
IEEE NETWORK 1

A Secure Active Network Environment Architecture
Realization in SwitchWare

D. Scott Alexander, William A. Arbaugh, Angelos D. Keromytis and Jonathan M. Smith
\Dover�y, no Prover�y"

“Trust, but Verify”

Abstract—
Active Networks is a network infrastructure which is programmable on

a per-user or even per-packet basis. Increasing the flexibility of such net-
work infrastructures invites new security risks. Coping with these security
risks represents the most fundamental contribution of Active Network re-
search. The security concerns can be divided into those which affect the
network as a whole and those which affect individual elements. It is clear
that the element problems must be solved first, as the integrity of network-
level solutions will be based on trust of the network elements.

In this paper, we describe the architecture and implementation of a Se-
cure Active Network Environment (SANE), which we believe provides a
basis for implementing secure network-level solutions. We guarantee that
a node begins operation in a trusted state with the AEGIS secure bootstrap
architecture. We guarantee that the system remains in a trusted state by
applying dynamic integrity checks in the network element’s run time sys-
tem, using a novel naming system, and applying node-to-node authentica-
tion when needed.

I. I NTRODUCTION

A variety of proposals for programmable network infrastruc-
tures are currently extant, such as open signaling [1] and Ac-
tive Networks [2]. These proposals share the goal of improv-
ing network flexibility and functionality through introduction of
an accessible programming abstraction, which may be available
on a per-user or even a per-packet basis. In the SwitchWare
project [3], University of Pennsylvania and Bellcore are collab-
orating on research into the architecture of Active Network ele-
ments.

The goal of programmable network architectures is to provide
an acceleration of network service creation. Protocols provide a
set of rules by which compliant systems can participate in com-
munications. To build a global virtual infrastructure such as the
IP [4] Internet, a “minimal” interoperability requirement was
set, namely a packet format and a common addressing scheme.
Service enhancements, such as the TCP reliable stream pro-
tocol [5], occur at the endpoints of the virtual infrastructure.
Since all IP-compliant network infrastructures must support the
IP protocol, change of the infrastructure itself is slow and highly
constrained. As the Internet has become commercialized, the
standardization process has slowed considerably; yet at the same
time there is increasing demand for enhanced services.

Active Networks follows the approach first proposed in the
“Protocol Boosters” project [6], of enabling on-the-fly modifi-

Scott Alexander, William Arbaugh, and Angelos Keromytis are each work-
ing toward a Ph.D. in Computer and Information Science at the University of
Pennsylvania.

Jonathan M. Smith is an Associate Professor at the University of Pennsylva-
nia.

This work was supported by DARPA under Contract #N66001-96-C-852, with
additional support from the Intel Corporation.

Old Russian saying.

cation of network functionality, for example to adapt to changes
in link conditions. Protocol Boosting is a design methodology,
but Active Networks provides an infrastructure general enough
to support any network reprogramming. This is done by rais-
ing the level of abstraction of the interoperability layer from a
packet format to a programming environment accessible to pro-
grammers. Not surprisingly, there are applications for a pro-
grammable network infrastructure:
� Provision of value-added services such as non-co-routed paths
(to enhance throughput via striping [7] or reliability in the face
of link failure).
� Distributed, intelligent, low-latency decision-making and eco-
nomic algorithms (which can be very scalable) [8], [9], [10] can
be employed to solve the network congestion problem.
� Provide loadable diagnostic functionality for network man-
agement [11] and distributed monitoring [12].

More applications of Active Networks can be found in [13],
[14], [15], [16], [17].

A. Threats

Threats to network infrastructure are intimately tied to the
model used for sharing the infrastructure. For example, with
the unreliable best-effort model provided by the Internet and
the lack of per-hop security properties, security policies are en-
forced end-to-end.

IP packets are anonymous to the routers, and they, at least
before extensions such as multicasting (e.g.,MBONE [18]) and
RSVP [19], are allocated service on a FIFO basis. IPSEC [20]
provides authentication services, but it remains unclear how sup-
port for Quality of Service (such as RSVP) will be integrated
with authentication services. As it stands, the Internet infras-
tructure is vulnerable to a variety of denial of service attacks as
a consequence of minimal resource accountability, as well as a
variety of other attacks such as traffic analysis. We note that
since the resource model in the routers is so simple, sophisti-
cated threats are posed by attacks on services implemented at the
endpoints,e.g.,the notorious “Syn-Ack” (also known as “Syn-
flooding”) attack [21] on TCP/IP and the “Ping of Death” [22].

Active Networks, being more flexible, considerably expands
the threat possibilities. The security threats faced by such ele-
ments are considerable. For example, when a packet containing
code to execute arrives, the system typically must:
� Identify the sending network element,
� Identify the sending user,
� Authorize access to appropriate resources based on these
identifications,

2 IEEE NETWORK

� Allow execution based on the authorizations and security pol-
icy.

The principals involved in the authorization and policy de-
cisions in the security model are users, programmers and ad-
ministrators and network elements. The network elements are
presumed to be under physical control of an administrator. Pro-
grammers may not have physical access to the network element,
but may possess considerable access rights to resources present
in the network elements. Users may have access to basic ser-
vices (e.g.,transport), but only resources that the network ele-
ments are willing to export to all users, at an appropriate level of
abstraction. Users may also be allowed to introduce their own
services, or load those written by others.

In networking terminology, the first three steps comprise a
form of admission control, while the final step is a form of polic-
ing. A second separation is that of static versus dynamic check-
ing. Security violations occur when a policy is violated,e.g.,
reading a private packet, or exceeding some specified resource
usage.

B. A high-level view of a SANE architecture

Systems are organized as layers to limit complexity. A com-
mon layering principle is the use of levels of abstraction to mark
layer boundaries. A computer system is organized in a series of
abstraction levels, each of which defines a “virtual machine”,
upon which the higher levels of abstraction are constructed.
Each of the virtual machines presupposes that it is operating in
an environment where the abstractions of underlying layers can
be treated as axiomatic. When these suppositions are true, the
system is said to possessintegrity. Without integrity, no system
can be made secure.

