change its state back to default once it
enters the risky state.

[bin foo.state]

Policy: /bin/foo, Emulation: state, State: state

state-set: oldstate eq "default" and newstate eq "risky"

then permit

Note that when switching states, the policy, associated with the new state
does not restrict the old one, but replaces it, as shown in Figure 3. The mecha-
nism for restricting the existing policy is discussed in the next section.

Figure 3. Policies after running the code snippet changing state to risky.

4.2.2 Dynamic Policy Creation. While state switching allows
applications to choose the most suitable (but static) policy, one might want to

have a policy based on information acquired during the program’s execution.
Dynamic policy creation allows one to refine an application’s privileges by
providing run-time generated policies.

In order to facilitate creation of dynamic policies, a (pseudo) system call all
was introduced, which allows a policy to specify restrictions, applying the ac-
tion, associated with all, to all system calls not explicitly described. If a filter
for all is not specified explicitly, it is taken to be deny by default. Consider, for
example, how sendmail would make use of this functionality when delivering
local mail to user jdoe. Let variable restricted policy contain the
following policy, generated at run time:

native-fsread: filename sub "/var/mqueue/jdoe/" then permit

native-fsread: filename sub "/var/mqueue/" then deny

...

native-all: permit

Since policy filters are matched in top-down order, reading from directory
jdoe is allowed, while an attempt to open a file in someone else’s directory
will be thwarted. The following code will run the local delivery agent with
restricted privileges, allowing it to access specific user’s mail queue directory,
but not that of any other user:

systrace setpolicy(restricted policy);

exec(local delivery agent,...);

Once the Systrace daemon receives a set policy request, it creates a new
policy object. This policy’s state starts with an underscore, indicating that
this is a volatile policy. Such policies do not get saved to disk. Thus, user
defined state identifiers should not start with an underscore.

4.2.3 Communication. In order for run-time policy modification
to work, there needs to be a way for the controlled application to communicate
with the Systrace daemon. We briefly describe how this interaction is accom-
plished.

To send a message to the user-level Systrace daemon, a Systrace-aware ap-
plication sends a message to /dev/systrace, which in turn relays the message to
the appropriate Systrace daemon process. The messages are encoded with the
following data structure:

struct systrace message {
unsigned int processed;
unsigned int code;
size t length;

char message[1];
};

Variable length specifies the length of the message, and code identifies
the action requested. So far, the only relay codes defined are SYSTRACE RE-
LAY SETSTATE and SYSTRACE RELAY SETPOLICY. Structure systra-
ce relay is then populated and sent to /dev/systracevia the SYSTR RE-
LAY ioctl().

struct systrace relay {
pid t pid;
int flag;
key t key;
size t size;

};

In the systrace relay structure, pid is the process ID of the monitored
process, flag identifies the requested action, key is the key of the shared
memory region of size size.

Having sent the message, the application waits for flag processed to be
set. The response from the daemon is stored in code. The following responses
are currently defined:

SYSTRACE RELAY SUCCESS - Requested operation completed successfully
SYSTRACE RELAY FAILURE - Unexpected failure
SYSTRACE RELAY PERMISSION - Application is unauthorized to perform
this operation. This error may occur if, for example, an invalid state change is
requested.
SYSTRACE RELAY ARGUMENT - Invalid argument specified. An invalid Sys-
trace policy passed to systrace setpolicy()might cause this error mes-
sage.

The kernel, upon receipt of the message, signals the Systrace daemon that
a message is waiting for it. The daemon picks up the pending relay via a
STRIOCRELAY ioctl(). When the message is processed, daemon sets
code to one of the above responses, and the processed flag to 1.

5. Performance Evaluation

The policy enforcement agent communicates with the policy engine via
three callback functions. These functions are responsible for creating state
for a new process (EXEC), evaluating a system call with known (translated)
arguments (TRANS), and general calls with no (or not translated) arguments
(GEN). In order to measure performance of different versions of Systrace, we

timed these three functions. As a test application, we used the sendmail
daemon, making necessary modifications for it to use policy modification fea-
tures.

