The SwitchWare Active Network Architecture

D. Scott Alexander, William A. Arbaugh, Michael W. Hicks, Pankaj Kakkar, Angelos D. Keromytis,
Jonathan T. Moore, Carl A. Gunter, Scott M. Nettles, and Jonathan M. Smith*
University of Pennsylvania

June 6, 1998

Abstract

Active networks must balance the flexibility of a programm-
able network infrastructure against the safety and security
requirements inherent in sharing that infrastructure. Fur-
thermore, this balance must be achieved while maintaining
the usability of the network. The SwitchWare active net-
work architecture is a novel approach to achieving this bal-
ance using three layers: active packets, which contain mobile
programs that replace traditional packets; active extensions,
which provide services on the network elements, and which
can be dynamically loaded, and; a secure active router in-
frastructure, which forms a high integrity base upon which
the security of the other layers depends. In addition to
integrity-checking and cryptography-based authentication,
security in our architecture depends heavily on verification
techniques from programming languages, such as strong type
checking.

1 Introduction

The IP Internet provides a ‘virtual infrastructure’ that cre-
ates the illusion of network-wide addresses and packet for-
mats while in fact providing these interfaces using a variety
of real networks. IP interoperability works because IP was
designed to require minimal subnetwork capabilities, hence
its ability to run (albeit slowly!) on ‘two tin cans and a
string’. Given the success of IP, the lesson that virtual in-
frastructures can work seems very clear. It is also clear that
there are a wide variety of possible virtual infrastructures,
and some of these may offer interesting technical advantages.
In particular, the choice of the interoperability layer (for IP,
the packet format and its addressing scheme) could result in
an interoperability layer with a higher level of abstraction,
such as a programmable interoperability layer. Active net-
works are an approach to providing a programmable network
infrastructure based on such a programmable interoperabil-
ity layer. Proposals exist [17] for accessing programmability
on a per-user or per-packet basis. These ideas offer con-
siderable power to programmers wishing to create advanced
services or test new approaches to providing existing ser-
vices.

Consider, for example, the problem of negative acknowl-
edgments (NACKSs) in a multicast protocol. Figure 1 illus-
trates a tree of nodes with the source A at the root. If nodes
F and G indicate that they did not receive a message, the
simple behavior might be for each to send a NACK to A,

*This paper will appear in IEEE Network Special Issue on Active
and Controllable Networks.

.
e NACK_F

AR
NACK_F ; NACK_G
| 1

Figure 1: NACK Implosion in a Multicast Tree

NACK_G
\

resulting in one or more resends of the missing packet. This
poses a scalability risk, as the source could be overwhelmed
by NACK’s, leading to the condition known as NACK im-
plosion.

With a programmable network infrastructure, an active
NACK packet could operate by first checking if a NACK for
the same message had preceded it at a node; if so, it would
add its sender to a list for retransmission. If it is the first
NACK at a node, it would leave a marker indicating which
message it was NACKing and proceed towards the root. In
this way, an ‘as-needed’ retransmission of the message would
occur.

Of course, such a protocol could be deployed in the cur-
rent network, but a key question is: how quickly? Because
the current IP internet is not particularly flexible, it would
require changing software on every node in the network—
a daunting task. By contast, however, an active network
is designed with such upgrades in mind. Thus, adding a
new protocol is as simple as writing a new router extension
or a new active packet program. This speedup in network
evolution is one of the primary motivations behind adding
programmability to the network infrastructure.

Independent of whether their programmability is offered
on a per-packet, per-user, or other basis, active network el-
ements (such as active bridges, switches and routers) must
provide facilities for loading and executing programs. Shared
network elements will require protection and security, and
even single-use network elements derive safety benefits from
a well-thought-out model for resource sharing and protec-
tion. We believe that the most important knowledge derived
from exploratory active network efforts will be an under-
standing of the tradeoffs between flexibility, security, perfor-
mance, and usability. The SwitchWare architecture provides
a vehicle with which we can evaluate these tradeoffs.

2 The SwitchWare Architecture

SwitchWare uses a layered architecture to provide a range
of different flexibility, safety and security, performance, and
usability tradeoffs. These layers allow us to employ a variety
of different approaches to meeting the challenge of provid-
ing security in a programmable network, while still gaining
the flexibility of programmability and leaving the network
usable. These approaches include providing some function-
ality that is inherently safe and secure, in large part because
it is not powerful enough to cause harm, using cryptography-
based security to establish and maintain trust relationships,
and using verification technologies such as type-checking and
program verification to prove that other functionality is safe
and secure. As shown in Figure 2, we employ three main
layers: active packets, active extensions, and a secure active
router infrastructure. We discuss each of these in turn in
this section, and more fully elaborate each of them in turn
in Sections 4-6.

Active,
Extensions

Il

Active
Router
Infrastructure

Figure 2: Packet Language and Services

Active packets replace the traditional network packet
with a mobile program, consisting of both code and data.
The code part of an active packet provides the control func-
tion of a traditional packet header, but does so much more
flexibly, since it can interact with the environment of the
router in a more complex and customizable way than the
simple table lookup provided by headers. Similarly, the data
in the active packet program replaces the payload of a tra-
ditional packet, but provides a customizable structure that
can be used by the program. Because even the most perfor-
mance critical aspect of the network, basic data transport,
is done by executing programs, it is crucial that executing
these programs be as lightweight as possible.

