
A Holistic Approach to Service Survivability∗

Angelos D. Keromytis∗ Janak Parekh∗ Philip N. Gross∗ Gail Kaiser∗
Vishal Misra∗ Jason Nieh∗ Dan Rubenstein† Sal Stolfo∗

∗Department of Computer Science †Department of Electrical Engineering
Columbia University

{angelos,janak,phil,gail,misra,nieh,danr,sal}@cs.columbia.edu

ABSTRACT
We present SABER (Survivability Architecture: Block, Evade, Re-
act), a proposed survivability architecture that blocks, evades and
reacts to a variety of attacks by using several security and sur-
vivability mechanisms in an automated and coordinated fashion.
Contrary to the ad hoc manner in which contemporary survivable
systems are built–using isolated, independent security mechanisms
such as firewalls, intrusion detection systems and software sandboxes–
SABER integrates several different technologies in an attempt to
provide a unified framework for responding to the wide range of
attacks malicious insiders and outsiders can launch.

This coordinated multi-layer approach will be capable of de-
fending against attacks targeted at various levels of the network
stack, such as congestion-based DoS attacks, software-based DoS
or code-injection attacks, and others. Our fundamental insight is
that while multiple lines of defense are useful, most conventional,
uncoordinated approaches fail to exploit the full range of available
responses to incidents. By coordinating the response, the ability to
survive successful security breaches increases substantially.

We discuss the key components of SABER, how they will be in-
tegrated together, and how we can leverage on the promising results
of the individual components to improve survivability in a variety
of coordinated attack scenarios. SABER is currently in the proto-
typing stages, with several interesting open research topics.

Categories and Subject Descriptors
C.2.0 [Security and Protection]: Denial of Service; D.2.0 [Protection
Mechanisms]: Software Patching

General Terms
Reliability, Survivability, Overlay Networks, Intrusion Detection.

1. INTRODUCTION
∗Parts of this work are suported by DARPA contract No. F30602-
02-2-0125 (FTN program), with additional support from Cisco and
Intel Corp.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SSRS ’03, October 31, 2003, Fairfax, VA, USA.
Copyright 2003 ACM 1-58113-784-2/03/0010 ...$5.00.

A secure system meets or exceeds an application-specified set of
security policy requirements. For example, in message delivery, the
high-level requirements may be that the correct information gets to
the right person, in the right place, at the right time. The details
of “right” are determined by the application’s needs. For example,
during a crisis, the network can be used to carry communications
between widely dispersed “static” sites (e.g., various federal, state,
and city agencies) and (semi-) roaming stations and users. Sim-
ilarly, timely message delivery is crucial for battlefield or stock-
trading tasks. Traditional security mechanisms have addressed the
first two parts of this informal definition of security, but largely ig-
nore the timeliness and/or service guarantee issues.

The U.S. military has embraced the concept of “getting inside the
enemy’s decision cycle”, i.e., fighting so fast that the enemy cannot
organize a coherent defense. This strategy has proven extremely
effective in the battlefield. The same strategy can be applied in the
domain of communications, especially against organizations that
increasingly rely on information sharing, such as financial firms
or the US military itself. When such attacks are directed against
widely-used and/or critical services or software (e.g., the Internet
DNS infrastructure or an information-sharing web-based service),
they offer the potential for complete shutdown of the target’s op-
erational network. Thus, from an attacker’s point of view, any of
a number of attacks are sufficient (even if not equally effective) in
gaining an advantage: network DoS attacks, software DoS attacks,
code-injection attacks, etc.

Currently, most commercial responses to this diverse array of
vulnerabilities has been to apply several discrete solutions:

• Utilization of network-based firewalls to avoid exposing ser-
vices to the Internet. However, the increasing number of ser-
vices whose data is piped over HTTP (either for dynamic
web content or Web Services-based solutions [71]) rapidly
reduces the utility of firewalls, especially against DDoS at-
tacks, where service or pipe saturation is now not only feasi-
ble, but frequent [52].

• Deployment of network- and host-based intrusion detection
systems (NIDS and HIDS, respectively). Both, however, suf-
fer from the “chatty” problem: these services typically gen-
erate very extensive log reports of every potential attack, but
typically require human inspection to see what may have
been an actual attack [53]. Moreover, the human must de-
vise and deploy a response.

• Manual installation and deployment of patches. This is a
complex and tedious process on any deployed platform; mod-
ern server operating systems, for example, are shipping with
hundreds of known vulnerabilities only a few months after

release [4, 7]; moreover, the turnaround time for patch cre-
ation and release is rapidly becoming insufficient.

