
SQLrand: Preventing SQL Injection Attacks

Stephen W. Boyd and Angelos D. Keromytis

Department of Computer Science
Columbia University

{swb48,angelos}@cs.columbia.edu

Abstract. We present a practical protection mechanism against SQL injection
attacks. Such attacks target databases that are accessible through a web front-
end, and take advantage of flaws in the input validation logic of Web components
such as CGI scripts. We apply the concept of instruction-set randomization to
SQL, creating instances of the language that are unpredictable to the attacker.
Queries injected by the attacker will be caught and terminated by the database
parser. We show how to use this technique with the MySQL database using an
intermediary proxy that translates the random SQL to its standard language. Our
mechanism imposes negligible performance overhead to query processing and
can be easily retrofitted to existing systems.

1 Introduction

The prevalence of buffer overflow attacks [3, 29] as an intrusion mechanism has resulted
in considerable research focused on the problem of preventing [14, 11], detecting [35,
23, 25], or containing [33, 31, 21, 12] such attacks. Considerably less attention has been
paid to a related problem, SQL injection attacks [1]. Such attacks have been used to
extract customer and order information from e-commerce databases, or bypass security
mechanisms.

The intuition behind such attacks is that pre-defined logical expressions within a
pre-defined query can be altered simply by injecting operations that always result in
true or false statements. This injection typically occurs through a web form and asso-
ciated CGI script that does not perform appropriate input validation. These types of
injections are not limited strictly to character fields. Similar alterations to the “where”
and “having” SQL clauses have been exposed, when the application does not restrict
numeric data for numeric fields.

Standard SQL error messages returned by a database can also assist the attacker.
In situations where the attacker has no knowledge of the underlying SQL query or the
contributing tables, forcing an exception may reveal more details about the table or its
field names and types. This technique has been shown to be quite effective in practice
[5, 27].

One solution to the problem is to improve programming techniques. Common prac-
tices include escaping single quotes, limiting the input character length, and filtering
the exception messages. Despite these suggestions, vulnerabilities continue to surface
in web applications, implying the need for a different approach. Another approach is to
use the PREPARE statement feature supported by many databases, which allows a client



to pre-issue a template SQL query at the beginning of a session; for the actual queries,
the client only needs to specify the variables that change. Although the PREPARE fea-
ture was introduced as a performance optimization, it can address SQL injection attacks
if the same query is issued many times. When the queries are dynamically constructed
(e.g., as a result of a page with several options that user may select), this approach does
not work as well.

[22] introduced the concept of instruction-set randomization for safeguarding sys-
tems against any type of code-injection attack, by creating process-specific randomized
instruction sets (e.g., machine instructions) of the system executing potentially vulner-
able software. An attacker that does not know the key to the randomization algorithm
will inject code that is invalid for that randomized processor (and process), causing a
runtime exception.

We apply the same technique to the problem of SQL injection attacks: we create
randomized instances of the SQL query language, by randomizing the template query
inside the CGI script and the database parser. To allow for easy retrofitting of our solu-
tion to existing systems, we introduce a de-randomizing proxy, which converts random-
ized queries to proper SQL queries for the database. Code injected by the rogue client
evaluates to undefined keywords and expressions. When this is the outcome, then stan-
dard keywords (e.g., “or”) lose their significance, and attacks are frustrated before they
can even commence. The performance overhead of our approach is minimal, adding up
to 6.5ms to query processing time.

We explain the intuition behind our system, named SQLrand, in Section 2, and
describe our prototype implementation in Section 3. We give some performance results
in Section 4, and an overview of related work in Section 5.

2 SQLrand System Architecture

Injecting SQL code into a web application requires little effort by those who under-
stand both the semantics of the SQL language and CGI scripts. Numerous applica-
tions take user input and feed it into a pre-defined query. The query is then handed to
the database for execution. Unless developers properly design their application code
to protect against unexpected data input by users, alteration to the database structure,
corruption of data or revelation of private and confidential information may be granted
inadvertently.