As discussed in detail in Section 4, we have designed
PLAN (Programming Language for Active Networks) to serve
as a programming language for active packets. PLAN is
very simple and provides a minimum of functionality. Its
execution model includes a mechanism for remotely evaluat-
ing PLAN programs on other routers; these mechanisms are
the means by which PLAN programs transport themselves
through the network. PLAN programs are strongly typed
to provide safety, and can be statically type-checked before
being injected into the network to eliminate the possibility
of type errors occurring on remote routers, thus improving
usability. In some instances, authentication and other costly
checks are unnecessary. PLAN has been designed to avoid
the need for such checks in most cases by restricting their
actions—for example, a PLAN program cannot by itself ma-
nipulate node-resident state. To compensate for these limi-
tations, PLAN programs can call node-resident service rou-

tines, which can authenticate or use other more heavyweight
mechanisms to provide security on an as-needed basis. Fur-
thermore, PLAN provides a number of different mechanisms
for limiting the resources used by an active packet.

We have also experimented with a variant of the ML
programming language called Caml [7] as our active packet
language. Because Caml does not have the resource limi-
tations described in PLAN, there is a need to provide au-
thentication checks and to provide measures to ensure that
security attacks will not succeed. However, in those cases
where these checks are necessary anyway, using a single lan-
guage for both active packets and active extensions provides
greater integration. Our initial implementation of SANE
uses this facility.

Node-resident extensions form the middle layer of our
architecture. They can be dynamically-loaded active exten-
stons, or they can be part of the base functionality of the
router. They are not mobile: to communicate with other
routers they use active packets. Because they are only in-
voked when needed, there is no inherent need for extensions
to be lightweight. They can be written in general purpose-
programming languages, although type-safety still plays an
important role in this layer. They can use a variety of secu-
rity mechanisms, including cryptography-based authentica-
tion and program verification. Their greater flexibility pro-
vides an important trade-off with active packets since com-
plex protocols and systems are implemented in SwitchWare
as a mixture of PLAN and router extensions.

As discussed in detail in Section 5, our most ambitious
exploration of this layer to date is the Active Bridge [3], us-
ing active extensions called switchlets. In this experiment,
we showed that a simple switchlet-based buffered repeater
could be extended (over the network) with a learning bridge
switchlet and then several different spanning tree switch-
lets. A dynamically loaded control switchlet allowed us to
perform a controlled transition from one spanning-tree pro-
tocol to another, with error detection and fall-back. This is
a key demonstration, since it shows how active networking
can greatly facilitate rapid changes to network protocols.

The Active Bridge is programmed using Caml, which
offered a number of advantages for this application. First,
like Java, Caml bytecodes are dynamically loadable and ma-
chine independent (thus permitting active extensions), and
the Caml implementation is more efficient than any current
Java system. More importantly, Caml gives us limited, but
adequate, control over the namespace seen by the dynami-
cally loadable modules. When combined with Caml’s strong
typing, this allows us considerable control over the function-
ality we allow active extensions to access, a feature we will
refer to as namespace security in the rest of this paper.

A secure active router infrastructure forms the lowest
layer of our architecture. While the top two layers emphasize
support for several forms of dynamic flexibility, the lowest
layer is primarily static. The goal of this layer is to provide
a secure foundation upon which the other two layers build.
The importance of this is clear, since no matter how much
care we put into security of those layers, if they are loaded
into an insecure environment they cannot possibly be secure.

As discussed in detail in Section 6, we embody our se-
cure active router infrastructure as the Secure Active Net-
work Environment (SANE). System integrity means that the
system is not altered from some known (and presumably
correct) state. SANE uses the approach of guaranteeing in-
tegrity of the lower layers of the system. While integrity
is a weaker property than correctness, the importance of
integrity checking cannot be overstated, as any proofs of

correctness depend on the integrity of the verified compo-
nents. SANE identifies a minimal set of system elements
(e.g. a small area of BIOS, some cryptographic material, and
a trusted source) upon which system integrity is dependent.
It then builds an integrity chain with cryptographic hashes
on the image of each succeeding layer in the system before
passing control to that image. It also provides a public-key
infrastructure that can be used for cryptographic authenti-
cation of module sources. SANE protects the assumptions
about behavioral restrictions and correctness of operation
that are used in minimizing the cost of per-packet opera-
tions. Thus, SANE is essential support for the ‘lightweight’
per-packet operation model used in designing the Switch-
Ware architecture.

3 A Language-Based Approach

SwitchWare provides security based on a mixture of ap-
proaches. We expect that the reader is familiar with the es-
sentials of cryptographic-based authentication; perhaps less
familiar is the programming language, specification, and for-
mal verification-based technology we also rely upon. This
section serves to present a general model of our approach to
security and to explain the less familiar technologies so that
their role in our model will be clear.

3.1 Security Model

There are essentially three approaches to security for facili-
ties in active networks. We classify these as follows:

e Public facilities.
o Authenticated facilities.
e Verified facilities.