Thus, any layered system is only as secure as the founda-
tion upon which it is built. For example, a number of attempts
were made in the 1960s and 1970s to produce secure computing
systems using a secure operating system environment as a ba-
sis [23]. An essential presumption of the security arguments for
these designs was that the system layers underpinning the oper-
ating system, whether hardware, firmware, or both, were trusted.
We find it surprising, given the great attention paid to operating
system security [24], [25] that so little attention has been paid
to the underpinnings required for secure operation,e.g.,a secure
bootstrapping phase for these operating systems.

Under the presumption that the hardware comprising the ma-
chine (the lowest layer) is valid, the integrity of a layer can be
guaranteedif and only if: (1) the integrity of the lower layers
is checked, and (2) transitions to higher layers occur only after
integrity checks on them are complete. The resulting integrity
“chain” inductively guarantees system integrity. We call this
the Chaining Layered Integrity Checks (CLIC) model. Once
the system is operational however, integrity violations may oc-
cur through failure of the higher-layer security mechanisms or
through malfunctioning software components or other reasons.
Preventing or restricting such violations necessitates the pres-
ence of higher-layer security mechanisms.

The overall approach to security taken in the SwitchWare
project is to provide carefully circumscribed functionality to
network programmers, by means of a programming language
which allows us to limit functionality and run in a controlled

environment. We have implemented a prototype of such a net-
work element, and applied it to the problem of constructing an
extended LAN (bridging).

II. SANE ISSUES ANDARCHITECTURE

In this section we discuss the issues which arise from the
threat model we presume. After a discussion of these issues, we
further discuss integrity and trust relationships at various levels
in the system. Finally, we outline SANE, which addresses the
division of integrity checking and enforcement into static and
dynamic portions.

A. Separation of Concerns

We make a somewhat artificial, albeit useful, division of our
concerns intostatic and dynamic. Static concerns are those
which can be checked once, or infrequently, as in the case of
an Active Network bootstrapping from a cold start into an oper-
ational state. Dynamic concerns are those which must be contin-
uously addressed to maintain the operational state of the system.

There are several major advantages to this division that can
be used in a system design. First, as static checks are done once,
or very few times, they can be very expensive if this pays off in
a significant increase in security. Second, dynamic checks can
be made faster if it is known that the static checks have been
performed in advance. Finally, these divisions usually closely
follow the division of a system into layers of abstraction. If the
proper trust and integrity relationships are preserved, the opera-
tion of the entire system can be trusted.

B. Integrity and Trust

Integrity is a way of saying that a system is what we expect
it is; that is, it is unmodified. Trust is a more complex relation-
ship, as something can be unmodified, but not trusted, while if
a system is trusted, it must remain unmodified for the trust rela-
tionship to hold.

Integrity and Trust relationships in an Active Network setting
are of several types. In a layered architecture, each layer in a
system trusts the layer below it.

For an Active Network node, a trusted node architecture
can be constructed by making the lowest layers of the system
trusted, and then ensuring that higher layers depend on the in-
tegrity of these lower layers.

There is, however, a significant difference when the actions of
the node are programmable and the programs come from hosts
or other Active Network elements. In this case, we must con-
struct a web of trust between participating elements. Further,
trust is not enough: a downloaded program from a trusted node
may be flawed and may damage the receiving node.Dynamic
integrity checks ensure that the node remains a participating el-
ement of the Active Network in spite of such threats.

It is clear then that any architecture for system security in an
Active Network must use a combination of static checks and
dynamic checks to remain secure.

C. Architecture

The basic layered structure of SANE is shown in Figure 1.
Here, we will explain the overall organization of the architecture

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 3

and its principal goals. The remainder of this article expands on
the components of the architecture.

Initialization Firmware

Loadable Modules

Module Checking

Caml Runtime/Loader

Linux Process VM

O.S. (e.g., Linux)

Card ROMS, CMOS,...

Memory Protection

Boundary

Secure Bootstrap

and Recovery, via

AEGIS

Integrity

Dependencies

Remote Authentication

of Modules

Fig. 1. SANE Architecture

The lower layers of the architecture ensure that the system
startsin an expected state. The design utilizes a secure bootstrap
architecture, called AEGIS, to reach the stage where dynamic
integrity checks can be applied on a per-user or per-packet ba-
sis. AEGIS assumes the integrity of the initialization firmware,
and little else (for recovery, a network-accessible trusted source
is also required). It then repeatedly, until the Active Network el-
ement is operating, checks the integrity of the succeeding layer
in the bootstrap before passing control to it. Integrity is checked
with a digital signature. This process results in theexpectedop-
erational system starting execution; it makes no guarantees that
that system operates correctly. Eventually, we hope to address
at least a fraction of operational correctness issues with the ap-
plication of formal methods.

When the Active Network element is operational, it maintains
security in several ways. First, it performs remote authentication
when required for node-to-node authentication. Second, it pro-
vides a restricted execution environment for the evaluation of
switchlets (the programs received from the network). Finally, it
uses a novel naming scheme we have developed to partition the
node’s services name space between users. The authentication
and integrity checks performed before a language system begins
operating on it, such as checking a digital signature, are static.
This is in contrast to dynamic checks performed (e.g.,by try-
ing to type-check the packet’s code or constrain its execution).
These latter checks are performed frequently and thus must be
performed efficiently; they guarantee that the network element
remains secure, and remains operating.

The issue of where to place restrictions on behavior, the ba-
sis of security, can be addressed using a programming language
run time system. Memory protection is a common solution in
cross-language (and therefore multiple execution environment)
systems. Memory protection hardware coupled with privileged
instructions can be used to provide a ”virtual machine” which
operates with a subset of the instructions and addressing capa-

bilities available to programs such as operating systems. The
hardware support allows these restrictions to be checked dynam-
ically, e.g.,on every memory reference. Use of this approach is
necessary where no restrictions are placed on the programming
environment, but rather only on the executable machine code
form of a program.

A second approach, and the one which we pursue, is to restrict
the programmer in the choice of language, and within the con-
text of this language environment, to restrict programs to those
which are secure. The potential technical advantage of this ap-
proach is that many security properties (e.g.,access to regions
of memory) can be analyzed at compile time, and thus checked
once when compilation takes place rather than dynamically at
run time. Thus, this design approach can provide security-based
restrictions on program actions, while preserving good perfor-
mance.

D. Public Key Infrastructure

A very important element of our proposed architecture is the
public key infrastructure. It is assumed that every user (or group
of users) and every Active element owns a public/private key
pair, and that these keys (and certificates) are used to authenti-
cate and authorize actions of those entities. For the remainder
of this paper, key owners will be referred to as principals.