For example, consider a login page of a CGI application that expects a user-name
and the corresponding password. When the credentials are submitted, they are inserted
within a query template such as the following:

"select * from mysql.user
where username=’ " . $uid . " ’ and

password=password(’ ". $pwd . " ’);"

Instead of a valid user-name, the malicious user sets the $uid variable to the string:
’ or 1=1; - -’, causing the CGI script to issue the following SQL query to the database:

"select * from mysql.user
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Fig. 1. SQLrand System Architecture

where username=’’ or 1=1; - -’’ and
password=password(’_any_text_’);"

Notice that the single quotes balance the quotes in the pre-defined query, and the
double hyphen comments out the remainder of the SQL query. Therefore, the password
value is irrelevant and may be set to any character string. The result set of the query
contains at least one record, since the “where” clause evaluates to true. If the application
identifies a valid user by testing whether the result set is non-empty, the attacker can
bypass the security check.

Our solution extends the application of Instruction-Set Randomization [22] to the
SQL language: the SQL standard keywords are manipulated by appending a random
integer to them, one that an attacker cannot easily guess. Therefore, any malicious user
attempting an SQL injection attack would be thwarted, for the user input inserted into
the “randomized” query would always be classified as a set of non-keywords, resulting
in an invalid expression.

Essentially, the structured query language has taken on new keywords that will not
be recognized by the database’s SQL interpreter. A difficult approach would be to mod-
ify the database’s interpreter to accept the new set of keywords. However, attempting to
change its behavior would be a daunting task. Furthermore, a modified database would
require all applications submitting SQL queries to conform to its new language. Al-
though dedicating the database server for selected applications might be possible, the
random key would not be varied among the SQL applications using it. Ideally, having
the ability to vary the random SQL key, while maintaining one database system, grants
a greater level of security, by making it difficult to subvert multiple applications by
successfully attacking the least protected one.

Our design consists of a proxy that sits between the client and database server (see
Figure 1). Note that the proxy may be on a separate machine, unlike the figure’s depic-
tion.

By moving the de-randomization process outside the DataBase Management Sys-
tem (DBMS) to the proxy, we gain in flexibility, simplicity, and security. Multiple prox-
ies using unique random keys to decode SQL commands can be listening for connec-
tions on behalf of the same database, yet allowing disparate SQL applications to com-
municate in their own “tongue.” The interpreter is no longer bound to the internals of



the DBMS. The proxy’s primary obligation is to decipher the random SQL query and
then forward the SQL command with the standard set of keywords to the database for
computation. Another benefit of the proxy is the concealment of database errors which
may unveil the random SQL keyword extension to the user. A typical attack consists of
a simple injection of SQL, hoping that the error message will disclose a subset of the
query or table information, which may be used to deduce intuitively hidden properties
of the database. By stripping away the randomization tags in the proxy, we need not
worry about the DBMS inadvertently exposing such information through error mes-
sages; the DBMS itself never sees the randomization tags. Thus, to ensure the security
of the scheme, we only need to ensure that no messages generated by the proxy it-
self are ever sent to the DBMS or the front-end server. Given that the proxy itself is
fairly simple, it seems possible to secure it against attacks. In the event that the proxy
is compromised, the database remains safe, assuming that other security measures are
in place.

To assist the developer in randomizing his SQL statements, we provide a tool that
reads an SQL statement(s) and rewrites all keywords with the random key appended.
For example, in the C language, an SQL query, which takes user input, may look like
the following:

select gender, avg(age)
from cs101.students

where dept = %d
group by gender

The utility will identify the six keywords in the example query and append the key to
each one (e.g., when the key is “123”):

select123 gender, avg123 (age)
from123 cs101.students

where123 dept = %d
group123 by123 gender

This SQL template query can be inserted into the developer’s web application. The
proxy, upon receiving the randomized SQL, translates and validates it before forwarding
it to the database. Note that the proxy performs simple syntactic validation — it is
otherwise unaware of the semantics of the query itself.