By public facilities we mean those that will be available to
anyone, typically because the low risk of abuse does not
merit the cost of restricting access to them. An example is
the network service ping, which simply asks for an acknowl-
edgment, and thus is a service that is often provided to the
‘public’. The next level of security are authenticated facil-
ities, in which a user must submit to an identity check in
order to determine authorization to use a service. An exam-
ple in this category is remote login, which typically calls for
the use of a password as an access control. There is a wide
spectrum of forms of authentication based on cryptographic
keys that can be used to control access to such facilities.
Verified facilities are those that go beyond the limited func-
tionality of public facilities and the cryptographic barriers of
authenticated facilities to provide facilities that are granted
because of a node’s ability to formally verify certain prop-
erties. This form of service has been most explored in the
mobile code context, where, for instance, a type verifier can
check the safety of an executing applet from an untrusted
(and unauthenticated) source. An extension of these tech-
niques would be to provide some level of authorization as
part of the verification, mainly to limit the interface avail-
able to the requester, but possibly also to directly limit uti-
lization of resources such as time, space, and bandwidth.
The technology of active networks can be viewed as a fu-
sion of technologies from networks, operating systems, and
programming languages. As such, it will integrate the safety
and security techniques of each of these areas. We envision
active networks as providing public facilities like the unau-
thenticated routing of the current Internet, authenticated

facilities like logins to current operating systems, and com-
plex verified facilities based on programming-language types
and interfaces as one sees in mobile code.

3.2 Background

Before speaking in more detail of active networks, let us
describe briefly the state of verification and compiler tech-
nology on which we rely.

Program Verification By the middle of the twentieth
century, researchers in mathematical logic were able to de-
scribe a set of axioms and reasoning principles capable of
providing a foundation for all of ‘ordinary’ mathematics.
This foundation is mechanizable, and can therefore be im-
plemented by computers. There was considerable optimism
in the 1970’s about the prospect of verifying the correctness
of computer programs using logic, a task sometimes called
‘program verification’. This has proved far more difficult
than originally thought and it is still not considered practi-
cal to verify most large computer systems fully. On the other
hand, steady progress has led to an understanding that lim-
ited properties can be be handled successfully: for instance,
a compiler can construct a ‘proof’ that a program has a type.
Modern programming languages such as Java and SML are
specified in a way that allows this concept of proof to be for-
mulated as rigorously as the logic that describes the founda-
tions of mathematics. This precision will be useful in stating
and establishing properties expected for programs written in
these languages. The general trend in program verification is
toward finding practical niches in which the techniques have
a proper cost/benefit ratio. Areas in which this is known to
be the case include hardware verification and certain kinds
of system verifications involving finite state machines. Veri-
fication techniques also hold promise for mobile code, where
limited safety and security properties for a class of programs
need to be established with high assurance.

Type Checking Designs for strongly typed programming
languages always confront a need to balance between static
type-checking, which is done at compile time, and dynamic
type-checking, which is done at run time. Languages such
as Java and Modula-3 mainly provide static type-checking,
whereas languages such as SmallTalk and Scheme provide
dynamic type-checking. The choice is a trade-off between
flexibility and a combination of safety and efficiency. Static
checking provides greater efficiency because types are checked
once at compile time. Also, with static checking errors will
be detected earlier because the compiler will reject incor-
rectly typed programs. However, this checking must be done
conservatively since it is not generally decidable whether a
program will experience a run-time type error. Dynamic
type-checking therefore allows greater flexibility, since this
conservative restriction is avoided and type errors are dealt
with at run time if they happen to occur. Many languages
provide ways to balance this tradeoff by programming con-
structs. For instance Java permits a form of type-safe cast-
ing in which the compiler accepts the programmer’s indi-
cated type for a variable, but checks to see if the variable
actually has the needed type before executing an operation
on the cast variable’s value.

3.3 Verification

One major advantage to using verification for active network
security arises from the fact that the basic technology has
been considerably developed in other contexts. In partic-
ular, one may draw on experience from operating systems,
where there are well-developed techniques for using memory
protection to verify at a very low level that certain mem-
ory accesses are safe, and on programming languages, where
there is considerable progress on the use of type systems pro-
vide safety guarantees. The second of these is especially well
illustrated in the design philosophy of Java [10], which runs
on a virtual machine [14] employing a dynamic ‘verifier’ to
enforce host security policies for the execution of the com-
piled bytecode of web applets. This technology is supported
by advances in run-time systems (especially garbage collec-
tion) and the specification of programming languages (pro-
viding precise machine-independent semantic descriptions).
However, there are two primary challenges to the application
of these technologies to active networks:

1. There is a limit to the value of verification when using
‘traditional’ approaches.

2. Experience is needed in integrating verification with
authorization.

Let us consider each of these problems in turn.

Types, as they appear in widely-used programming lan-
guages, and memory protection, as it exists in modern oper-
ating systems, are somewhat limited assurance mechanisms.
While it may be important that a program does not add
‘one’ to ‘true’ or write in a particular part of memory, the
specification of the problem that the program was meant
to solve undoubtedly says much more than the fact that
the program should not do this kind of addition or write in
that part of memory. In general, programs need to satisfy a
range of invariants that cannot be expressed simply. There
is a need to develop techniques that can move us beyond
where we are now, particularly in the areas of safety and
quality of service.