It is also desirable that the infrastructure allows selective au-
thorization delegation, so that flexible access and resource con-
trol policies can be built. Finally, depending on the underlying
network fabric, our preferred method to revoke a certificate is
by expiration; this minimizes network traffic when authoriza-
tion checks are performed. In our implementation we intend to
use SPKI [26] and PolicyMaker [27].

III. AEGIS ARCHITECTURE

AEGIS modifies the standard IBM PC process so that all ex-
ecutable code, except for a very small section of trusted code, is
verified prior to execution by using a digital signature. This is
accomplished through modifications and additions to the BIOS
(Basic Input/Output System). In essence, this trusted software
serves as the root of an authentication chain that extends to
the evaluator and potentially beyond to “active” packets. In
the AEGIS boot process, either the Active Network element is
started, or a recovery process is entered to repair any integrity
failure detected. Once the repair is completed, the system is
restarted to ensure that the system boots. This entire process
occurs without user intervention. AEGIS can also be used to
maintain the hardware and software configuration of a machine.

It should be noted that AEGIS does not verify the correct-
ness of a software component. Such a component could con-
tain a flaw or some trapdoor that can be exploited. The goal of
AEGIS is to prevent tampering of components that are consid-
ered trusted by the system administrator. The nature of this trust
is outside the scope of AEGIS.

Other work on the subject of secure bootstrapping includes
[28], [29], [30], [31]. A more extensive review of AEGIS and
its differences with the above systems can be found in [32].

4 IEEE NETWORK

A. AEGIS Layered Boot and Recovery Process

We have divided the boot process into several levels to sim-
plify and organize the AEGIS BIOS modifications, as shown
in Figure 2. Each increasing level adds functionality to the sys-
tem, providing correspondinglyhigher levels of abstraction. The
lowest level is Level 0. Level 0 contains the small section of
trustedsoftware, digital signatures, public key certificates, and
recovery code. The integrity of this level is assumed to be valid.
We do, however, perform an initial checksum test to identify
PROM failures. The first level contains the remainder of the
usual BIOS code and the CMOS. The second level contains all
of the expansion cards and their associated ROMs, if any. The
third level contains the operating system boot block(s). These
are resident on the bootable device and are responsible for load-
ing the operating system kernel. The fourth level contains the
operating system, and the fifth and final level contains user level
programs and any network hosts.

The transition between levels in a traditional boot process is
accomplished with a jump or a call instruction without any at-
tempt at verifying the integrity of the next level. AEGIS, on
the other hand, uses public key cryptography and cryptographic
hashes to protect the transition from each lower level to the next
higher one, and its recovery process through a trusted repository
ensures the integrity of the next level in the event of failures [33].

The trusted repository can either be an expansion ROM board
that contains verified copies of the required software, or it can
be another Active node. If the repository is a ROM board, then
simple memory copies can repair or shadow failures. In the case
of a network host, the detection of an integrity failure causes
the system to boot into a recovery kernel contained on the net-
work card ROM. The recovery kernel contacts a “trusted” host
through the secure protocol described in Section III-B to recover
a signed copy of the failed component. The failed component is
then shadowed or repaired, and the system is restarted (warm
boot).

B. Recovery Protocol

The protocol we use throughout this paper and in our archi-
tecture is based on the Station to Station protocol [34]. The
basis of the protocol is the Diffie-Hellman exchange [35] for
key establishment, and public key signatures for authentication
(to avoid man-in-the-middle attacks). In our architecture we use
DSA [36] (a NIST-approved digital signature algorithm), but
other (e.g.,RSA [37] etc.) algorithms can be used.

Briefly, this protocol allows each participant to establish the
identity of the other, discover the operations that the peer is au-
thorized to perform, and allows the two parties to establish a
shared secret to be used for a variety of purposes including the
authentication and encryption of future traffic. This is accom-
plished by having each party send the other both an authentica-
tion certificate and an authorization certificate and using Diffie-
Hellman key exchange to establish the shared secret. The proto-
col is carried out with a total of three messages transmitted. For
more details on the protocol, see [33].

A node that has detected an integrity failure can establish this
secure channel with a repository. It can then request a new ver-
sion of the failed component. The repository will send the new

Element

Expansion ROMs

Network Host

BIOS Section 1

BIOS Section 2

Boot Block

Operating System

Initiate POST

AEGIS ROM

Recovery Transition

Control Transition

Legend

Loader

Core Switchlet

Libraries/ Switchlets

Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

Active
Network

Fig. 2. AEGIS boot control flow

component protected by the shared key to prevent tampering
from an attacker. The component can additionally be signed
by some trusted authority using a digital signature algorithm, to
prove its validity (e.g.,a signature by company X).

IV. BOOTSTRAPPING ASANE NETWORK

Once the node has been brought up in a secure manner, it at-
tempts to establish trust relations with its direct peers. The same
protocol that was described in section III-B is used to exchange
certificates and establish a shared secret key with each of the
peer Active nodes. The certificates exchanged at this stage are
used to verify the neighbors, establish administrative domains
(and their boundaries) and the trust relations inside and between
those domains. The secret key and the trust relations will then
be used to:
� Minimize path setup costs, as we will describe in the sec-
tion VI-A.
� Allow mobile-agent [38], [39] types of applications, where
per-hop authentication (and possibly encryption) may be neces-
sary. An API will be defined that lets a programmer make use
of these services.
� Secure message exchange between peer Active nodes, such as
for routing messages or network management.
� Establish authenticated packet forwarding channels.
� Deter link traffic analysis; the Active node administrator will

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 5

then be able to allocate a percentage of the available bandwidth
as an encrypted, always-busy, channel. An eavesdropper on the
link will then be unable to determine which messages were for-
warded to the peer node. Again, an API will be defined that
programmers can take advantage of.

V. THE ACTIVE NETWORK INFRASTRUCTURE

With the operating system verified and booted, the next step
is to make the node part of the Active Network. This is accom-
plished by loading two final layers. Given our definition of Ac-
tive Networks, not surprisingly, the lower layer of our network
infrastructure is a loader which can load our Active programs.
On top of the loader is a Core Switchlet which provides essen-
tial services. These two layers are permitted to execute a num-
ber of operations that are critical for the operation of the system,
and are thus considered privileged. Higher layers can affect the
underlying system only through the interfaces presented by the
loader and the Core Switchlet. Finally, a non-privileged layer
consisting of a set of library routines which provide common
services is added. This layering, together with the applications
or switchlets, is illustrated in Figure 2.