The following table shows the average times (in micro-seconds) needed for
each operation. ’Systrace-H (states)’ denotes times, observed when running
sendmail, modified to have several states. In ’Systrace-H (dynamic)’, sendmail
was changed to generate a dynamic policy for delivering local mail (as in the
example in Section 4.2.2).

GEN TRANS EXEC
Original Systrace 2 37 54
Systrace-KN 902 866 173
Systrace-H 20 37 81
Systrace-H (states) 20 37 89
Systrace-H (dynamic) 20 37 121

One obvious result of these performance measurements is that Systrace-KN
is unacceptably slow. Further investigation proved that over 99% of the time
was spent in kn query() function — the KeyNote function that evaluates a re-
quest. This moved us to turn away from a KeyNote-based implementation, but
use the ideas of KeyNote to enhance the policy engine of the original Systrace.

In all variations of Systrace-H, the time needed to evaluate a translated sys-
tem call remained the same as in the original Systrace. The original Systrace
policy engine is very lightweight, and more precise measurements would be
needed to detect the difference. The time to evaluate a call with no arguments,
however, has risen, almost reaching that of TRANS.

The reason for such a slowdown is as follows. In the original Systrace, upon
creation of a new process, all general system calls were entered in the kernel
policy (pre-loaded) to speed up the execution and to take the responsibility for
their evaluation off the user-level Systrace daemon. Thus, all general system
calls that needed to be evaluated by the user-level daemon were considered
non-compliant with the policy. Such pre-loading is not done in Systrace-H,
since it requires all ancestor policies to be queried at the start of the process’s
execution. Instead, a general system call is evaluated the same way a translated
one is (explaining the increase in evaluation time), and the kernel-policy is
modified, reflecting the result of the evaluation. Since such evaluation is done
once per call per process, the performance degradation is insignificant.

The increase in time when evaluating EXEC is most likely due to the fact
that in Systrace-H, there generally exist more compolicy objects to search,
and the fact that aside from loading the default policy, the state transition policy
(if one exists) needs to be loaded as well. Since ’exec’ calls are relatively
infrequent, this increase results in negligible performance penalty.

6. Future Work

Having established a mechanism for a controlled application to communi-
cate with the controlling Systrace daemon, we used it to relay requests for
policy changes. In the future, the same mechanism may be used to perform
a wider variety of tasks, including communication with other processes under
Systrace’s control.

Lack of tools for programmatically creating Systrace policies might impede
the use of dynamically generated policies. Development of tools to facilitate
policy generation should greatly decrease the time needed to allow a Systrace-
aware application to make use of these features. Such work is in our current
work plans.

Finally, we plan to extend the current implementation of Systrace-H to al-
low pre-loading, per our discussion of possible performance degradation in
Section 5.

7. Conclusions

This paper presents an extension to the Systrace facility for process sand-
boxing. We argue that using hierarchical policies adds security, while having
an acceptable performance overhead. Our mechanism adds the ability to con-
trol the behavior of all binaries run by a single aplication by modifying a single
policy.

We further showed that an application may enhance its security by using
state policies and the ability to dynamically generate policies. The changes
necessary to transform an application into a Systrace-aware one are minimal
and can be made in minutes.

From our perliminary performance evaluation we conclude that a policy
engine as generic and flexible as KeyNote might prove to be too slow for some
tasks. A highly specialized policy engine that follows the same evaluation
model might be called for instead.

Acknowledgements

This work was supported by NSF under Contract CCR-TC-0208972.

References

[ope,] The OpenBSD Operating System. http://www.openbsd.org/.

[Acharya and Raje, 2000] Acharya, Anurag and Raje, Mandar (2000). Mapbox: Using param-
eterized behavior classes to confine applications. In Proceedings of the USENIX Security
Symposium, pages 1–17.

[Alexandrov et al., 1998] Alexandrov, A., Kmiec, P., and Schauser, K. (1998). Consh: A con-
fined execution environment for internet computations.

[Balzer and Goldman, 1999] Balzer, Robert and Goldman, Neil (1999). Mediating connectors:
A non-bypassable process wrapping technology. In Proceeding of the 19th IEEE Interna-
tional Conference on Distributed Computing Systems.