An example of the kind of ideas that will be needed can
be found in the Proof Carrying Code (PCC) work of Necula
and Lee [16, 15]. PCC is based on the observation that it
is often easier to check an answer than to produce it. For
a mobile program, the programmer knows the key reasons
it is correct (or at least safe), but not necessarily the host
that receives the program. Hence it is reasonable to shift the
burden of proof to the supplier of the program. The mobile
program is paired with a proof of its safety and delivered to
a host. It is easy for a computer to check a formal proof,
even when the proof may have been very difficult to create,
so the host checks the proof and runs the program. This
allows program verification to deal with safety assurances in
place of types or memory protection.

The second problem relates to the integration of verifica-
tion techniques and authorization techniques. We require a
deeper understanding of how assurances should be balanced
between trust of others through cryptographic checks versus
trust that is established by type checking or similar means.
For instance, PCC can verify that a safety property is not
violated, but it generally cannot verify that a piece of data
has been correctly reported. For this, one probably needs
some kind of cryptographic signature from a trusted source.
Work along these lines will involve the development of var-
ious forms of ‘policy languages’ in which a complex set of
checks involving signatures and type verifications is carried

out. An obvious example is one where the interface made
available to a mobile program is dependent on an identity or
role associated with a signature on the program; type cor-
rectness with respect to the signature will be checked after
it is known that the requester has a right to the operations
in the program. Another line of inquiry involves languages
for access control, such as the PolicyMaker system [6], which
provides a special-purpose language for expressing policies
in terms of signatures of principals and delegation of trust.

3.4 When to Check Types

Because types are a well understood and extremely effective
form of mechanical verification, they play an important role
in SwitchWare’s safety and security model. In particular,
any code that is downloaded into SwitchWare routers should
be strongly typed, since this provides some basic guarantees
that the router’s integrity will not be compromised by the
code. A question thus arises about when and where type-
checking should be done. For ordinary ‘immobile’ code, the
user often trusts (perhaps unwisely) the provider of the code,
and so static compile-time type checking can be used before
the program is shipped to the user. However, mobile and
downloadable code like that used by active networks cannot
in general be known to be trustworthy. Thus if routers are
to enjoy the benefit of strong typing, they must typecheck
programs themselves. Whether to do this checking dynam-
ically or statically is different for active packets and active
extensions, so we defer that discussion until later.

One other type-checking question arises. Because the
code for both active packets and active extensions will be
executed remotely from the programmer, making debugging
challenging, it is important to make as much effort as possi-
ble to eliminate errors before the code leaves the program-
mer’s control. In particular, even if routers dynamically
typecheck the code, statically checking it before it enters
the network will give the programmer a guarantee that the
routers’ checks will not fail. Hence, for both active packets
and active extensions, we expect the programming languages
we use to be strongly typed and statically checkable. This
tension between giving static guarantees to the programmer
while still requiring the routers to verify them is a general
feature of our approach. This reflects our desire to improve
usability by helping the programmer find errors, but improv-
ing safety and security by not trusting that the programmer
was successful.

4 Active Packets

Perhaps the most radical vision of active networks is the
one in which active packets (called ‘capsules’ in [17]) entirely
replace traditional packets. Although we do not claim that
this radical vision will become the dominant use of active
networks, we believe it is worth exploring the idea, so that
we can discover its limits. It certainly offers the ultimate in
customizability and flexibility.

In SwitchWare, active packets carry programs consisting
of both code and data and replace both the header and pay-
load of conventional packets. Basic data transport can be
implemented with code that takes the destination address
part of its data, looks up the next hop in a routing table,
and then forwards the entire packet to the next hop. At the
destination, the code delivers the payload part of the data.
Of course, for pragmatic reasons, our implementations ac-
tually do use some traditional headers and payloads. For

example, to tunnel through the IP Internet between active
routers, we encapsulate an active packet in a standard UDP
packet, and transport over an Ethernet naturally requires
the use of standard headers and trailers.

4.1 PLAN

We had a variety of design goals for an active packet pro-
gramming language. The most important was that the lan-
guage be lightweight enough that it could serve as a packet
header replacement, and sufficiently well defined that we
could leverage existing results in type-theory, programming
language semantics, and formal methods to help us solve
difficult safety and security problems. We required spe-
cial remote execution facilities to capture the idea that pro-
grams transport themselves around the network by execut-
ing themselves. We required bounded resource usage, to
help control denial of service attacks. For lightweight exe-
cution, we needed to provide limited enough functionality
that we did not require authentication, yet we also needed
to perform authorized actions when required.

Because we did not believe any existing language met or
could be easily modified to meet our design goals, we have
designed and implemented a new programming language,
PLAN (Programming Language for Active Networks). The
discussion here offers only a taste of PLAN—for more de-
tails see the PLAN overview paper [12], and our web site
(http://www.cis.upenn.edu/~switchware/PLAN.), which in-
cludes a downloadable implementation of PLAN in Java and
Caml, a language manual and user’s guide, and a page where
users can enter PLAN programs and execute them on our
infrastructure.

fun ping (src:host, dst:host) : unit =
if (not(thisHostIs(dst))) then
OnRemote (l|pingl(src, dst),
dst, getRB(), defaultRoute)
else
OnRemote (lackl| (),
src, getRB(), defaultRoute)

fun ack() : unit = print("Success")

Figure 3: ping in PLAN

Before discussing how PLAN meets its design goals, let
us consider a simple example, the PLAN implementation of
ping, as shown in Figure 3. A PLAN program consists of
code, plus an entry point into that code (this provides a bit
more flexibility than having a distinguished first function,
such as ‘main’), plus any data that make up the arguments to
that initial function. For example, when ping is first injected
into the network, the program consists of the code above, an
indication that the ‘ping’ function should be executed, and
arguments of its source and destination. When the program
is evaluated, it tests to see if it has arrived at the destination.
If it has not, it forwards itself on to the destination using the
OnRemote primitive. If it has arrived, it remotely evaluates
the ack function directly on the source, bypassing evaluation
on intermediate routers, and using defaultRoute to guide
its path.