The lower two layers provide the basis of the dynamic secu-
rity model in the network infrastructure. They do this by using a
strongly-typed language which supports garbage collection and
module thinning. Using these techniques, we move from static
to dynamic enforcement of our security mechanisms.

A. Why Does the Language Matter?

The programming language defines what operations the pro-
grammer can perform. By careful choice of language, we
can limit some of the undesirable actions that a programmer
might unintentionally or maliciously perform. Thus, through
the choice of language, we can prevent certain classes of secu-
rity violations.

The first property that we desire from the language is strong
typing. In a strongly typed language, the only way to convert
data from one type to another is through a well-defined conver-
sion routine. Thus, one can typically transform an integer into a
floating point value, but cannot perform conversions to or from a
pointer type. In a weakly typed language like C, it is this ability
to freely convert types which leads to the need for heavier secu-
rity mechanisms including separation of address spaces between
processes.

The second property that we desire is garbage collection. If
the programmer is able to manage storage directly, two prob-
lems can result. The first is failure to free storage which can
lead to loss of performance throughout the system. The second,
more dangerous problem, occurs when storage is returned to the
allocator and then referenced later. If the storage has been reas-
signed to another user, it is possible to discover another user’s
information. Worse yet, if the address is no longer valid, a fault
results which must be handled to avoid crashing the entire sys-
tem. Garbage collection thus allows us to prevent memory vio-
lations in a common address-space environment.

The third property that we desire is module thinning. By mod-
ules, we mean a set of functions and values which have been
combined into a package by the programmer. Module thin-
ning is a technique which allows us to pick and choose which

functions and values from a module are available to a switchlet
which we load. Module thinning would be equivalent to being
able to change which methods are public or private based on the
requesting class, in the object oriented world. For example, in
the Thread module that we use, there is a function which allows
one to kill any process on the system by specifying its process
ID. This is inappropriate for switchlets, so we do not make this
available except to the loader and the Core Switchlet.

The final property which we require is the ability to dynami-
cally load programs. Clearly, if we intend to run programs that
arrive over the net, we must have a way to link those programs
into the running system and evaluate them. Dynamic loading
gives us this ability. Other systems may use other approaches;
for example, an Active node that uses memory protection to iso-
late processes would probably start a new process and execute
the received code in that context.

The Caml programming language [40] provides these fea-
tures. Caml additionally provides us with a threads interface and
static type checking. The former allows a natural programming
style and precludes the need to implement a scheduler. The lat-
ter pushes many of the costs associated with the type system to
compile time. Thus, checks that other systems perform repeat-
edly at runtime, we perform once at compile time.

We are often asked “Why not Java instead of Caml?” Java
has security properties which are appropriate for applets but are
not suitable for our purposes. Specifically, we cannot access
Ethernet frames from Java without modifying the runtime sys-
tem. It is also difficult to provide different security models to
different users. Since Caml is designed as a general purpose
programming language, it allows us to build our own security
mechanisms. Despite this, there is nothing inherent in our archi-
tecture which limits us to Caml. With appropriate modifications
to the Java runtime, Java could support the SANE architecture.

B. The Loader

The loader forms the basis of the dynamic security for our
network infrastructure. Once it has been securely started by the
AEGIS bootstrap, the loader provides a minimal set of services
necessary to find the Core Switchlet and start it running. It also
provides policy and mechanism for making changes to the Core
Switchlet, if that is desirable.

The loader is also responsible for providing the mechanism
by which modules are loaded. Currently, the mechanisms pro-
vided are loading from disk or loading byte-code received over
the network. The Core Switchlet governs the policy by which
this mechanism may be used and may provide interfaces to the
mechanism.

C. The Core Switchlet

The Core Switchlet is the privileged portion of the system
visible to the user. Through the use of module thinning, it de-
termines which functions and values are visible to which users.
The services that it provides are divided into five modules.

The first module isSafestd . This module provides the
functions that one would expect to find in any programming
language including addition and multiplication as well as more
complex abstractions like lists, arrays, and queues. Many func-
tions including the I/O functions have been thinned from this

6 IEEE NETWORK

module to make it safe.
The next module isSafeunix . This module has been very

heavily thinned; it gives access to Unix error information, some
time related functions, and some types that are needed for the
networking interface that we provide. The rest of the access to
Unix functions has been thinned away.

In order to allow the user to supply error or status messages,
we have aLog module. The user supplies a string which will
be saved to a system log. For convenience while debugging,
we currently write the messages to a disk file, but for security
purposes, we intend to extend this module to limit the amount
and frequency of messages produced by any given thread.

Access to the network is provided by theUnixnet module.
This allows switchlets to access network interfaces for either
sending or receiving frames. Currently, only one switchlet is
allowed to have access to a given interface. In the near future,
we intend to modify this module to receive and demultiplex the
data. Access to the data will then be available to any switchlet,
assuming said switchlet can prove that it has the authority to
access the data as described in section VI-A.

The last of the five modules isSafethread . As mentioned,
this provides a threads package which helps in the structuring
of the system. Each switchlet runs in a thread and is capable of
creating additional threads. When a switchlet is first started, it
is given an identifier inside of an opaque type. (An opaque type
is one which has no conversion functions to or from any other
type. Thus, the identifier cannot be forged.) In order to use
additional resources including creating additional threads, the
switchlet must provide its identifier which allows the runtime
system to check the resources currently consumed and allow or
deny the request for additional usage.

D. The Library

The library is a set of functions which provide useful routines
which do not require privilege to run. The proper set of functions
for the library is a continuing area of research. Some of the
things that are in the library for the experiments that we have
performed include utility functions and implementations of IP
and UDP [41].

E. The Active Bridge: An Active Networking Application

To demonstrate the utility of this infrastructure, we have im-
plemented an Active Bridge [42]. This bridge is built from sev-
eral switchlets which build up layers of functionality. In par-
ticular, by loading just the lowest layer, we can demonstrate a
buffered repeater. The next switchlet adds a learning algorithm.
Finally, the highest layer of the bridge adds spanning tree func-
tionality to give us a nearly IEEE-compliant [43] bridge.