[Berman et al., 1995] Berman, Andrew, Bourassa, Virgil, and Selberg, Erik (1995). TRON:
Process-Specific File Protection for the UNIX Operating System. In Proceedings of the
USENIX Technical Conference.

[Blaze et al., 1999] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A. D. (1999). The
KeyNote Trust Management System Version 2. RFC 2704.

[Cowan et al., 2000] Cowan, Crispin, Beattie, Steve, Pu, Calton, Wagle, Perry, and Gligor, Vir-
gil (2000). SubDomain: Parsimonious Security for Server Appliances. In Proceedings of
the 14th USENIX System Administration Conference.

[Custer, 1993] Custer, Helen (1993). Inside Windows NT. Microsoft Press.

[Fraser et al., 1999] Fraser, Tim, Badger, Lee, and Feldman, Mark (1999). Hardening COTS
Software with Generic Software Wrappers. In Proceedings of the IEEE Symposium on
Security and Privacy.

[Ghormley et al., 1998] Ghormley, Douglas P., Petrou, David, Rodrigues, Steven H., and An-
derson, Thomas E. (1998). SLIC: An Extensibility System for Commodity Operating Sys-
tems. In Proceedings of the USENIX Technical Conference, pages 39–52.

[Goldberg et al., 1996] Goldberg, Ian, Wagner, David, Thomas, Randi, and Brewer, Eric A.
(1996). A Secure Environment for Untrusted Helper Applications. In Procedings of the
USENIX Technical Conference.

[Hardy, 1985] Hardy, Norman (1985). The KeyKOS. Operating Systems Review, 19(4):8–25.

[Hicks et al., 1998] Hicks, M., Kakkar, P., Moore, J. T., Gunter, C. A., and Nettles, S. (1998).
PLAN: A Programming Language for Active Networks. Technical Report MS-CIS-98-25,
Department of Computer and Information Science, University of Pennsylvania.

[Leroy, 1995] Leroy, X. (1995). Le système Caml Special Light: modules et compilation effi-
cace en Caml. Research report 2721, INRIA.

[Levin et al., 1975] Levin, R., Cohen, E., Corwin, W., and Wulf, W. (1975). Policy/mechanism
separation in hydra. In Proceedings of the 5th ACM Symposium on Operating Systems
Principles, pages 132–140.

[Levy et al., 1998] Levy, Jacob Y., Demailly, Laurent, Ousterhout, John K., and Welch,
Brent B. (1998). The Safe-Tcl Security Model. In Proceedings of the USENIX Technical
Conference.

[McGraw and Felten, 1997] McGraw, Gary and Felten, Edward W. (1997). Java Security: hos-
tile applets, holes and antidotes. Wiley, New York, NY.

[Mitchem et al., 1997] Mitchem, T., Lu, R., and O’Brien, R. (1997). Using Kernel Hypervi-
sors to Secure Applications. In Proceedings of the Annual Computer Security Applications
Conference.

[Provos, 2003] Provos, N. (2003). Improving Host Security with System Call Policies. In
Proceedings of the 12th USENIX Security Symposium.

[Rajunas et al., 1986] Rajunas, S.A., Hardy, N., Bomberger, A.C., Frantz, W.S., and Landau,
C.R. (1986). Security in KeyKOS. In Proceedings of the IEEE Symposium on Security and
Privacy.

[Shapiro et al., 1999] Shapiro, Jonathan S., Smith, Jonathan M., and Farber, David J. (1999).
EROS: a fast capability system. In Proceedings of the 17th ACM Symposium on Operating
Systems Principles, pages 170–185.

[Spencer et al., 2000] Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Anderson, D., and
Lepreau, J. (2000). The flask security architecture: System support for diverse security
policies. In Proceedings of the USENIX Security Symposium, pages 123–139.

[Tardo and Valente, 1996] Tardo, J. and Valente, L. (1996). Mobile Agent Security and Tele-
script. In Proceedings of the 41st IEEE Computer Society Conference (COMPCON), pages
58–63.

[Walker et al., 1996] Walker, K. M., Stern, D. F., Badger, L., Oosendorp, K. A., Petkac, M. J.,
and Sherman, D. L. (1996). Confining root programs with domain and type enforcement. In
Proceedings of the USENIX Security Symposium, pages 21–36.