One final point about ping remains: the getRB() calls.
Each PLAN packet has a resource bound, much like IP’s
Time-To-Live (TTL) field, which serves to bound the total
number of hops a packet and any packets it creates can take.

Each hop a packet takes decrements its resource bound,
and any time a PLAN program creates new packets using
OnRemote, it must specify how much of its remaining bound
will be donated to the child packets. The getRB() call re-
turns the total remaining bound, and thus, in the case of
ping, each remote evaluation carries with it all of the re-
maining bound.

Now consider how PLAN meets its design goals. PLAN
is closely modeled on the simply typed lambda calculus with
extensions to support remote evaluation. This gives it very
well understood semantic and type-theoretic foundations [11],
making it amenable to formal methods. PLAN only sup-
ports very simple data and control structures and thus it is
easy to compile or interpret. In addition, PLAN programs
can not leave behind or change state on a router and are
limited in other ways that allow it to be executed without
authentication. PLAN is strongly typed so that type errors
cannot threaten the integrity of the router. It is statically
type checkable for programmer convenience. However, since
we expect PLAN programs to often only execute a small part
of their code on any given router, our current implementa-
tion does dynamic type-checking at the routers. Finally, the
resource bound, along with limits on CPU and memory us-
age on the routers, helps combat denial of service attacks.

4.2 PLANet

Recently, we have used the PLAN system to build an ac-
tive internetwork, which we call PLANet. Based on the
current Internet, PLANet currently provides a number of
helpful application functions, such as reliable and unreli-
able datagram delivery mechanisms, as well standard net-
work protocols, such as RIP-style routing, address resolution
based on ARP, and table-based (/etc/hosts-style) name
resolution. In PLANet, all transmitted packets are PLAN
programs. Distributed protocols used to maintain the net-
work, such as the routing and address resolution protocols,
are implemented as a combination of PLAN programs and
node-resident services. In particular, protocol state, tim-
ing threads, etc. are implemented on each node as services;
these services communicate with their counterparts on other
nodes via PLAN programs. This has the nice property that
a protocol designer does not need to define new packet for-
mats: all exchanged packets are PLAN programs, and so the
packet formats are simply the standard wire representation
of those programs.

The PLANet implementation runs in user-space on Linux
machines and uses Ethernet as its main underlying link layer,
as well as UDP as a pseudo-link layer. The implementation
is written in Caml, and uses the module loader from the
Active Bridge (which will be described shortly) to install
new services. Despite being in user-space and bytecode-
interpreted, our PLANet routers achieve about 50 Mbps
for basic data delivery over 100 Mbps Ethernets. We have
also run some experiments to determine the potential use-
fulness of active networks in improving performance, using
both router extensibility and packet-level programmability.
More details are available in [13].

4.3 Caml

Caml provides several of the design goals outlined for PLAN.
It lacks the resource bounding (and hence avoidance of au-
thentication) and the special remote execution facilities. How-
ever, there are many applications (such as those that require
storage beyond the execution of the packet or those which

modify shared state) which will require authentication in any
language. In these instances, there is a simplicity gained by
programming the active packets and the active extensions in
a single language. In the case of remote execution facilities,
Caml has provided the interface necessary to dynamically
load code which has allowed us to build a general remote
execution facility.

The unification of languages does have its downside. Caml
was designed as a general-purpose language and we are putting
it to a specific task. Our performance has suffered from the
way the Caml threads package and the linker/loader oper-
ate in our domain. We continue to investigate ways in which
these costs may be reduced without restricting the language.

5 Active Extensions

In SwitchWare, active packets are deliberately limited in
power, making it impossible for them to be used to imple-
ment arbitrary protocols or functionality. The second layer
of our architecture, the active extension layer, when com-
bined with active packets, provides us with this power. The
key insight is that this additional layer allows us to make a
different set of design tradeoffs, which complement and en-
rich those of the other layers. For example, active packets
can call extensions to provide authenticated services, making
it possible to avoid default authentication for active packets.
Conversely, since extensions are not mobile, they can use ac-
tive packets for remote communication. The chief difference
between active packets and extensions is that although ex-
tensions may be (but are not required to be) dynamically
loaded across the network as active extensions, they exe-
cute entirely on a particular node. Thus extensions are base
functionality or are dynamic additions rather than ‘mobile
code’.