VI. DYNAMIC SECURITY CHECKS

Once the Active node is operating, we rely upon dynamic
security checks and measures to ensure that the access and re-
source use policies defined by the administrator are followed.
Furthermore, the node needs to provide certain guarantees in
regards to service access (essentially, user isolation); some of
these guarantees are provided by the underlying operating sys-
tem and programming language. However, some of our guaran-

tees must be built through additional mechanisms provided by
our system.

A. Access Control

One of the basic goals of Active Networks is allowing users
to install their own protocols on network elements, in the form
of dynamically loaded modules. Since these modules may have
access to critical resources, it is imperative that this access be
controlled. Furthermore, in some cases it is necessary to authen-
ticate packets belonging to some particular packet sequence, if
they need to be handled in some “privileged” manner (e.g.,go-
ing through a firewall or delivery to some service.) In the next
two sections, we extend the mechanism described in section III-
B to provide authentication and authorization mechanisms.

These trust relations will be established along a path of Ac-
tive nodes in most cases. Two possible methods of path estab-
lishment are:
� Via direct negotiation with each node, possibly in parallel.
The implication here is that the initiator can both identify and
communicate directly with these nodes, instead of having to dis-
cover the path.
� In a “telescopic” manner, in which a scout packet would iden-
tify the next node at each step and initiate the negotiation. In this
model, each negotiation has to finish before the next one begins
(in order to establish a communications path from the current
node back to the initiator).

A.1 Principal Authentication/Authorization

On an Active node, when a principal requests an action (such
as use a resource) that is privileged according to local policy,
he has to provide credentials that authorize him to perform said
action. The protocol that would implement the negotiation is the
modified version of the STS protocol, as described in section III-
B.

Once the node and the principal have established a security
association, they can use it to authenticate (and possibly en-
crypt) all or some of the messages between them. The node
retains all the credentials associated with this exchange, so it
can determine whether future attempted actions of the principal
are acceptable.

Figure 3 shows the packet format once the security associ-
ation is established. The authenticator will be included in the
packet along with an SPI (the Security Parameters Index is a
value used along with the principal and/or node identifiers to in-
dicate the particular security association) and a replay detection
counter, similar to the IPsec Authentication Header [44].

.Packet Payload

Replay Detection Counter

Packet Headers

Authenticators

SPI

Authentication Data

.

.
Other Authenticators.

Fig. 3. Authenticator Header

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 7

However, doing this negotiation with every node along a path
to a remote end node is bound to prove costly in two ways:

1. time (both real and CPU cycles spent on the cryptographic
operations)
2. more importantly, packet overhead; for every node in the
path, there would have to be a different authenticator (since the
shared key is different between the principal and each node)

The impact of these problems and their solutions depends on
the environment in which the Active node is operating. Based
on the types of attacks which must be protected against, we de-
scribe a series of measures which may be taken.

The first step is a simple optimization; once the described ne-
gotiation has taken place, the principal can then use the shared
key to distribute another secret key to all the nodes in the path.
By using this common key it is possible to have only one au-
thenticator in the packet, which would be verifiable by all the
nodes in the path.

There are two potential problems with this approach. There is
still significant computational and path establishment overhead.
If connections tend to be reasonably long running, this cost will
be amortized.

A worse problem occurs because a (malicious) node in the
path can perform actions as if it were the user on some other
node, since the key is shared between all the nodes. There are a
few workarounds to this problem. In some environments, it may
be adequate to accept the problem and to establish paths only
through trusted nodes. This is likely to be impossible in other
environments.

A second workaround is to distinguish between packet au-
thentication and privileged operations. Authentication can be
done using the common key, while privileged operations have
to make use of the key known only to the particular node and
the principal. This means that control operations will be safe,
but that “data” can be forged or modified by a malicious or mal-
functioning node. Finally, to avoid delivery of “bad” data to the
remote endpoint, the packet would then have a second authenti-
cator in it, which would be only verifiable by the two endpoints
(and hence be unforgeable by intermediate nodes). If it is im-
portant not to deliver corrupted packets to modules running in
intermediate nodes, there is a certain probabilistic scheme that
can be used to detect tampering, described in Appendix VI-B.

A last optimization is possible, by taking into consideration
the results of section IV. If Active nodes in the same administra-
tive domain have a common set of policies regarding access con-
trol and resource utilization, it may be sufficient to go through
the negotiation protocol once for each such domain (when enter-
ing it), and then having the credentials forwarded as necessary,
as shown in Figure 4. This reduces the computational effort
and the packet overhead necessary to authenticate/authorize the
principal and subsequent packets.

The above optimizations can be applied when the policy spec-
ified by the owner of the packet flow and the individual node
policies allow them. Access policy to a module (once it has
been successfully loaded) is specified by the module itself. The
Active node will then enforce this policy.

Credential Forwarding Possible

B 2

A 3

A 2

A 1
C 1

C 2

C 3

D 2

D 1

B 1

Domain A

Domain B Domain C

Domain D

Complete Authentication Required

Fig. 4. Administrative Clouds and Path Setup

A.2 Single Packet Authentication

For certain classes of applications, the initiating principal may
not know exactly which nodes an Active packet will visit (e.g.,
mobile agent style applications). This means that security asso-
ciation negotiation, as described in the previous section, may not
be feasible. However, these programs may need to perform priv-
ileged operations on the Active nodes, which means that some
form of security guarantees have to be provided. There are a few
approaches that can be taken:

� If the administrative domains through which the switchlet will
travel are knowna priori, the initiating principal may establish
security associations with nodes in those domains. The estab-
lished trust relations described in section IV can then be used to
forward the credentials inside those domains.
� If the switchlet does not need to perform any privileged op-
erations but requires some security guarantees of its own, it can
make use of the existing peer to peer trust relations to do per-hop
authentication and/or encryption. For example, if a switchlet re-
quires that each node in its path belong to a list of nodes that it
trusts, and since it must trust its creating node, at any hop, it is
on a trusted node and can request that that node use its security
relations to forward it to another node that is on its list of trusted
nodes.
� The switchlet can carry all necessary authorizations the initi-
ating principal believes it may need. These authorizations would
be in the form of public key certificates, and the agent needs
to be authenticated through a digital signature. While this ap-
proach is quite simple, it has two primary drawbacks. It wastes
packet space, since all the certificates need to be carried even if
they are not used. Further, it is hard to avoid switchlet-replay,
unless we assume either network wide (roughly) synchronized
clocks or persistent state on the Active nodes (the nodes can
then keep track of nonces or agent signatures that have been
processed, for as long as the authorizations are valid). Provid-
ing these allows a series of potential denial of service attacks.
� When the switchlet needs to perform some privileged opera-
tion and needs credentials, it can notify the initiating principal
who can then initiate a negotiation to establish a security asso-
ciation. Credentials can then be carried along while inside the
same administrative domain. The assumption here is that the

8 IEEE NETWORK

switchlet is able to send the notification message back to the
principal, which depends on the both the underlying network
infrastructure and the node policies.

