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Abstract

Proposals for programmable network infrastructures, such as Ac-
tive Networks and Open Signaling, provide programmers with ac-
cess to network resources and data structures. The motivation for
providing these interfaces is accelerated introduction of new ser-
vices, but exposure of the interfaces introduces many new secu-
rity risks. The risks can be reduced or eliminated via appropriate
restrictions on the exported interfaces, as we demonstrate in our
Secure Active Network Environment (SANE). SANE restricts the
actions that loaded modules (including “capsules”) can perform by
restricting the resources that can be named; this model is extended
to remote invocation by means of cryptographic certificates.

We have extended SANE to support restricted control of Qual-
ity of Service in a programmable network element. The Piglet
lightweight device kernel provides a “virtual clock”-like schedul-
ing discipline for network traffic, and exports several tuning knobs
with which the clock can be adjusted. The ALIEN active loader
provides safe access to these knobs to modules which operate on
the network element. Thus, the SQoSH architecture is able to pro-
vide safe, secure access to network resources, while allowing these
resources to be managed by end users needing customized network-
ing services. A desirable consequence of SQoSH’s integration of
access control and resource control is that a large class of denial of
service attacks, unaddressed solely with access control and crypto-
graphic protocols, can now be prevented.

We provide some performance measurements to illustrate the
cost of security, and demonstrate that these costs are minor in the
context of managing a multimedia stream.

1 Introduction

In this section, we discuss the notion of security, provide a con-
structive definition useful for asserting general security properties,
and discuss the mapping of this definition onto computer networks,
and outline the challenges of securing programmable network in-
frastructures, which the remainder of the paper addresses.

�This work was supported by DARPA under Contract #N66001-96-C-852, with
additional support from the Intel Corporation.

1.1 Security

It is attractive to think of security as a clearcut property of a sys-
tem, as in the definition of “odd” and “even” numbers. Unfortu-
nately, security is not so easily abstracted, as it is fundamentally
a context-dependent property of an engineered system. For exam-
ple, some applications can tolerate near-infinite delays while others
have strict real-time requirements. Thus a system design which
guarantees reliable and eventual action may be considered secure
in the first case but inadequate (e.g.,against “denial-of-service” at-
tacks) in the latter.

In general, a secure system is one which meets or exceeds an
application-specified set of security policyrequirements. So, for
example, in message delivery, the high-level requirements may be
that the correct information gets to the right person, in the right
place, at the right time. The details of “right” are determined by the
application’s needs; for example timely message delivery is crucial
for battlefield or stock-trading tasks.

1.2 Active and Programmable Networks

Active Networks is a proposal for packet-switched networks which
are programmable, perhaps on a per-user or even a per-packet basis.
The more aggressive proposals [TSS+97] share the property that
“programs” are loaded into network elements on-the-fly, providing
rapid dynamic reconfiguration of the network infrastructure. Open
signaling systems, such as DCAN [vdML97] or XBind [LBL95],
restrict the programmability to thecontrol plane.

Operational active networking infrastructures have been pro-
duced by several initial efforts, such as Active Bridging [ASNS97],
ANTS [WGT98] and PLAN [HKM+98]. These efforts are points
in a design space which has many dimensions, the most important
of which are flexibility, security, usability and performance. Pro-
grammable network elements provide flexibility and usability via
the choice of programming language and execution environment.
For example, the portability and distributed programming support
of the Java programming language have made it a popular basis for
active networking prototypes[HPB+97].

1.3 Security for Active Networks

Security for active networking is a major challenge, as well as a
widespread and legitimate cause for concern. One view of Informa-
tion security can be characterized as getting the right information
to the right person at the right place and time. This is the positive
statement of a security policy; other security policies might assert
what cannotoccur. The flexibility of an active networking infras-
tructure, since it might be exploited for mischief, has the effect of



hugely expanding the threat model for attacks on the network in-
frastructure. For example, “denial-of-service” attacks can now be
made against a variety of resources, such as CPU cycles, output
link bandwidth and storage, since these are exposed either wholly
or in part to loaded programs.

Typical reasons for deferring consideration of security, aside
from simple difficulty, are the negative consequences making a
system more secure has for each of flexibility, usability and per-
formance. Since the programming language based approaches to
active networking offer advantages in terms of flexibility and us-
ability, and performance optimizations for these environments are
ongoing, providing security to such an environment would offer an
attractive design point among the various tradeoffs.

1.4 Threat Model for QoS Provision in an Active Network

An active network infrastructure is very different from the current
Internet. In the latter, the only resource consumed by a packet at a
router is the memory needed to temporarily store it and the CPU cy-
cles necessary to find the correct route. Even if IP [Pos81] option
processing is needed, the CPU overhead is still quite small com-
pared to the cost of executing an active packet. In such an environ-
ment, strict resource control in the intermediate routers was con-
sidered non-critical. Thus, security policies [Atk95c] are enforced
end-to-end. While this approach has worked well in the past, there
are several problems. First, denial of service attacks are relatively
easy to mount, due to this simple resource model. Attacks to the
infrastructure itself are possible, and result in major network con-
nectivity loss. Finally, it is very hard to provide enforceable quality
of service (QoS) guarantees [BZB+97].