In general, we expect that active extensions will be loaded
onto routers, and will then provide services to many active
packets. Thus, it is reasonable to subject active extensions
to heavier-weight security checks than active packets. Thus,
we expect that active extensions will be statically type-
checked upon arrival on a router, and it may be that some
will also carry credentials with them, such as cryptographic
signatures and proofs of correctness. Checking these creden-
tials may be expensive, but will need to be done only once.
Because of this heavier-weight checking, active extensions
can be allowed access to facilities in the router that active
packets cannot. In particular, creating or changing state on
a router, or direct access to the routers network interfaces,
must be done by extensions. Interestingly, this implies that
the PLAN interpreter itself is an extension, albeit probably
not one that is dynamically loaded.

Before moving on to a case study that shows some of
the power of switchlets, it is important to clarify a bit of
terminology. In PLAN, we refer to the ‘service’ level as the
part of the system that PLAN can call to perform actions
denied to PLAN itself. Extensions are used to implement
PLAN services. However, active extensions are more gen-
eral than PLAN service implementations, and, in fact, they
are not required to provide PLAN-accessible interfaces (al-
though they must do so if PLAN active packets are to invoke
them directly).

5.1 The Active Bridge: A Case Study

The Active Bridge [3] is a prototype constructed to study
active networking at the active extension layer. It is used to

bridge 100 Mbps Ethernet LANSs, with the additional ‘active’
feature of automated recovery from failure of an implemen-
tation of a spanning-tree algorithm, achieved with the use
of active extensions called switchlets. The current system is
written in Caml, and runs on the Linux and OpenBSD oper-
ating systems, and we have deployed it on Intel architecture
machines. A high-level architecture of the system is shown
in Figure 4.

I
1
~ [SHGHE S
: !
: [Frame!
=>{(_ModuleLoader) © |

ST s m--—— - == Operating
: V System
E‘ém%&‘ . Protection

, Linux 1% Boundary
Network Network
Interface Interface

Figure 4: The Active Bridge Architecture

The Active Bridge is based on a module loader (the Ac-
tive Loader) and a set of core system services. The core ser-
vices include access to external services such as raw Ethernet
frame I/O via Linux sockets. A switchlet is loaded into the
system to provide the functionality of a buffered repeater,
and therefore provide simple LAN interconnection. Since
the aggregate performance (throughput) of such a system is
limited by the line rate of the LANSs it interconnects, a self-
learning functionality is added with an additional switch-
let; this allows frames which need not be forwarded to be
dropped, preserving bandwidth on other LANs and obtain-
ing any gain possible from network locality.

Since loops can exist in bridged networks, resulting in
the endless circulation of Ethernet frames, a spanning tree
algorithm (STA) is used to define topological restrictions
on the frame forwarding at each node. This spanning tree
algorithm is loaded, as before, as a switchlet. In fact, two
are loaded: one for the DEC STA and one for the IEEE
802.1D standard. One of them is, by design, in error. A final
switchlet performs sanity checks on the generated spanning
tree; when a frame of either DEC or IEEE type causes a
transition in the STA, the result of the tree construction is
checked; if an error has occurred the STA control switchlet
restores the previous STA to the execution path.

The previous discussion illustrates an important differ-
ence between the SwitchWare architecture and other pro-
posals such as MIT’s capsules. The capsules model is fo-
cused on per-packet execution; the follow-on work in the
Active Network Transport System (ANTS) loads functions
as necessary to allow packets to execute. The BBN Smart
Packets model [5] provides a very dense CISC-like language
that is biased towards management tasks, which assumes
that nodes are essentially stateless. The SwitchWare ar-
chitecture, by contrast, layers packet execution and service
loading. PLAN provides the user-access model, while the

Active Bridge core services and module loader provide the
basis for controls such as levels of privilege, priority, resource
scheduling, and so on.

With the Active Bridge, we have done a set of experi-
ments to understand both the costs of loadable modules and
the cost of our demultiplexing architecture. To test the first
case, we have a version of the Active Loader which supports
only the Bridge. In this case, we see a throughput as mea-
sured by ttcp of 61 Mbps. Our second experiment used the
general Active Loader and gave a throughput of 54 Mbps.
Of the per-packet processing time, approximately 70 us is
calling recvfrom(), 70 us is processing in the Bridge, and
30-40 ps is calling sendto().

5.2 Namespace Security

For SwitchWare, an essential feature of the Active Bridge
is its model of module loading, which provides a flexible
form of namespace security. The idea depends on the fact
that Caml, like many other languages, provides access to
functionality through explicitly specified interfaces. The re-
strictions imposed by strong typing make it impossible to
access functions, data, types, and so on except through the
names provided by these interfaces. Analogous ideas arise
in object-oriented programming through restrictions based
on methods, which also appear as names. However, Caml
and other ML variants go one step beyond standard inter-
face protection schemes by supporting a form of restriction
known as module interface thinning. The idea is that a
module interface may provide access to functionality that
is needed by some parts of the system, but to which some
other modules, especially dynamically-loaded ones, should
not have direct access. For example, the built-in error log-
ger in the Active Bridge needs to be able to write to disk,
but dynamically-loaded modules should only be allowed to
do so indirectly by using the error logger. The dynamic
loader provides this capability by allowing a module to be
‘thinned’, which means that names are removed from its in-
terface, before a new module is dynamically linked. If the
new module tries to access a name that is not present (ei-
ther because it was never present, or because it was thinned)
then the dynamic loading process fails, and the module is
rejected.