All of these approaches as well as others have a more funda-
mental weakness: they require manual user intervention. In other
words, the self-survivability of services is known to be weak, and
human intervention is required when attacks penetrate or some-
times merely threaten existing safeguards. While this worked in
older days, the pervasiveness of today’s Internet solutions means
that a large number of vulnerable hosts are present, from which at-
tacks may be launched too rapidly for a human response. As the
SQL Slammer worm recently demonstrated [13, 14] the response
time of the average IT department was and is insufficient against
the next generation of rapidly spreading exploits.

Auto-response systems are slowly becoming more pervasive; how-
ever, the majority of such approaches only solve limited subsets of
the above challenges, such as automated patch installs [5]. While
this helps to reduce latency, such mechanisms often have no fall-
back strategy, nor can they take advantage of the different trade-
offs in terms of effectiveness, performance, and availability that the
different solutions offer. For example, if the information gleaned
from a NIDS were to be used in an autonomic fashion, one might
be able to trigger an auto-patching subsystem in faster-than-human
time and repair the problem before significant damage is sustained.
Should this process fail, we may be willing to sandbox the service,
or migrate it to a new location.

We therefore propose a framework, SABER (Survivability Ar-
chitecture: Block, Evade, React), which allows the synthesis of
multiple mechanisms to not only prevent attacks, but to also main-
tain the survivability of services under active attack, and to do so in
an autonomic fashion. By coordinating information gleaned from
and actions performed between the different first-class core compo-
nents, we can minimize unnecessary human intervention. We dis-
cuss how our existing components will work as security providers
within SABER, and how they address these concerns.

Paper Organization. The remainder of this paper is organized
as follows: first, the SABER model is presented, with each of the
required constituent core components. We then describe our com-
ponent implementations in more detail, followed by a section that
demonstrates how these technologies can coordinate and collabo-
rate in a variety of scenarios. Finally, we discuss future develop-
ment of SABER as well as related work.

2. ARCHITECTURE
An overview of SABER is shown in Figure 1. SABER brings

together and coordinates several components: it selects the most
appropriate ones given the nature of the threat, state of the ser-
vice and the network, and the ability of the individual components
to counter the threat. Currently, SABER uses the following reac-
tion/protection mechanisms:

• A network denial-of-service (DoS) resistant architecture [40];

• Intrusion and anomaly detection tools, placed within service
contexts to detect both malicious activity as well as stealthy
“scans and probes”;

• A process migration system [56] that can be used to move a
service to a new location that is not (currently) targeted by an
attacker;

• An automated software-patching system [66] that dynami-
cally fixes certain classes of software-based attacks, such as
buffer overflows;

• A high-level coordination and control infrastructure, to cor-
relate and coordinate the information and control flow of the
aforementioned constructs.

We discuss each of these constructs in detail and motivate them
in the following subsections. It is important to recognize that SABER
is designed in a modular fashion, so each of these components can
be adopted or discarded based upon the survivability requirements
of the services being offered. Furthermore, we can integrate other
components as they become available.

2.1 DoS Resistant Architecture
Denial-of-service attacks are among the most prevalent and suc-

cessful form of attacks on the Internet today [52]. The funda-
mental problem with most services exposed on the Internet, and
the reason they are vulnerable to this form of attack, is the inabil-
ity to determine the difference between legitimate traffic (specific
requests appropriate to the service’s business) as opposed to ille-
gitimate “junk” traffic (random requests just designed to induce
load). This rarely has to do with poor coding practices (e.g., buffer
overflows), but rather points to the fact that the number of (high-
bandwidth) clients on the Internet is scaling up faster than the ca-
pacity of providers to support a large number of them. Current
approaches, including the common tactic of utilizing manual fire-
walling at farther-away points from the attacked network, only have
had limited success and almost always require further human inter-
vention, reducing the survivability of the service under attack.

Therefore, tools are required that can rapidly determine whether
a service request is legitimate and directed, and therefore if a provider
should consume resources processing request. In our architecture,
we use a DoS-resistant network topology that pushes the “attack
perimeter” into the Internet core, which is assumed to be non-
DoSable, while letting legitimate traffic through to the service [40].
(If the core were to be successfully attacked in this manner, it seems
unlikely that any network-based approach could avoid unavailabil-
ity.) Furthermore, we combine that system with security protocols
that are themselves hardened against DoS attacks [15].