In the context of QoS, a secure system is one which is secure
against two types of threats, which we will denoteadmissionfail-
ures andpolicing failures. Providing QoS is basically about con-
trolled unfairness. Control of the unfairness is accomplished via
QoS specifications, which are ultimately realized as queuing disci-
plines. The queuing disciplines use packet discrimination to apply
the policy resulting from a QoS specification. A concrete exam-
ple of an applied queuing discipline (e.g.,Weighted Fair Queuing
or Virtual Clock) is allocating bandwidth to flows in an IP Inter-
net, or allocating a more complex resource profile (memory, CPU,
input/output port bandwidths) in an active network.

When an “Active Packet” containing code to execute arrives,
the system typically must:

� Identify the sending network element

� Identify the sending user

� Grant access to appropriate resources based on these identi-
fications

� Allow execution based on the authorizations and security
policy

In networking terminology, the first three steps comprise a form
of admission control, while the final step is a form of policing. A
second view is that of static versus dynamic checking. Security
violations occur when a policy is violated,e.g.,reading a private
packet, or exceeding some specified resource usage.

An admissionviolation is one where an unauthorized reallo-
cation of bandwidth/resources occurs. For example, an RSVP-
capable router[BZB+97] might be asked to reallocate bandwidth
away from one flow to one which has not paid/ has no right to the
bandwidth. The policing mechanism is working correctly; it is ap-
plying a QoS specification admitted by the network infrastructure.
Unfortunately, the specification was unauthorized. This is as much
a threat in RSVP or other resource reservation systems as it is in an

active network; the greater concern in the active network is a direct
consequence of the more complex resource model.

A policing violation is one where the specified QoS is correct
but the system fails to deliver what is requested. For example, a net-
work element incorporating a computer might be subject to denial
of service attacks based on “receive livelock”. A second example is
aggressive use of bandwidth on a shared output port, which denies
bandwidth to a process with QoS requirements. This is a threat to
basic IP routers with FIFO queuing disciplines.

The admission/policing division may also be viewed as a con-
trol plane versus transport plane partitioning.

1.5 SQoSH Applications

SQoSH provides a powerful new tool for managing resources in a
network. It controls access to managed resources, and integrates
this control with the resource management mechanisms provided
by the Piglet operating system. While the SANE/Piglet combi-
nation represents the first instance of the SQoSH architecture, we
believe that compelling applications will motivate deployment of
SQoSH and SQoSH-inspired architectures. Examples include:

1. Economic algorithms for robust adaptive control. SQoSH is
well adapted to this environment for two reasons. First, it is
critical that resources sold match the resources delivered if
the marketplace is to work. Second, the recovery strategies
for flows that are outbid in an auction may be quite com-
plex (e.g.,aggregating several flows each of which delivers
a portion of the request, searching for a different route, de-
laying until the resources required become available at the
desired prices, or combinations of different strategies). We
expect that capturing these complex decisions can be most
easily done by active packets (called “switchlets”) in a pro-
grammable network infrastructure.

2. Trustworthy remote administration and management. A cer-
tificate hierarchy produced by SANE can be used in conjunc-
tion with PolicyMaker to configure and operate on large dis-
tributed pools of network elements, whether Active or not.

3. Military applications, where hierarchical command responsi-
bility maps to multiple classes of service and security. SQoSH
ensures that any control requests are authenticated, ensures
that autonomous network elements bootstrap into a secure
state, and finally that once admission requests are validated
that service will be delivered. For example, a command chan-
nel of 2% of bandwidth could be preserved at all times. For
commercial applications this might be considered wasteful,
while military uses might dictate provision of such a no-
delay override facility.

1.6 Paper Overview

The rest of the paper begins with descriptions of the Penn/Bellcore
SwitchWare[SFG+96] project and the Secure Active Network En-
vironment (SANE [AAKS98]). The SANE infrastructure provides
security guarantees to the network elements and overlaid services.
Additional security services can be built on top of SANE, using the
existing primitives. These primitives include secure bootstrapping
using the AEGIS architecture [AKFS98]; key exchange; authenti-
cation and identification of network entities; packet confidentiality;
integrity and resource and access control; and namespace protec-
tion.

Section 2 describes the SQoSH architecture and principles. Sec-
tion 5 presents the current status of the implementation with some
experiments and performance results. Section 6 describes the Piglet
operating system design, and Section 7 demonstrates the system’s



ability to resist denial of service attacks using network bandwidth
as an example. Section 8 briefly reviews related projects, and delin-
eates where the SQoSH advances lie. Finally, Section 9 discusses
future extensions and directions.

2 The SQoSH Architecture

As we discussed in the Introduction, the goal of Secure Quality of
Service Handling is to protect against two types of threats to QoS
provision,admissionandpolicing. Balancing performance and se-
curity considerations suggests that we make common operations
(e.g.,those used to classify packets) cheap, and make less common
operations more expensive if this contributes to reducing the cost
of common operations. An example of this approach is to provide
heavyweight authentication mechanisms at the level of aggregates
of packets such as a channel or flow, so that these checks not be
done on small groups of packets (e.g.,individual packets).

This suggests an architecture where authentication and other re-
source management decisions are “front-loaded” to reduce the cost
of subsequent decisions. We view this scheme as one where ex-
pensive static checks are traded for cheaper dynamic checks. Thus,
the SQoSH architecture echos similar design decisions made in re-
stricting programmability to the control plane [vdML97, LBL95]
and similar, although not equivalent decisons made in the over-
all SwitchWarearchitecture [AAH+98] and its components such
as SANE [AAKS98] (See Section 5, below).