3 Implementation

To determine the practicality of the approach we just outlined, we built a proof-of-
concept proxy server that sits between the client (web server) and SQL server, de-
randomizes requests received from the client, and conveys the query to the server. If an
SQL injection attack has occurred, the proxy’s parser will fail to recognize the random-
ized query and will reject it. The two primary components were the de-randomization
element and the communication protocol between the client and database system. In
order to de-randomize the SQL query, the proxy required a modified SQL parser that



expected the suffix of integers applied to all keywords. As a “middle man,” it had to
conceal its identity by masquerading as the database to the client and vice versa. Al-
though our implementation focused on CGI scripts as the query generators, a similar
approach applies when using JDBC.

The randomized SQL parser utilized two popular tools for writing compilers and
parsers: flex and yacc. Capturing the encoded tokens required regular expressions that
matched each SQL keyword (case-insensitive) followed by zero or more digits. (Techni-
cally, it did not require a key; practically, it needs one.) If properly encoded, the lexical
analyzer strips the token’s extension and returns it to the grammar for reassembly with
the rest of the query. Otherwise, the token remains unaltered and is labeled as an identi-
fier. By default, flex reads a source file, but our design required an array of characters as
input. To override this behavior, the YY INPUT macro was re-defined to retrieve tokens
from a character string introduced by the proxy. During the parsing phase, any syntax
error signals the improper construction of an SQL query using the pre-selected random
key. Either the developer’s SQL template is incorrect or the user’s input includes un-
expected data, whether good or bad. On encountering this, the parser returns NULL;
otherwise, in the case of a successful parse, the de-randomized SQL string is returned.
The parser was designed as a C library.

With the parser completed, the communication protocol had to be established be-
tween the proxy and a database. We used MySQL, a popular and widely used open-
source database system, to create a fictitious customer database. The record size of the
tables ranged from twenty to a little more than eleven thousand records. These sample
tables were used in the evaluation of benchmark measurements described in Section 4.
The remaining piece involved integrating the database’s communication mechanism
within the proxy.

Depending upon the client’s language of choice, MySQL provides many APIs to ac-
cess the database, yet the same application protocol. Since the proxy will act as a client
to the database, the C API library was suitable. One problem existed: the mysqlclient
C library does not have a server-side counterpart for accepting and disassembling the
MySQL packets sent using the client API. Therefore, the protocol of MySQL had to be
analyzed and incorporated into the proxy. Unfortunately, there was no official documen-
tation; however, a rough sketch of the protocol existed which satisfied the requirements
of the three primary packets: the query, the error, and the disconnect packets.

The query packet carries the actual request to the database. The quit message is
necessary in cases where the client is abruptly disconnected from the proxy or sends an
invalid query to the proxy. In either case the proxy gains the responsibility of discretely
disconnecting from the database by issuing the quit command on behalf of the client.
Finally, the error packet is only sent to the client when an improper query generates a
syntax error, thus indicating a possible injection attack.

The client application needs only to define its server connection to redirect its pack-
ets through the proxy rather than directly to the database. In its connection method, this
is achieved simply by changing the port number of the database to the port where the
proxy is listening. After receiving a connection, the proxy in turn establishes a con-
nection with the database and hands off all messages it receives from the client. If the
command byte of the MySQL packet from the client indicates the packet contains a



query, the proxy extracts the SQL and passes it to the interpreter for decoding. When
unsuccessful, the proxy sends an error packet with a generic “syntax error” message
to the client and disconnects from the database. On the other hand, a successful pars-
ing of the SQL query produces a translation to the de-randomized syntax. The proxy
overwrites the original, randomized query with the standard query that the database is
expecting into the body of the MySQL packet. The packet size is updated in the header
and pushed out to the database. The normal flow of packets continues until the client
requests another query.

The API libraries define some methods which will not work with the proxy, as
they hardcode the SQL query submitted to the database. For example, mysql list dbs()
sends the query “SHOW databases LIKE <wild-card-input>”. Without modification to
the client library, the workaround would be to construct the query string with the proper
randomized key and issue the mysql query() method. Presently, binary SQL cannot be
passed to the proxy for processing; therefore, mysql real query() must be avoided.