2.2 Intrusion Detection Tools
While intrusion detection tools themselves cannot prevent at-

tacks, their presence is necessary for two reasons: to help detect
an attack in progress, as well as to determine probes of the service
network, which may be a precursor sign to an impending attack
[49]. SABER employs both the two most common forms of intru-
sion detection:

• Surveillance detection looks for known bad types of network
traffic, an excess of which might indicate an attempt at a
stealthy scan (for example, half-open TCP connections or
ICMP scans).

• Anomaly detection uses a training approach, where “normal
behavior” is learned and abnormal traffic or behavior gen-
erates an alert (such as a logged-in user executing unusual
UNIX commands).

One of the known characteristics of intrusion detection is its pen-
chant to generate many alerts, including a mix of legitimate alerts
and “false positives”. In the SABER architecture, the alerts are
quickly coordinated with other components to help determine the
legitimacy of the threat, and to help preemptively adjust behavior
to match. For example, a large number of unusual TCP scans on a
certain set of ports might indicate an attacker looking for vulnera-
bilities; the generated alerts might be communicated to the migra-

IDS sensor

Service

AttackerLegitimate
User

Malicious
Insider

DDos attack

Attack against
SOS

SOS Overlay

Service migration

via ZAP

Suspicious
behavior notification

Remote exploit

Automatic software
patching system

Patched service
distribution

attempt
Wide−Area
Network

Figure 1: The SABER architecture.

tion component, to help the system respond in the most efficient
way to maximize survivability.

2.3 Process Migration And Software Patching
Both process migration and software patching tools are critical in

enhancing the survivability of the exposed service not only before
an attack but especially during or after an attack, by either altering
the process or moving it to a more secure location.

Process migration encompasses tools that automate the ability
of processes to suspend state, move to another host, and to re-
sume where computation was left off. By leveraging such tools,
services under attack may either move to less vulnerable hosts or
be suspended until such time as an attack has passed. Often, such
migration is critical to survivability: instead of having to restart
a service which may be in the middle of a (possibly distributed)
computational task, we simply move it to a new location, which the
surveillance/anomaly detection subsystem indicates as being less
vulnerable to attackers at the moment. Naturally, the system should
balance this against the possibility of attackers somehow being able
to determine the (new) location of a service and cause a new mi-
gration (thereby causing an indirect DoS attack).

The goal of the automated software patching component, on the
other hand, is to provide an autonomic equivalent to the manual
task that most system administrators face on a daily basis: work-
ing around application vulnerabilities. While the canonical action
is to wait for a manufacturer-supplied patch and to install it within
a timely fashion, modern exploits and attacks leave little room for
a manually-initiated response. Instead, autonomic patching aims
to work around the vulnerable code by monitoring a copy of it
for exploits (such as buffer overflows, whose violation of mem-
ory boundaries can be determined), and to automatically fortify or
reroute around such code. This enhances survivability by deploying

a solution that provides either no loss of functionality or, at worst,
minimal impact, without having to wait for an administrator take
down the service, patch it, and bring it up, which may also happen
long after an attack has taken place. The downside of the approach
is that it can only address specific types of software flaws, and that
despite its high success rate (80%) [66] it is by no means a panacea.

2.4 Coordination and Control Infrastructure
The final critical component in the SABER model is infrastruc-

ture to enable the various core components to communicate and
correlate efficiently and in a decentralized fashion. Without such
an ability, SABER would be little more than a decentralized collec-
tion of strong security tools. But with this infrastructure, SABER
can respond to attacks more rapidly, deploy solutions and enable
services to maximize survivability.

We propose a distributed, network-scale publish-subscribe event-
based infrastructure as the basis for communication. Events cor-
respond naturally to low-level intrusion detection alerts and are
lightweight, enabling rapid communication to other SABER com-
ponents as soon as attacks are detected. We also propose an event-
based correlation infrastructure that is able to track multiple in-
puts over time (e.g., DoS and intrusion detection) and determine
whether a multiple-method coordinated attack is in process, or if
an attack is being carried out in stages.

In essence, this infrastructure forms a workflow component to
the security capabilities developed in SABER and enables it to pro-
vide a comprehensive response with minimal latency, critical to en-
abling the framework to be cohesive and coordinated.