This division of functions into admission/authentication and
policing/provision is the approach we have chosen for SQoSH. Fig-
ure 1 illustrates the SQoSH architecture at a high level. The SANE
system is the only means of access to resource management in-
terfaces provided by Piglet (see Section 6). Heavyweight crypto-
graphic operations required for granting access to Piglet resources
are performed by SANE as a front-end. Piglet is thus assured that
any resource requests have been authenticated, and thus need focus
on whether the resources can be allocated to the validated request.
Packets destined for SANE are demultiplexed by Piglet which pro-
vides basic packet delivery operations for SANE.

packet
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Figure 1:SQoSH Architecture

Since Piglet is intended as an asymmetric multiprocessor op-
erating system, multiple instances of Piglet can manage multiple
network line cards. A full-scale SQoSH system would consist of
a multiprocessor, with a Piglet instance on each device-managing
processor (a resizeable subset of all the processors in the system).
In this way, all device I/O can be managed by Piglet. Since a typical
model for scheduling resources is activity triggered by a device in-

terrupt, Piglet can manage interrupts, buffering, status polling, etc.
and protect the host operating system from device-initiated actions.

In subsequent sections of the paper, we describe SANE and
Piglet and provide experimental results which illustrate the perfor-
mance implications of our architectural choices.

3 Security and Safety in SwitchWare

While the SQoSH architecture is portable across many active net-
working environments, our experimental prototype is constructed
in the context of theSwitchWarearchitecture.SwitchWareis based
on the approach of using restricted semantics to contain the be-
havior of potentially mischievous programs. This has the benefit
that enforcing restrictions can be performed once at compile or link
time, resulting in a lower cost than an OS approach such as mem-
ory protection which requires repeated checks at runtime. These
semantic restrictions depend on the integrity of other system com-
ponents such as the operating system, shared libraries, etc. The
semantic restrictions are enforced with a strongly-typed language
which supports garbage collection and module thinning.

3.1 The Loader

The loader forms the basis of the dynamic security for our network
infrastructure. Once it has been securely started by the AEGIS
bootstrap (see section 4.1), the loader provides a minimal set of
services necessary to find the Core Switchlet and start it running.
It also provides policy and mechanism for making changes to the
Core Switchlet, if that is desirable.

The loader is responsible for providing the mechanism by which
modules are loaded. Currently, the mechanisms provided are load-
ing from disk or loading from the network. The Core Switchlet
governs the policy by which this mechanism may be used and may
provide interfaces to the mechanism.

3.2 The Core Switchlet

The Core Switchlet is the privileged portion of the system visible to
the user. Through the use of module thinning, it determines which
functions and values are visible to which users. The services that it
provides are broken into several modules.

The moduleSafestd provides the functions that one would
expect to find in any programming language including addition and
multiplication as well as more complex abstractions like lists, ar-
rays, and queues. Many functions including the I/O functions have
been thinned from this module to make it safe.

The next module isSafeunix . This module has been very
heavily thinned; it gives access to Unix error information, some
time related functions, and some types that are needed for the net-
working interface that we provide. Access to the rest of the Unix
functions has been thinned away.

In order to allow the user to supply error or status messages, we
also have aLog module.

Access to the network is provided by theUnixnet and the
Safeudp modules. The former provides access to raw Ether-
net frames while the latter provides access to the native OS (e.g.,
Linux) implementation of UDP [Pos80]. This allows switchlets to
access network interfaces for either sending or receiving frames or
packets. Access to the data packets will be available to any switch-
let, assuming said switchlet can prove that it has the authority to
access the data. For the work described in this paper, we used the
Safeudp interface.

Thread support in SwitchWare is provided by a set of three
modules:Safethread , Mutex , andCondition . These pro-
vide a threads package which helps in the structuring of the sys-
tem. Each switchlet runs in a thread and is capable of creating



additional threads. When a switchlet is first started, it is given an
identifier inside of an opaque type. (An opaque type is one which
has no conversion functions to or from any other type. Thus, the
identifier cannot be forged.) In order to use additional resources
including creating additional threads, the switchlet must provide its
identifier which allows the system to check the resources currently
consumed and allow or deny the request for additional usage.

Finally, we have a set of modules to support loading of switch-
lets. TheAegis module allows access to the AEGIS public keys.
TheAn marshal module gives interfaces to allow quick transfor-
mations between strings and the standard format in which we ac-
cess our active packets. TheFunc module allows files or strings to
be loaded and executed based on the system access policy. Finally,
Route is a very simplistic static routing scheme which allows us to
impose an arbitrary active network topology on top of our physical
network without the need to crawl under desks to move cables.

3.3 The Library

The library is a set of functions which provide useful routines which
do not require privilege to run. The proper set of functions for the
library is a continuing area of research. Some of the things that are
in the library for the experiments that we have performed include
utility functions for sending and receiving active packets.

4 Secure Active Network Environment { SANE

The following subsections present the components of SANE and
explain how they fit together. Figure 2 shows the various compo-
nents of SANE and their dependencies. SANE provides security
from the moment that power is applied to an active network node.
This is done by using a secure bootstrap process that provides in-
tegrity guarantees for nodes firmware and operating system compo-
nents. Once the operating system and active network environment,
e.g.Caml runtime have been verified, the static integrity guarantees
of the system have been assured and we transition to our dynamic
integrity mechanisms.
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Loadable Modules

Module Checking

Caml Runtime/Loader

Linux Process VM

O.S. (e.g., Linux)

Card ROMS, CMOS,...