4 Evaluation

To address the practicality of using a proxy to de-randomize encoded SQL for a database,
two objectives were considered. First, the proxy must prevent known SQL injection vul-
nerabilities within an application. Second, the extra overhead introduced by the proxy
must be evaluated.

4.1 Qualitative Evaluation

First, a sample CGI application was written, which allowed a user to inject SQL into
a “where” clause that expected an account ID. With no input validation, a user can
easily inject SQL to retrieve account information concerning all accounts. When using
the SQLrand proxy, the injected statement is identified and an error message issued,
rather than proceeding with the processing of the corrupted SQL query. After testing
the reliability of the proxy on a “home grown” example, the next step was to identify
an SQL injection vulnerability in a pre-existing application.

An open-source bulletin board, phpBB v2.0.5, presented an opportunity to inject
SQL into viewtopic.php, revealing the password of a user one byte at a time. After the
attack was replicated in the test environment, the section of vulnerable SQL was ran-
domized and the connection was redirected through the proxy. As expected, the proxy
recognized the injection as invalid SQL code and did not send it to the database. The
phpBB application did not succumb to the SQL injection attack as verified without the
proxy. However, it was observed that the application displays an SQL query to the user
by default when zero records are returned. Since an exception does not return any rows,
the proxy’s encoding key was revealed. Again, the randomization method still requires
good coding practices. If a developer chooses to reveal the SQL under certain cases,
there is little benefit to the randomization process. Of course, one must remember that
the application was not designed with the proxy implementation in mind.

Another content management application prone to SQL injection attacks, Php-Nuke
depends on the magic quotes gpc option to be turned on to protect against some of



them. Without this setting, several modules are open to such attacks. Even with the
option set, injections on numeric fields are not protected because the application does
not check for numeric input. For example, when attempting to download content from
the php-nuke application, the download option d op is set to ’getit’ and accepts an
unchecked, numeric parameter name ’lid’. It looks up the URL for the content from the
download table based on the lid value and sets it in the HTTP location header statement.
If an attacker finds an invalid lid (determined by PHP-Nuke reloading its home page)
and appends ’union select pass from users table’ to it, the browser responds with an
error message stating that the URL had failed to load, thus revealing the sensitive infor-
mation. However, when applying the proxy, injection attacks in the affected download
module were averted. These vulnerabilities are open in other modules within PHP-Nuke
that would also be quickly secured by using the proxy. The same common injection
schemes are cited in various applications.

4.2 Performance Evaluation

Next, we quantified the overhead imposed by SQLrand. An experiment was designed
to measure the additional processing time required by three sets of concurrent users,
respectively 10, 25, and 50. Each class executed, in a round-robin fashion, a set of five
queries concurrently over 100 trials. The average length of the five different queries
was 639 bytes, and the random key length was thirty-two bytes. The sample customer
database created during the implementation was the target of the queries. The database,
proxy, and client program were on separate x86 machines running RedHat Linux, within
the same network. The overhead of proxy processing ranged from 183 to 316 microsec-
onds for 10 to 50 concurrent users respectively. Table 1 shows the proxy’s performance.

Table 1. Proxy Overhead (in microseconds)

Users Min Max Mean Std
10 74 1300 183.5 126.9
25 73 2782 223.8 268.1
50 73 6533 316.6 548.8

The worst-case scenario adds approximately 6.5 milliseconds to the processing time
of each query. Since acceptable response times for most web applications usually fall
between a few seconds to tens of seconds, depending on the purpose of the applica-
tion, the additional processing time of the proxy contributes insignificant overhead in a
majority of cases.

5 Related Work

To date, little attention has been paid to SQL injection attacks. The work conceptually
closest to ours is RISE [8], which applies a randomization technique similar to our



Instruction-Set Randomization [22] for binary code only, and uses an emulator attached
to specific processes. The inherent use of and dependency on emulation makes RISE
simultaneously more practical for immediate use and inherently slower in the absence
of hardware. [26] uses more general code obfuscation techniques to harden program
binaries against static disassembly.