B. Detection of Malicious Nodes

In this appendix, we turn to the question of how to ensure
that corrupt packets are not delivered to intermediate nodes. We
take an approach which allows the originator to make a trade-
off between additional computation and packet space allocated
for security headers on one hand and security level on the other.
Moreover, we assume that the portion of the packet which might
be corrupted should not be changed by any intermediate node.
Thus, if any node along the path detects any modification to the
immutable part of the packet, it can determine that the packet has
been corrupted and can initiate the appropriate recovery proce-
dure. Modifications by outsiders will continue to be detected by
the common authenticator shared by all nodes as described in
Section VI-A.

Modifications from nodes along the path (who know the se-
cret key) are not so easily detectable. At one extreme (when
using only the common authenticator), those modifications are
simply undetectable. At the other extreme, including in the
packet an authenticator for each node may be too wasteful of
resources.

A first approach would be to include a numberK of authen-
ticators, whereK < N andN is the number of nodes along the
path. After checking the common authenticator, a node would
check the list of additional authenticators for one addressed to
it. If it finds such an authenticator, it verifies that one as well,
using the key known only to itself and the initiator. This extra
verification step is relatively inexpensive, since it just verifies
the common authenticator (as opposed to re-verifying the whole
packet). The principal would include authenticators to a ran-
domly chosen set of nodes for every packet.

This approach has two weaknesses. First, a malicious node
can simply remove all additional authenticators. Second, such
a malicious insider knows which nodes will do the checks, and
therefore can modify a packet when the next node in the path is
not among those, thus allowing delivery of the corrupted packet
to at least one node.

The first problem can be solved by having the principal notify
every node, after the path establishment, how many authentica-
tors each packet will include. The second problem is solved by
making the authenticators anonymous: after the path is estab-
lished, the initiator tells each node what its “pseudonym” will
be. This pseudonym (a value stored in the SPI field) will be
used to associate authenticators to nodes; this way, no node will
know which other nodes will do the additional verification on
a packet. The initiator also announces to all the nodes the list
of valid pseudonyms (but not their bindings) so that a malicious
insider cannot substitute an invalid pseudonym for a valid one
without detection.

A malicious insider now does not know whether the next
node will do the additional verification or not, since it does not
know the binding between pseudonyms and nodes. It cannot
remove any of the additional authenticators, since every node
expects a fixed number of them on each packet. It cannot re-
place pseudonyms with invalid ones (since every node knows

which are the valid pseudonyms) or other valid ones (since the
verification would fail).

If the packet includesK additional authenticators and the path
hasN nodes, the probability of the next node being one that will
do the additional verification isK=N in general, or(K�1)=N if
one of those authenticators was addressed to this node, assuming
a uniform distribution of authenticators among the nodes in the
path. The initiator can decide on the value ofK by balancing
the level of security desired against the acceptable overheads for
computation and packet size.

VII. D YNAMIC RESOURCENAMING

Conceptually, loaded modules can be considered as the in-
terfaces to user defined resources. Other resources potentially
include memory, CPU cycles, bandwidth, disk space, real-time
guarantees etc. Such resources will generally be shared between
different sessions of the same principal, or even between differ-
ent principals. These principals will need to identify (name) the
particular resource they want to use.

The “naive” way of naming (using some user-defined value)
would not work well, because names need to be unique across
the Active Network. If users arbitrarily assign names to their
resources, it is conceivable that there will be accidental naming
collisions; worse yet, forging names is possible, allowing for
resource-in-the-middle attacks. Alternatively, some centralized
authority could assign names per request, making sure these re-
main unique; this solution is unattractive because it does not
scale well as the number of names required increases.

We present a decentralized way of naming dynamic resources
that does not allow name collisions, accidental or malicious. We
are making one assumption: in order to load a module on the Ac-
tive element, the principal must pass some type of authorization
check. Furthermore, this authorization is fine grained; each prin-
cipal is distinguishable for our purposes (although principals can
be groups). We believe that this assumption is reasonable, since
we expect that an Active element owner will probably want to
limit the resources that any principal will potentially consume.
(Moreover, we expect that the owner will want to give different
access and resource rights to different principals.)

There are then different ways of naming a dynamic resource,
each with different semantics:
� The name could be the one-way hash of the code. Assuming
certain properties of the hash function, this uniquely identifies
the module. The two potential drawbacks to this approach are
that different versions of related services have unrelated names
and that users have to discover the hash value (either through
access to the code or by finding a trusted source that will give
the user the hash value).
� The name could be the public key (or its one-way hash) of the
module programmer, along with some other identifier assigned
by the programmer (such as an ASCII string). The assumption
here is that the code may be signed by the programmer (who
may be different from the principal who loaded it on the Active
element). Version control is possible (subject to the structure
of the programmer-assigned identifier). The signature would
have to be verified by the Active node before this name becomes
“available”.
� The name could be the public key (or its one-way hash) of the

ALEXANDER, ARBAUGH, KEROMYTIS, AND SMITH: A SECURE ACTIVE NETWORK ENVIRONMENT ARCHITECTURE 9

principal who loaded the code onto the Active element, along
with some other identifier assigned by the principal. Since the
principal had to pass an authentication/authorization check be-
fore he was allowed to load the code, there is no additional over-
head imposed by this scheme.

Different programs may access the same resource through dif-
ferent names, depending on the trust policies of their respec-
tive owners. The actual service-access mechanism depends on
the node architecture and implementation; we plan to use a
portmapper-like approach, but other approaches (e.g.,language
constructs) are also possible.