Memory Protection
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Figure 2:SANE Architecture

4.1 AEGIS Architecture

AEGIS modifies the standard IBM PC process so that all executable
code, except for a very small section of trusted code, is verified

prior to execution by using a digital signature. This is accom-
plished through modifications and additions to the BIOS (Basic
Input/Output System). In essence, this trusted software serves as
the root of an authentication chain that extends to the evaluator and
potentially beyond to “active” packets. In the AEGIS boot process,
either the Active Network element is started, or a recovery process
is entered to repair any integrity failure detected. Once the repair is
completed, the system is restarted to ensure that the system boots.
This entire process occurs without user intervention. AEGIS can
also be used to maintain the hardware and software configuration
of a machine.

It should be noted that AEGIS does not verify the correctness
of a software component. Such a component could contain a flaw
or some trapdoor that can be exploited. The goal of AEGIS is to
prevent tampering of components that are considered trusted by the
system administrator. The nature of this trust is outside the scope
of AEGIS.

Other work on the subject of secure system bootstrapping in-
cludes [TY91, Yee94, Cla94, LAB92]. A more extensive review
of AEGIS and its differences with the above systems can be found
in [AFS97].

4.2 Cryptographic Primitives

SANE provides access to various cryptographic primitives. These
can be used by other applications as-is or as building blocks for
more complex protocols. The services initially provided are:

� public key signatures (DSA [NIS94])

� symmetric key encryption (DES [NBS77])

� (keyed) hashes (SHA1 [NIS95])

This set of primitives may be enriched in the future. All the al-
gorithms have been implemented in Caml but due to performance
degradation, we use a C version of SHA1. Access to this imple-
mentation of SHA1 occurs through a Caml interface, taking care
to avoid potential bypassing of the type system. Hardware crypto-
graphic support is being considered.

4.3 Public Key Infrastructure

In our architecture, every network entity (active switch or user)
owns at least one private / public key pair. These keys (and the
corresponding certificates) are used to authenticate these entities
and authorize their actions. Although SANE depends on a public
key infrastructure, it is not tied to a particular one. Certain features,
such as selective authorization delegation, user defined authoriza-
tions and certificate revocation through expiration are desirable, but
they can be simulated in any of they proposed public key infras-
tructures. In our environment, we intend to use a combination of
SPKI [EFRT97] and PolicyMaker [BFL96] or KeyNote [BFK98].
For more details on the certificate format, see Section 5.

4.4 Key Establishment Protocol (KEP)

The protocol we use throughout this paper and in our architecture
is based on the Station to Station protocol [DvOW92]. The basis
of the protocol is the Diffie-Hellman exchange [DH76] for key es-
tablishment, and public key signatures for authentication (to avoid
man-in-the-middle attacks). In our architecture we use DSA (a
NIST-approved digital signature algorithm), but other (e.g.,RSA
[Lab93] etc.) algorithms can be used.

Briefly, this protocol allows each participant to establish the
identity of the other, discover the operations that the peer is autho-
rized to perform, and allows the two parties to establish a shared



secret to be used for a variety of purposes including the authen-
tication and encryption of future traffic. This is accomplished by
having each party send the other both an authentication certificate
and an authorization certificate and using Diffie-Hellman key ex-
change to establish the shared secret. The protocol is carried out
with a total of three messages transmitted. For more details on the
protocol, see [AKFS98].

A node that has detected an integrity failure can establish this
secure channel with a repository. It can then request a new version
of the failed component. The repository will send the new compo-
nent protected by the shared key to prevent tampering from an at-
tacker. The component can additionally be signed by some trusted
authority using a digital signature algorithm, to prove its validity
(e.g.,a signature by company X).

4.5 Packet Authentication

Once a key has been established between two nodes, they can com-
mence exchanging authenticated and / or encrypted packets. In
SANE, we use the ANEP [ABG+97] packet format over UDP, al-
though in a homogenous active network a packet format would
be unnecessary. We’ve added an authentication header, as shown
in Figure 3, similar to the one used in the IPsec Authentication
Header protocol [Atk95a]. TheSPI is negotiated during the key
establishment protocol exchange, and is used to identify the se-
curity association and corresponding cryptographic material used.
TheReplay Counter is a monotonically increasing value, used
to prevent packet replay attacks. Theauthenticator is the keyed
hash (HMAC [KBC97]) computed over theSPI, replaycounter
and packet payload. We can similarly define an encryption header
similar to the IPsec ESP [Atk95b] protocol.

.Packet Payload

Replay Detection Counter

Packet Headers

Authenticators

SPI 

Authentication Data

.

.
Other Authenticators.

Figure 3:Authenticator Header

4.6 Link Keys

When a SANE node boots, it attempts to establish shared keys with
each of its neighbors. It does this by running the key establish-
ment protocol already described. In the process, the identity of the
neighbors is also verified. The administrator of an active network
can essentially “freeze” the network topology by specifying which
nodes can be neighbors. There are certain benefits in doing this:

� Certain distributed types of protocols (such as routing) can
be secured against outside attacks

� The switch offers secure forwarding services to any active
packet that requests them. This is important for mobile agent
types of applications that cannot depend on end to end se-
curity, but require some security guarantees on a hop-by-hop
basis.

� Administrative domains and their boundaries can be estab-
lished through this process. We define an administrative do-
main as the set of active nodes that are managed by the same

entity, have a common set of access and resource manage-
ment policies and, after the KEP is run, trust each other to
make trust decisions on their behalf.