One interesting area for further work is to combine this
language-oriented namespace protection with cryptographic
protection. For example, some interfaces could be provided
only to active extensions that could prove cryptographically
that they came from the router vendor and were being in-
stalled by the router owner. A general theory based on ‘who
you are determines what you see’ could be derived from an
effective combination of interface thinning for modules and
policy languages for authorization.

6 Secure Active Routers

As can be seen from the previous sections, the SwitchWare
architecture depends, at least in part, on language systems
to guarantee the safety and security of the active network, as
active packets arrive, act, and depart from a node. While it
is seductive to trust other portions of the architecture to per-
form as we expect, we believe that it is crucial to explore and
analyze the requirements for building a secure active router
infrastructure as part of the SwitchWare architecture. This
infrastructure is the solid base upon which active packets

Active Active
Packet Packef
Service
Request
+ Remote
. Authentication
Active Router
Module L oader
Operating System Kernel
(Protection & Device Mgmt.)
AEGIS Secure Bootstrap of Remote
Hardware, Firmware and OS Recovery

Figure 5: SANE’s Relation to SwitchWare

and active extensions build. The goals for our secure active
router infrastructure include the following:

e To support the language-oriented model used at higher
layers of the SwitchWare architecture;

e To incur minimal costs while the system is an opera-
tional state, by migrating costs to an infrequently per-
formed pre-operational phase; and

e To maximize system security under a minimal set of
assumptions about trusted components.

The language-based schemes offer the benefit of provable
behavior, and hence an opportunity for building provably
secure systems. For the proofs to succeed, however, their
assumptions about the ‘state of the world’ must be true.
The secure active router infrastructure guarantees that these
assumptions (e.g. that a certain version of system microcode
is installed) are true. Thus the security of the SwitchWare
architecture as a whole is grounded in this layer.

6.1 SANE

To embody our secure active router infrastructure, we have
designed the Secure Active Network Environment (SANE) [1].
SANE provides an architecture with: a demonstrably min-
imal set of trust assumptions, the ability to securely boot-
strap the remainder of the system when the trust assump-
tions are met [4], and authentication and naming services
for code that is loaded. In the context of the SwitchWare
architecture, the role of SANE is to ensure that the presump-
tions of the other system elements, such as the active packet
or extension layers, are true. An illustration of the SANE
in the context of the overall SwitchWare network element
architecture is shown in Figure 5.

The SANE elements are combined into a system using
the following design principles:

e Dynamic checks, performed while the system is oper-
ating, should be as fast as possible, as they are done
many times;

e Static checks, performed before the system enters the
operating state, can be more expensive, as they are
done only once;

e System performance can be improved by tradeoffs that
decrease the cost of the dynamic checks at the expense
of more costly static checks, or ideally by using static

checks to eliminate the need for any dynamic checking
at all (analogous to once at compile time versus many
at run-time).

We have done an initial implementation of SANE and
made some preliminary measurements to help us understand
the inherent costs of our active environment and the over-
head imposed by its security services. We wrote an active
version of ping, which achieves a round trip time of 5 ms
when unauthenticated. The authenticated version’s round
trip time is 8 ms. If we factor out the 990 us taken by the
kernel and the transmission, about 70% of the time in the
unauthenticated case is in linking the active ping code to
our environment, with 40% spent in updating the symbol
table specifically. In additions to these costs, the authenti-
cated version spends 3 ms for the 4 cryptographic keyed-hash
calculations (one Message Authentication Code calculations
and verification in either direction).

For more details on SANE, see [1].

7 Related and Future Work

This volume is an excellant overview of related work on ac-
tive networks. A comprehensive survey of active network
research as of about one year ago [17] delineates some of
the key differences in approach and research directions of
the early efforts. The papers on PLAN [12], the Active
Bridge [3], and SANE [1] all contain extensive comparisons
with related efforts.

A great deal of exciting work lies in front of us. While ac-
tive networks might be viewed as revolutionary, evolutionary
(or even devolutionary!), we view our work in the Switch-
Ware effort to be one of evolving our approach under experi-
mental scrutiny. While the elements of the system are piece-
wise implemented, the software interfaces provided by each
layer of the system will change as experiments demonstrate
strengths and weaknesses of various approaches. Since many
of our design assumptions about function placement depend
on the nature of packet flows, and therefore on the nature of
active applications, we are developing applications that can
be used to test and evaluate our infrastructure as well as
other proposals. Among the more interesting applications
are flexible architectures for multicast, an example of which
we described in the introduction, and network infrastruc-
ture support for booster protocols [9], a design methodology
that adds protocol functions as-needed, and is thus ideal for
deployment on an active network infrastructure.

A second major thrust is interoperability with other ac-
tive networks research efforts. While several of the earli-
est active networks efforts selected functions on the basis
of a matrix of required contributions to make the effort
as a whole complete, there has been considerable blurring
of these roles and contributions as the work has evolved.
One effort we have pursued with other members of the ac-
tive network community is the design of an ‘Active Net-
work Encapsulation Protocol’ (ANEP); this has grown into
perhaps the first active network RFC [2]. ANEP has been
adopted and used in many of the active networks projects,
and has allowed packet forwarding across the IP Internet.
To achieve greater interoperability, however, we must pro-
vide more than a standard packet format; this, after all, is
the essence of the Internet idea. What we must provide is a
means of forwarding flows and functions among and across
a variety of active network node types, so that user appli-
cations can be written that are oblivious to many partic-
ulars of the programmable network infrastructure they are

traversing or using. Effective integration for SwitchWare
might mean, for instance, that the ANTS transfer mecha-
nism [18] could provide a good distribution mechanism for
SwitchWare extensions, or the micro-protocols of the En-
semble Project [8] could provide a rich set of SwitchWare
services that can be configured by PLAN packets.