Examples of this naming scheme include:
1. fP; “IPv4/version1”g — the IPv4 module (version 1) loaded
by public key the user with public keyP ,
2. fQ; “IPv4/version1”g — the IPv4 module (version 1) written
by the programmer whose public key isQ,
3. fHg — the IPv4 module known to the user by its hash value
H , or
4. fQ; “IPv4/version2”j“IPv4/version1”g — the IPv4 module
(version 2) if available, otherwise the previous version of the
same module by the same programmer.

This naming scheme allows for any possible name-discovery
mechanism. For example “word of mouth,” directory-based [45]
or DNS-like [46] approaches could all be used, separately or co-
existing in the Active Network. The issue is subject to further
research.

VIII. SANE I MPLEMENTATION STATUS AND FUTURE

WORK

The SANE architecture is piece-wise implemented and the
integration of the components is now underway. The AEGIS
secure bootstrap architecture is currently implemented using a
commercial BIOS, and has been tested up to the O.S. kernel
level using the FreeBSD UNIX implementation for Intel x86 ar-
chitecture machines. The AEGIS recovery algorithms are under
development, but will draw on an available implementation of
the IPSEC protocols for OpenBSD.

The dynamic integrity checking and availability-preservation
features of the SwitchWare kernel have been implemented and
tested in the prototype Active Bridge. In particular, the Ac-
tive Bridge demonstrated that the use of functional languages
(which are advantageous from a verification perspective) need
not impose a severe performance penalty; while full details can
be found in Alexander,et al. [42], an unoptimized prototype
Active Bridge demonstrated Ethernet frame forwarding perfor-
mance of ca. 1800 frames/second and a bottleneck throughput
(tested withttcp between two Alphas running Linux) of about
64 Mbps on 100 Mbps Ethernet connections.

Our current effort is integrating these components in a SANE
prototype. The methodology is to use the Utah OS Kit to build
a specialized kernel, and then verify this using AEGIS. This
project is well underway, and will provide a direct integrity
chain between the low-level integrity assumptions and the run-
ning dynamic integrity checks.

Extending the work done in SANE, we feel that there are two
areas that require further study in our goal for a secure Active
Network.

The first area to address is the issue of resource manage-
ment. While initial Active Network prototyping will focus on
best-effort services as a way to obtain operational infrastruc-
ture, resource management is essential to many network services
such as transport of continuous media traffic. Providing explicit
access to the computational and storage capabilities of a node
means that there are some very difficult resource co-scheduling
problems. An Active Network element must become a multi-
ple resource multiplexer. This opens a variety of new attacks
on the network infrastructure including denial of service and
new covert channels. We believe that the successful approach
will take the form of modern operating systems which control
multiplexing at a single system layer, such as the University of
Cambridge Nemesis operating system [47] or the University of
Arizona Scout/Escort system [48]. These systems allow explicit
resource allocation, as well as mechanism for policy enforce-
ment. Putting services in multiplexing-controlled “containers”
prevents most overload-based denial-of-service attacks.

The second issue is one of distributed programming. Our
threat model has focused on building secure nodes, and provid-
ing the infrastructure upon which secure network services can
be built. It is a great challenge to build systems which can ex-
amine programs, even greatly restricted programs, and decide
whether or not they are safe to load. While the halting problem
springs to mind, we have a much less difficult problem at the
node. Even if we use a language such as the Programming Lan-
guage for Active Networks (PLAN) [13], some programs must
resort to “services” which allow an authorized programmer to
perform actions outside of the scope of PLAN itself. It is easy to
imagine a well-meaning programmer writing a simple service to
read a packet from an input port and write it to two output ports;
with such a program a multicast facility might be constructed.
If this service was indiscriminately deployed however, packets
could be replicated without bound and the network could col-
lapse of overload. This points out the need for systematic global
checking and cooperation between nodes, for which we have
provided some infrastructure in SANE. The distinction this il-
lustrates is the difference between “node safe” programs and
“network safe” programs. We believe that techniques such as
the Pi-calculus [49] provide a valuable avenue for exploration.

REFERENCES

[1] J. E. van der Merwe and I. M. Leslie, “Switchlets and dynamic virtual
ATM networks,” inProc. of the Fifth IFIP/IEEE International Symposium
on Integrated Network Management, San Diego, CA., May 1997.

[2] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.
Minden, “A Survey of Active Network Research,”IEEE Communications
Magazine, pp. 80–86, January 1997.

[3] J. M. Smith, D. J. Farber, C. A. Gunter, S. M Nettles, D. C. Feldmeier, and
W. D. Sincoskie, “SwitchWare: Accelerating network evolution,” Tech.
Rep. MS-CIS-96-38, CIS Dept. University of Pennsylvania, 1996.

[4] Jon Postel, “INTERNET protocol,” Internet RFC 791, 1981.
[5] Jon Postel, “Transmission control protocol,” Internet RFC 793, 1981.
[6] D. C. Feldmeier, A. J McAuley, J. M. Smith, D. S. Bakin, W. S. Marcus,

and T. M. Raleigh, “Protocol boosters,”IEEE Journal on Selected Areas in
Communications (Special Issue on Protocol Architectures for 21st Century
Applications, vol. 16, no. 3, pp. 437–444, April 1998.

[7] C. Brendan S. Traw and J. M. Smith, “Striping within the network subsys-
tem,” IEEE Network, pp. 22–32, July/August 1995.

[8] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden, “The Design and Implementation of an Op-
erating System to Support Distributed Multimedia Applications,”IEEE
Journal on Selected Areas in Communications, vol. 14, no. 7, pp. 1280–
1297, September 1996.

10 IEEE NETWORK

[9] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S.
Stornetta, “Spawn: A distributed computational economy,”IEEE Trans-
actions on Software Engineering, , no. 2, pp. 103–117, February 1992.

[10] K. Kuwabara, T. Ishida, Y. Nishibe, and T. Suda, “An equilibratory market-
based approach for distributed resource allocation and its application to
communication network control,”World Scientific, pp. 53–73, 1996.

[11] C. Partridge and A. Jackson, “Smart packets,” Tech. Rep., BBN, 1996,
http://www.net-tech.bbn.com-/smtpkts/smtpkts-index.html.