4.7 Administrative Domains

A user who needs to load a number of modules on a set of active
nodes would typically have to contact each node individually and
establish security associations (SAs) with each one. This establish-
ment could happen in either a telescopic manner (where the user
“explores” the network) or a parallel manner (if the user knows the
identities of all the switches in advance). This can prove expensive
both computationally (because of the public key operations) and in
packet size (since there must be a separate authentication payload
for each node that a packet may visit).

By taking advantage of the existence of administrative domains,
we could make some optimizations:

� Once the user has established an SA with some active node
in another administrative domain, that node can act as a key
distribution server (KDC) similar to Kerberos [MNSS87].

� Only nodes at the perimeter of an administrative cloud need
verify the cryptographic integrity of packets. They can then
specify what the active packet can do in the interior of the
domain. In that respect, any machine at the edge of the do-
main can act as a firewall. In contrast to the Internet fire-
walls however, policy can be specified but not enforced at
the edges; enforcement of access and resource management
policies has to take place in the interior [KBIS98].
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Figure 4:Administrative Clouds and Path Setup

4.8 Resource Control

Resource control on the active switch is imposed by the runtime
system, as specified by the certificates exchanged during key es-
tablishment. In SQoSH, these are used to control the behavior of
Piglet. The protected resources will include access to standard and
loaded modules, CPU cycles, memory allocated, number of pack-
ets, latency and bandwidth requirements, and others. For the Piglet
experiments we report below in Section 7 we have limited the re-
source management to network bandwidth. There is a great deal of
further research necessary to determine what the right resources to
manage are, and how to resolve conflicting resource requests.

In any case, since a tenet of our approach is controlled load-
ing of modules, SANE must manage loading modules in a secure



fashion if it is to be useful in an active network. That is, it must
control which modules are loaded, and by whom. SANE asso-
ciates cryptographic certificates with modules. SANE can either
require a certificate for loading a particular module, or may allow
universal loading of the module. Examples where such universal
loading may be useful include low-cost operations likeping , as
well as the security operations used for bootstrapping the security
relationship with remote switches. There are two classes of cer-
tificate which can be presented by a user packet requesting access
to a resource via a module. Anadministrativecertificate allows
loading of any or all modules into the system; it is intended for
management and emergencies as might arise, and can be thought
of as analogous to a “master key” granted by the switch adminis-
trator. More commonly, certificates are used to permit loading of
selected modules. For system resources (such as memory or band-
width), the certificates can also specify the allowed usage patterns
(e.g.,“no more than 4 Mbit/sec”). As a result, this scheme allows
fine-grained control of switch resources.

4.9 Dynamic Resource Naming

Conceptually, loaded modules can be considered as the interfaces
to user defined resources. Other resources potentially include mem-
ory, CPU cycles, bandwidth, disk space, real-time guarantees etc.
Such resources will generally be shared between different sessions
of the same principal, or even between different principals. These
principals will need to identify (name) the particular resource they
want to use.

The “naive” way of naming (using some user-defined value)
would not work well, because names need to be unique across the
Active Network. If users arbitrarily assign names to their resources,
it is conceivable that there will be accidental naming collisions;
worse yet, forging names is possible, allowing for resource-in-the-
middle attacks. Alternatively, some centralized authority could as-
sign names per request, making sure these remain unique; this so-
lution is unattractive because it does not scale well as the number
of names required increases.

SANE provides a decentralized mechanism for resource nam-
ing that does not allow name collisions (accidental or malicious).
It does this by generating the name of a dynamic resource from the
cryptographic credentials used to authenticate/authorize it. This
prevents “trojan horse” type of attacks. See [AAKS98] for more
details.

5 Implementation and Performance of SANE

We have implemented SANE in theSwitchWareenvironment. For
our experimental network we used a cluster of DEC Alpha PC
164SX machines, with 533MHz processors and 64MB memory
each, connected via 100Mbit switched Ethernet. All the test ma-
chines were running RedHat Linux, kernel version 2.0.33, and a
modified Caml 1.0.7 runtime system. For some of our throughput
tests, we modified the Linux kernel to allow allocation of a buffer
larger than 64KB per socket.

5.1 SANE Performance Measurements

Tables 1, 2, and 3 show the costs of the three cryptographic prim-
itives provided by SANE. In addition to the bytecode interpreter
which we use, the Caml distribution also provides a native code
compiler which produces Alpha executables. Table 1 gives the av-
erage time in seconds to hash a 4MB string. Additionally, it shows
the difference in cost between compiled and interpreted code. Ta-
ble 2 shows the cost to encrypt a 4MB message using 63 bit inte-
gers with either the bytecode or native Alpha code. Finally, table 3

shows the cost in milliseconds of signing and of verifying the mes-
sage “abc,” using DSA. Since a DSA signature consists of comput-
ing a SHA-1 digest followed by the signature process itself, for a
longer message, one should add the cost of performing the hash.