8 Conclusions

The SwitchWare active network architecture integrates the
necessary components of any active network element. The
integration takes the form of a layered architecture, with
functions partitioned between layers based on the flexibility
and security tradeoffs required at each layer. Higher levels
of the system provide more restricted functionality, with one
consequence being that they provoke commensurately less
security risk. A second important consequence of this lay-
ering is that the higher levels can operate with ‘lightweight’
checks on their behavior. Since we believe that the common
case will be handled by our highest layers, such as PLAN,
SwitchWare provides an attractive point in the space of se-
curity, flexibility and performance tradeoffs.

We believe that such an integrated architecture repre-
sents the key to any verification or validation of an ac-
tive network element. The language-based approach we de-
scribed has thematically unified each of the constituents of
SwitchWare: PLAN, the dynamic module loading infras-
tructure, and SANE. Since each of the languages or language
systems involved represents an abstraction that can be used
as part of a system verification process, we believe that the
approach offers the a good path to a verified network com-
posed of active network elements.

Much of the software described here is available over the
Web. The SwitchWare homepage is

http://www.cis.upenn.edu/ switchware.
It provides a starting point for locating the software and
further documentation, including many of the documents
we have referenced and links to most related active network
projects.

Acknowledgments

Hicks, Kakkar, and Moore implemented PLAN and PLANet;
they, together with Gunter and Nettles, are responsible for
their design as well. Alexander and Marianne Shaw designed
and implemented the Active Bridge. Arbaugh designed and
implemented AEGIS, the secure bootstrap method used in
SANE. Arbaugh and Keromytis designed AEGIS recovery.
Alexander, Arbaugh and Keromytis architected SANE. We
thank David Farber of Penn, and Dave Sincoskie, Bill Mar-
cus and Mark Segal of Bellcore for many valuable technical
discussions. This work was supported by DARPA under
Contract #N66001-96-C-852, with additional support from
the Intel Corporation.

References

[1] D.S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M.
Smith. A Secure Active Network Environment Architecture,
1998. This volume.

[2] D. S. Alexander, B. Braden, C. A. Gunter, A. W. Jack-
son, A. D. Keromytis, G. J. Minden, and D. Wether-
all. ANEP: Active Network Encapsulation Protocol.
www.cis.upenn.edu/ switchware/ANEP.

(3]

(4]

(10]

(11]

(12]

(13]

(17]

(18]

D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and
Jonathan M. Smith. Active Bridging. In Proceedings, 1997
SIGCOMM Conference. ACM, 1997.

William A. Arbaugh, David J. Farber, and Jonathan M.
Smith. A Secure and Reliable Bootstrap Architecture. In
IEEE Security and Privacy Conference, pages 65-71, May
1997.

Smart packets. http://www.net-tech.bbn.com/ smtpkts/
smtpkts-index.html.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized
Trust Management. In Proceedings of the 17th Symposium
on Security and Privacy, pages 164-173. IEEE Computer
Society Press, 1996.

Caml home page. http://pauillac.inria.fr/ caml/
index- eng.html.

Ensemble home page. http://simon.cs.cornell.edu/Info
/Projects/Ensemble.

D. C. Feldmeier, A. J. McAuley, J. M. Smith, D. S. Bakin,
W. S. Marcus, and T. M. Raleigh. Protocol Boosters. IEEFE
Journal on Selected Areas in Communications, Special Issue
on Protocol Architectures for the 21st Century, 1998.

James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. Addison Wesley, 1996.

Carl A. Gunter. Semantics of Programming Languages:
Structures and Techniques. Foundations of Computing. The
MIT Press, 1992.

Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A.
Gunter, and Scott Nettles. PLAN: A Programming Lan-
guage for Active Networks. http://www.cis.upenn.edu/
“switchware/ papers/ plan.ps, 1998.

Michael Hicks, Jonathan T. Moore, D. Scott Alexander,
Carl A. Gunter, and Scott Nettles. PLANet: An Active Net-
work Testbed. http://www.cis.upenn.edu/ switchware/
papers/planet.ps, 1998.

Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison Wesley, 1996.

George C. Necula. Proof-Carrying Code. In Proceedings of
the 2/th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’97). ACM
Press, 1997.

George C. Necula and Peter Lee. Safe Kernel Extensions
Without Run-Time Checking. In Second Symposium on
Operating System Design and Implementation (OSDI ’96),
1996.

David L. Tennenhouse, Jonathan M. Smith, W. David Sin-
coskie, David J. Wetherall, and Gary J. Minden. A Survey of
Active Network Research. IEEE Communications Magazine,
35(1):80-86, January 1997.

David Wetherall, Ulana Legedza, and John Guttag. Intro-
ducing new internet services: Why and how. This volume.