[12] D. J. Farber and J. R. Pickens, “The Overseer: A Powerful Communica-
tions Attribute for Debugging and Security in Thin-Wire Connected Con-
trol Structures,” Tech. Rep. 75, University of California at Urvine, 1975.

[13] “Plan web page,” http://www.cis.upenn.edu/˜ switchware/PLAN/.
[14] D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. D. Keromytis,

J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith, “The switchware
active network architecture,”IEEE Network Magazine, special issue on
Active and Programmable Networks, 1998.

[15] Theodore Faber, “Using active networking to enhance feedback conges-
tion control mechanisms,”IEEE Network Magazine, special issue on Ac-
tive and Programmable Networks, 1998.

[16] D. Wetherall, U. Legedza, and J. Guttag, “Introducing new internet ser-
vices: Why and how,”IEEE Network Magazine, special issue on Active
and Programmable Networks, 1998.

[17] M. Calderon, M. Sedano, A. Azcorra, and C. Alonso, “The support of
active networks for fuzzy-tolerant multicast applications,”IEEE Network
Magazine, special issue on Active and Programmable Networks, 1998.

[18] S. E. Deering, “Host extensions for IP multicasting,” Internet RFC 1112,
1989.

[19] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource
ReSerVation protocol (RSVP) – version 1 functional sepcification,” Inter-
net RFC 2208, 1997.

[20] R. Atkinson, “Security architecture for the internet protocol,” RFC 1825,
August 1995.

[21] L.T. Heberlein and M. Bishop, “Attack Class: Address Spoofing,” inPro-
ceedings of the 19th National Information Systems Security Conference,
October 1996, pp. 371–377.

[22] “Cert advisory ca-96.26: Denial-of-service attack via ping,”
ftp://info.cert.org/pub/certadvisories/CA-96.26.ping, October 1996.

[23] M.D. Schroeder, “Engineering a security kernel for MULTICS,” inFifth
Symposium on Operating Systems Principles, November 1975, pp. 125–
132.

[24] F. Mayer M. Branstad, H. Tajalli and D. Dalva, “Access mediation in a
message-passing kernel,” inIEEE Conference on Security and Privacy,
1989, pp. 66–71.

[25] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole, “The op-
erating system kernel as a secure programmable machine,” inProceedings
of the Sixth SIGOPS European Workshop, September 1994, pp. 62–67.

[26] Carl M. Ellison, Bill Frantz, Ron Rivest, and Brian M. Thomas, “Simple
Public Key Certificate,” Work in Progress, April 1997.

[27] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,”
in Proc. of the 17th Symposium on Security and Privacy. 1996, pp. 164–
173, IEEE Computer Society Press.

[28] J.D. Tygar and Bennet Yee, “Dyad: A system for using physically secure
coprocessors,” Technical Report CMU–CS–91–140R, Carnegie Mellon
University, May 1991.

[29] Bennet Yee,Using Secure Coprocessors, Ph.D. thesis, Carnegie Mellon
University, 1994.

[30] Paul Christopher Clark,BITS: A Smartcard Protected Operating System,
Ph.D. thesis, George Washington University, 1994.

[31] Butler Lampson, Martin Abadi, and Michael Burrows, “Authentication in
distributed systems: Theory and practice,”ACM Transactions on Com-
puter Systems, vol. v10, pp. 265–310, November 1992.

[32] William A. Arbaugh, David J. Farber, and Jonathan M. Smith, “A Secure
and Reliable Bootstrap Architecture,” inProceedings 1997 IEEE Sympo-
sium on Security and Privacy, May 1997, pp. 65–71.

[33] William A. Arbaugh, Angelos D. Keromytis, David J. Farber, and
Jonathan M. Smith, “Automated Recovery in a Secure Bootstrap Process,”
in To appear in Network and Distributed System Security Symposium. In-
ternet Society, March 1998, pp. 155–167.

[34] W. Diffie, P.C. van Oorschot, and M.J. Wiener, “Authentication and Au-
thenticated Key Exchanges,”Designs, Codes and Cryptography, vol. 2,
pp. 107–125, 1992.

[35] W. Diffie and M.E. Hellman, “New Directions in Cryptography,”IEEE
Transactions on Information Theory, vol. IT–22, no. 6, pp. 644–654, Nov
1976.

[36] “Digital Signature Standard,” Tech. Rep. FIPS-186, U.S. Department of
Commerce, May 1994.

[37] RSA Laboratories,PKCS #1: RSA Encryption Standard, version 1.5 edi-
tion, 1993, November.

[38] Frederick Colville Knabe,Language Support for Mobile Agents, Ph.D.
thesis, CMU, December 1995.

[39] Günter Kajoth, Danny B. Lange, and Mitsuru Oshima, “A security model
for aglets,” IEEE Internet Computing, vol. 1, no. 4, July - August 1997.

[40] Xavier Leroy, The Caml Special Light System (Release 1.10), INRIA,
France, November 1995.

[41] Jon Postel, “User datagram protocol,” Internet RFC 768, 1980.
[42] D. S. Alexander, M. Shaw, S. M. Nettles, and J. M Smith, “Active bridg-

ing,” in Proc. 1997 ACM SIGCOMM Conference, 1997.
[43] IEEE, “Mediaaccess control (mac) bridges,” Tech. Rep. ISO/IEC 10038,

ISO/IEC, 1993.
[44] R. Atkinson, “IP authentication header,” RFC 1826, August 1995.
[45] C. Huitema, “The X.500 directory services,”cnis, vol. 16, no. 1-2, pp.

161–166, Sept. 1988.
[46] J. Postel, “Domain name system structure and delegation,” Request for

Comments (Informational) 1591, Internet Engineering Task Force, Mar.
1994.

[47] R. Black, P. Barham, A. Donnelly, and N. Stratford, “Protocol implemen-
tation in a vertically structured operating system,” inProc. 22nd Annual
Conference on Local Computer Networks, 1997.

[48] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, T. A. Proeb-
sting, and J. H. Hartman, “Scout: A communications-oriented operating
system,” Tech. Rep., Department of Computer Science, University of Ari-
zona, June 1994.

[49] Robin Milner, Joachim Parrow, and David Walker, “A calculus of mobile
processes, Parts I and II,”Journal of Information and Computation, vol.
100, pp. 1–77, Sept. 1992.