Caml bytecode 36.027246 s
native 2.477051 s

C 0.333212 s

Table 1:Time to SHA-1 hash 4MB of data

Caml bytecode 99.331543 s
native 16.723242 s

C 1.0785348 s

Table 2:Time to DES encrypt 4MB of data

sign Caml bytecode 20.907 ms
native 11.855 ms

sign C 2.800 ms
verify Caml bytecode 35.198 ms

native 20.664 ms
verify C 5.000 ms

Table 3:Digital Signature Timings

In practice, to use the dynamic loader in Caml, we must use the
bytecode interpreter. This imposes a very high overhead on authen-
ticating packets, an operation which relies on the SHA-1 hash func-
tion, so we have resorted to a C implementation. While this greatly
speeds the HMAC generation and verification operations, it may in-
terfere with the Caml runtime thread scheduler. Furthermore, when
using a C code implementation, we cannot catch type-system errors
internal to that code, nor take advantage of the garbage collection
mechanism available in the runtime. For these reasons, we tried to
limit the amount of non-Caml code in our system. In the future, we
intend to investigate the feasibility of statically integrating Caml
native code into the bytecode interpreter in the same way that we
currently are able to integrate C code. This would allow us to re-
gain the advantages of strong types and garbage collection with a
more acceptable overhead. Compilation techniques such as “Just
In Time” should help narrow this gap in performance.

The key exchange protocol was also implemented in CamlṪhe
protocol was designed to be fail safe [GS95] under all circum-
stances. In the presence of loosely synchronized clocks, it becomes
fail stop (meaning that active attacks, including replays, on the pro-
tocol, are always detected). The average execution time of KEP
with a 256 bit Diffie-Hellman exponent is 2.4 seconds, and with a
1024 bit exponent, 4.8 seconds. In both cases we used a 1024 bit
modulus. This time is comparable to that of the IPsec key manage-
ment protocols, Photuris [KS] and ISAKMP/Oakley [MSST96].

The certificate infrastructure we used in our setup is a shallow
hierarchy. A small number of keys are considered as trusted to
make statements about nodes or, more specifically, what the net-
work topology is. These same keys are also used to certify users
and specify their access rights on the active nodes. It is only a mat-
ter of policy however what sort of certificate method is followed. A
cyclic graph-type (such as in PGP) or a hierarchical approach (such
as in X.509 [Com89]) or any other method can be used. Further-
more, there is no need for an organization’s internal certification
policies to be the same as the interdomain and interorganizational
policies.



5.2 Cost of Active Ping

To understand the cost imposed by authentication, we measured
the cost of sending an active ping both with and without authenti-
cation. This ping was generated at a source machine, transmitted
over a crossover cable via 100 Mbps Ethernet to the target machine,
loaded and evaluated, then sent back to the source machine, where
it was again loaded and evaluated. An unauthenticated ping took an
average of 5.084ms versus 8.052ms for the authenticated ping.

As described in [AAKS98], we believe that these numbers can
be improved by changes to the Caml runtime system. In partic-
ular, caching of switchlets, improvements to the thread scheduler,
and improvements to the thread linker could help with this perfor-
mance. Fortunately, in the SQoSH environment, these costs are
likely to be incurred only during connection setup and so are less
critical than they are generally in SANE. Since we are modifying
the queuing strategy and can reasonably expect a given strategy to
run for minutes at least, we have the opportunity to amortize away
the milliseconds of overhead necessary for authentication.

6 Piglet

While the SANE architecture presents a secure resource-management
interface to switchlets, the underlying system must be capable of
providing the appropriate capabilities to implement that interface.
In the SQoSH architecture those capabilities are provided by Piglet
[MS98], a functionally-partitioned network operating system de-
rived from Linux.

6.1 Piglet: Structure and Architecture

Piglet is designed around an asymmetric, functionally-partitioned
architecture, where system processors are dedicated to particular
functions rather than having each processor execute user applica-
tions, as is typically the case in a symmetric multiprocessor OS.
While the symmetric model is attractive in computationally-intensive
applications, we believe that the functional model is more appeal-
ing in systems where a high proportion of the workload consists of
I/O, as in a network element.

Piglet is implemented as alightweight device kernel (LDK)which
runs on one or more processors of a multiprocessor system. In
a network element, this LDK is responsible for managing one or
more of the network interfaces of the system. Those interfaces
are then made accessible to the host operating system, in this case
Linux, viavirtual device interfaces (VDIs). These VDIs can extend
the capabilities of the physical network interfaces with additional
services provided by the LDK, including various resource manage-
ment functions, such that Piglet can present QoS guarantees to ap-
plications.

6.2 Resource Management in Piglet

Piglet’s resource management functions are based around an ab-
stract data structure known as aframeset. The implementation of
the frameset data structure is not relevant or important to the dis-
cussion of SQoSH—for our purposes it suffices to say that a frame-
set consists of independent transmit and receive queues into which
frames, each corresponding to a network packet, can be placed.
Services can be associated with framesets in order to manipulate
and process frames—since services form an integral part of the
Piglet OS they have full access to the host system and can thus
perform almost any conceivable function.

For the purposes of network element applications each frame-
set is logically associated with a networkflow. The exact details
of a flow specification are bounded only by the packet-filtering

frameset t *
piglet create frameset(int tx bufs,

int rx bufs,
unsigned options);

int
piglet set filter(frameset t *flow,

filter t *filter);

int
piglet set vclock(frameset t *flow,

unsigned period,
unsigned limit);

Figure 5: Flow management functions in Piglet

mechanism employed by Piglet to classify received network pack-
ets into flows (and hence demultiplex to the appropriate frameset).
A flow can be defined as broadly as “All packets received on this
network interface”, or as specifically as “All packets sent by host
158.130.6.140 to TCP port 5005 on host 158.130.4.4”.