In the general area of randomization, originally proposed as a way of introducing
diversity in computer systems [16], notable systems include PointGuard and Address
Obfuscation. PointGuard [11] encrypts all pointers while they reside in memory and
decrypts them only before they are loaded to a CPU register. This is implemented as
an extension to the GCC compiler, which injects the necessary instructions at compila-
tion time, allowing a pure-software implementation of the scheme. Another approach,
address obfuscation [10], randomizes the absolute locations of all code and data, as
well as the distances between different data items. Several transformations are used,
such as randomizing the base addresses of memory regions (stack, heap, dynamically-
linked libraries, routines, static data, etc.), permuting the order of variables/routines,
and introducing random gaps between objects (e.g., randomly pad stack frames or mal-
loc()’ed regions). Although very effective against jump-into-libc attacks, it is less so
against other common attacks, since the amount of possible randomization is relatively
small (especially when compared to our key sizes). However, address obfuscation can
protect against attacks that aim to corrupt variables or other data. This approach can
be effectively combined with instruction randomization to offer comprehensive protec-
tion against all memory-corrupting attacks. [13] gives an overview of various protec-
tion mechanisms, including randomization techniques, and makes recommendations on
choosing obfuscation (of interface or implementation) vs. restricting the same.

[6] describes some design principles for safe interpreters, with a focus on JavaScript.
The Perl interpreter can be run in a mode that implements some of these principles
(access to external interfaces, namespace management, etc.). While this approach can
somewhat mitigate the effects of an attack, it cannot altogether prevent, or even contain
it in certain cases (e.g., in the case of a Perl CGI script that generates an SQL query to
the back-end database).

Increasingly, source code analysis techniques are brought to bear on the problem
of detecting potential code vulnerabilities. The most simple approach has been that of
the compiler warning on the use of certain unsafe functions, e.g., gets(). More recent
approaches [17, 35, 23, 34, 15] have focused on detecting specific types of problems,
rather than try to solve the general “bad code” issue, with considerable success. While
such tools can greatly help programmers ensure the safety of their code, especially
when used in conjunction with other protection techniques, they (as well as dynamic
analysis tools such as [25, 24]) offer incomplete protection, as they can only protect
against and detect known classes of attacks and vulnerabilities. Unfortunately, none of
these systems have been applied to the case of SQL injection attacks.

Process sandboxing [31] is perhaps the best understood and widely researched area
of containing bad code (or its effects), as evidenced by the plethora of available systems
like Janus [21], Consh [4], Mapbox [2], OpenBSD’s systrace [33], and the Mediating
Connectors [7]. These operate at user level and confine applications by filtering access
to system calls. To accomplish this, they rely on ptrace(2), the /proc file system, and/or



special shared libraries. Another category of systems, such as Tron [9], SubDomain
[12] and others [18, 20, 36, 30, 37, 28, 32], go a step further. They intercept system calls
inside the kernel, and use policy engines to decide whether to permit the call or not.
The main problem with all these is that the attack is not prevented: rather, the system
tries to limit the damage such code can do, such as obtain super-user privileges. In
the context of a web server, this means that a web server may only be able to issue
queries to particular databases or access a limited set of files, etc. [19] identifies several
common security-related problems with such systems, such as their susceptibility to
various types of race conditions.

6 Conclusions

We presented SQLrand, a system for preventing SQL injection attacks against web
servers. The main intuition is that by using a randomized SQL query language, specific
to a particular CGI application, it is possible to detect and abort queries that include in-
jected code. By using a proxy for the de-randomization process, we achieve portability
and security gains: the same proxy can be used with various DBMS back-end, and it
can ensure that no information that would expose the randomization process can leak
from the database itself. Naturally, care must be taken by the CGI implementor to avoid
exposing randomized queries (as is occasionally done in the case of errors). We showed
that this approach does not sacrifice performance: the latency overhead imposed on each
query was at most 6.5 milliseconds.

We believe that SQLrand is a very practical system that solves a problem heretofore
ignored, in preference to the more “high profile” buffer overflow attacks. Our plans
for future work include developing tools that will further assist programmers in using
SQLrand and extending coverage to other DBMS back-ends.
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