Figure 5 shows prototypes for the principal functions used to
manage framesets.piglet create frameset is used by an
application to create a frameset, specifying the transmit and receive
buffer sizes and an option field indicating, among other things,
which services should be used to process this frameset. Once the
frameset has been created,piglet set filter is called to as-
sociate a flow specification with the frameset.

An example of a service provided by Piglet is the Virtual Clock
algorithm, a mechanism for scheduling a network link across mul-
tiple flows and controlling the rate at which each flow sends data.
Virtual Clock is parameterised by the clock period and maximum
amount of data to be sent in that period—tuning these two param-
eters allows an application to specify not only its bandwidth re-
quirement but also the degree of burstiness of its traffic. The func-
tion piglet set vclock is used to convey these parameters to
Piglet.

7 SQoSH Resource Multiplexing using Piglet

The specific problem we address is that of multiplexing a single
network interface between a number of uncooperative applications,
each of which may or may not have specific requirements. This
is exactly the challenge faced in secure multiplexing of resources
once a policy has been validated by checking its certificates. In this
example, the resource we wish to divide among these applications
is network bandwidth.

7.1 Experimental Description

The experimental setup for this test consists of two PCs connected
to an AsanteFast 100Mb/s Ethernet hub by 3Com 3c905 network
interface cards. The sender is a 200MHz dual-processor Pentium
Pro PC, running RedHat Linux 5.0 with the Piglet kernel replacing
the standard Linux kernel. The receiver is a 200MHz uniprocessor
Pentium Pro PC, running RedHat Linux 4.2 with the Linux kernel
2.0.31. Both machines are idle apart from the test applications, and
the test network has no other traffic.

The experiment consists of three applications all trying to send
a large amount of data from the sender to the receiver. The results
are plotted in Figure 6. Each application has different bandwidth
requirements:



1. A - an unconstrained sender which uses as much bandwidth
as is available. This can be viewed as the source of a “denial-
of-service” attack in the context of SQoSH.

2. B - a sender constrained to run at 40Mb/s1.

3. C - a sender constrained to run at 10Mb/s.

The application used to send the data is the standardttcp aug-
mented with an option to set the Virtual Clock parameters (period
and time). These parameters are passed to the Linux TCP/IP stack
by setsockopt() system calls, where they are then passed to
Piglet to create application-specific framesets with those parame-
ters. This is the only modification made to the Linux networking
code.

Each of applicationsA, B, andC start and stop sending their
data at different times, and the per-application bandwidth is mea-
sured every second and plotted in Figure 2 as the three heavy lines.
The three thinner lines show reference bandwidth measurements
for each sender with no competing applications over a 30 second
period.

� After 1s,B starts sending at 40Mb/s2.

� After 5s,A starts sending as fast as possible. Piglet’s guar-
antee of 40Mb/s toB limits A to approximately 40Mb/s also.

� After 9s,C starts sending at 10Mb/s, causingA’s bandwidth
to decrease by approximately 10Mb/s.

� After �15s,B stops sending,A’s bandwidth thus increases
to approximately 10Mb/s below the absolute limit.

� After �20s,A stops sending.

� After �29s,C stops sending.

7.2 Experimental Results

We see from the graph that Piglet’s queue scheduling mechanism
provides controlled multiplexing of the shared network resource,
despite the fact that the applications are not cooperating to share
the resource, and neither they nor the host O.S. (Linux) are aware
of the constraints imposed upon them.

The applications which have specific bandwidth requirements
receive exactly that amount of bandwidth, even when an application
with no specified constraint is competing for the same resource.
This ability to add resource management to a standard host O.S. is
one of the key strengths of Piglet, and enables its easy integration
into SQoSH.

8 Related Work

8.1 Quality of Service Provision and Management

QoS provision and management has a wide-ranging literature. Much
of the early work was stimulated by the promise of Asynchronous
Transfer Mode (ATM) networks[dP91]. The demand for these ser-
vices was stimulated by multimedia traffic[PS95]. The relevant
promise was the control of multiplexing behavior in both endpoints
and network elements, with the idea that ATM hardware-supported
queuing disciplines such as Fair Queuing or its many variants could

1Here and in our experimental results we use the convention that 1Mb/s =10
6 bits

per second
2ttcp actually tries to send as fast as possible but Piglet constrains packet transmis-

sion to 40Mb/s

be used to allocate bandwidth resources, and for the most part pro-
vide delay bounds. While such hardware support remains attrac-
tive, the signaling software (Q.2931) has proved sufficiently un-
wieldy that the potential for managed bandwidth remains largely
unrealized.

The attraction of integrated services did serve, however, to re-
vitalize and stimulate research into integrated services in the IP In-
ternet community[Sch96]. This research program resulted in the
RSVP[BZB+97] proposal for signaling resource reservations to
network elements by endpoints.

Neither ATM signaling protocols (e.g., Q.2931 or UNI 3.1)
[dP91] nor RSVP[BZB+97] provide the integrated admission con-
trol and policing of SQoSH. It is presumed that administrative en-
tities are trusted in either system, while policing is delegated; to
hardware in the ATM setting and to some lower layer through the
Internet Subnet-Specific Layer (ISSLL) in the RSVP case. Some
extensions for securing signaling are discussed by Schuba [SLS97].
An additional limitation of these systems (although we believe them
extensible) is that their policing is limited to bandwidth manage-
ment, rather than the more general resource model inherent in an
Active Network.

8.2 Secure Resource Control in Active and Programmable
Networks

The Secure Active Network Environment has no direct analogues
in ongoing work on active networks [TSS+97]. While ANTS uses
MD5 hashes (“fingerprints”) to name on-demand loaded modules,
the hashes provide unique names rather than security. The ANTS
execution environment depends on the Java programming language
for protection, a dependency shared by many active network pro-
totypes. Unfortunately, as Wallach, et al., [WBDF97] note, Java’s
security is suspect. The remote authentication and namespace secu-
rity of SANE address issues ignored in these systems, and could be
applied even in cases where Java is used,e.g.,to provide integrity
checking of the JVM or layers beneath it, as well as on-demand
loaded modules.

Another quite different approach to providing secure active net-
working is that used by the Programming Language for Active
Nets (PLAN). PLAN is a special-purpose programming language
appropriate for per-packet programs. PLAN’s semantics are pur-
posely restricted to operations which are safe and bounded in re-
source usage, with the intention of being so lightweight that any
node would be willing to run PLAN packets, including those from
remote nodes, and thus would not require the security of SANE.
However, as all enhanced services are added to the node as PLAN
extensions, any such extensions would require a SANE-like ap-
proach for security.

An architecture which extended a protection model from the
local domain to a distributed environment was provided by San-
som, et al. [SJR86], where protection was enforced locally with
memory-protection enforced capabilities. (It is notable that ca-
pabilities can be viewed as a namespace-based protection mech-
anism). The capabilities were extended to remote nodes via cryp-
tographic means. SANE provides more general mechanisms and
could thus be specialized to such an application (moving memory-
protected objects about the network) but more importantly guaran-
tees local integrity before extending itself into the network.

8.3 SQoSH and other environments

The Cambridge University Nemesis [BBDS97] operating system
has considerable potential for supporting SQoSH functionality, as
its single-layer multiplexing model can be readily adapted to the
SQoSH policing requirements. Using the SANE architecture, Neme-
sis could be enhanced with automated scheduling domain setup and
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adjustment to service Active Network needs.
Another system with great potential is the Arizona Scout/Escort

[MMO+94] operating system with its support end-to-end resource
allocations called “paths”. Paths, in spirit, are the right idea for end-
to-end allocation in an active network. The security infrastructure
is not nearly as complete as SANE, with its secure initialization,
public-key infrastructure, ALIEN active loader and remote mod-
ule authorization certificates. We believe that, like Nemesis, Scout
could be readily adapted to support SQoSH.

8.4 Limitations of this work

The SQoSH architecture we described provides a generalized so-
lution to trustworthy control and management of resources in an
integrated services network.

The Piglet and SANE software systems are implemented but
further integration must take place before the extension to Active
Networks is completely validated. In particular, our Piglet exper-
iments were limited to bandwidth provisioning for a single net-
work adapter. Ideally, we would be able to provision a variety
of resources, such as CPU cycles or regions of main memory, and
demonstrate how the SQoSH system copes with co-scheduling these
resources. This will be necessary in future active networks; con-
sider for example a Java program which has a very small CPU and
bandwidth allocation, but allocates new memory at a high rate, in-
ducing garbage collection overheads which deny CPU, buffering
and bandwidth to other activities.

Referring to our introduction, we made it clear that “security”
is very application-dependent. Thus, SQoSH is not really “secure”;
rather, it provides the tools and infrastructure necessary to build
systems that are secure. Like any other infrastructure it remains
vulnerable to misconfiguration and administrative mischief, such
as inappropriate grants of resource access certificates.

9 Conclusions and Future Work

The Secure Quality of Service Handling (SQoSH) architecture pro-
vides controlled access to allocations of system resources in an Ac-
tive Network element. It is more generally applicable to any re-
source allocation or policing scheme where remote allocation and
deallocation of resources is required. We believe, for example, that
this new architecture is well suited to providing secured resource
allocation in an integrated services internetwork.

An example of the general architecture can be constructed us-
ing the Secure Active Network Environment (SANE) as a protec-
tive mechanism for resource allocations available from the Piglet
operating system. As an example of resource policing, we have
demonstrated Piglet partitioning bandwidth using a Virtual Clock-
like queue-scheduling discipline. The measurements showed the
effectiveness of Piglet on this task.

Since SANE is used to control access to Piglet operations, we
measured the cost of the cryptography for commonly performed
tasks. The results indicated that, not surprisingly, cryptographic
transformations incur a major performance cost on SANE func-
tions. Since SANE operations are in the SQoSH “control plane”
they are perfomed infrequently relative to the policing functions,
and thus their cost has a minor effect on overall performance. An
additional benefit of SANE’s use of a public-key infrastructure is
the presence of this infrastructure for preserving privacy and in-
tegrity of media streams if required.

We believe that SQoSH represents a practical advance in au-
tomating and securing the administration of remote network ele-
ments of any type. We presented the threat model which SQoSH
addresses, and showed that these attacks (admission failures and
policing failures) can be thwarted. Typical architectures and im-
plementations provide no protection against such attacks, except
perhaps via inflexibility. In any environment where resources and
resource allocations have value, SQoSH ensures that the resources
are allocated as intended.

A major concern of ours is the translation from security policy
to admission and policing actions. The approach we are pursuing
in SQoSH is to integrate PolicyMaker in the runtime system, while
continuing to use Piglet as the means of low-level policy enforce-
ment.
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