2.5 Putting It All Together
In a target service network “enhanced” by SABER, the DoS-

resistant architecture is placed at the perimeter of the service net-

work, where the service itself might ordinarily be exposed to ei-
ther bandwidth or computation-based DoS attacks. IDS sensors
are placed in various nodes both inside the service network and
within the DoS-resistant components on the perimeter. Process
patching and migration services are available within the network,
ready to be used on short notice based on data collected by sen-
sors and as directed by the C2I mechanisms. These components
are tied together via the publish-subscribe event-based information
bus, which provides rapid, low-latency communication of alerts, at-
tacks, repairs/changes and related security events. One last impor-
tant consideration is the hardening of SABER nodes themselves;
SABER is designed to “drink its own medicine” and support in-
trusion detection, self-migration, etc. on its own nodes within the
network.

As this demonstrates, SABER remains highly modular and de-
centralized, thereby less vulnerable to a coordinated attack itself;
i.e., if the process patching component were to be bypassed, the
remaining components could still function independently; and, as
mentioned before, components can be added and removed depend-
ing on requirements. SABER is also designed to support “passive”
operation, e.g., brittle networks can choose to employ SABER in
a non-autonomic fashion, where users can be involved in the pro-
cess; however, SABER’s technologies are truly designed to support
low-latency, independent operation.

A concrete integration example is discussed in Section 4.

3. COMPONENTS
We now describe some of the components of the SABER archi-

tecture in more detail. For complete details, implementation and
results, the reader is referred to the cited papers. Some of the
components are in a fairly mature stage of research and develop-
ment, while others are subject of ongoing research. Readers who
are familiar with the material are encouraged to skip the appropri-
ate sections and focus on Section 4, where we outline how these
components work together in detail.

3.1 Secure Overlay Services (SOS)
SOS [40] addresses the problem of securing communication on

top of today’s existing IP infrastructure from DoS attacks, where
the communication is between a pre-determined location and users,
located anywhere in the wide-area network, who have authoriza-
tion to communicate with that location. The focus is on protect-
ing a site that stores information that is difficult to replicate due
to security concerns or due to its dynamic nature. An example is
a database that maintains timely or confidential information such
as building structure reports, intelligence, assignment updates, or
strategic information. SOS assumes that there is a pre-determined
subset of clients scattered throughout the wide-area network who
require (and should have) access to this information, although more
recent work [24] somewhat relaxes this requirement.

The approach taken by SOS is proactive. In a nutshell, the por-
tion of the network immediately surrounding the target (location
to be protected) aggressively filters and blocks all incoming pack-
ets whose source addresses are not “approved”. The small set of
source addresses (potentially as small as 2-3 addresses) that are
“approved” at any particular time is kept secret so that attackers
cannot use them to pass through the filter. These addresses are
picked from among those within a distributed set of nodes through-
out the wide area network, that form a secure overlay: any trans-
missions that wish to traverse the overlay must first be validated
at entry points of the overlay. Once inside the overlay, the traffic
is tunneled securely for several hops along the overlay to the “ap-
proved” (and secret from attackers) locations, which can then for-

ward the validated traffic through the filtering routers to the target.
The two main principles behind this design are: (i) elimination of
communication “pinch” points, which constitute attractive DoS tar-
gets, via a combination of filtering and overlay routing to obscure
the identities of the sites whose traffic is permitted to pass through
the filter, and (ii) the ability to recover from random or induced
failures within the forwarding infrastructure or among the overlay
nodes.

The overlays are secure with high probability, given attackers
who have a large but finite set of resources to perform the attacks.
The attackers also know the IP addresses of the nodes that par-
ticipate in the overlay and of the target that is to be protected, as
well as the details of the operation of protocols used to perform the
forwarding. However, the assumption is that the attacker does not
have unobstructed access to the network core. That is, the model
allows for the attacker to take over an arbitrary (but finite) number
of hosts, but only a small number of core routers. It is more difficult
(but not impossible) to take control of a router than an end-host or
server, due to the limited number of potentially exploitable services
offered by the former. While routers offer very attractive targets to
hackers, there have been very few confirmed cases where take-over
attacks have been successful. Finally, SOS assumes that the at-
tacker cannot acquire sufficient resources to severely disrupt large
portions of the backbone itself (i.e., such that all paths to the target
are congested).

A stochastic analysis of the SOS architecture shows that even at-
tackers that are able to launch massive attacks are very unlikely to
prevent successful communication. For instance, attackers that are
able to launch attacks upon 50% of the nodes in the overlay have
roughly one chance in one thousand of stopping a given commu-
nication from a client who can access the overlay through a small
subset of overlay nodes. Furthermore, use of SOS increases end-
to-end latency by an average factor of 2, which we believe is an
acceptable alternative to severely degraded or even no connectiv-
ity to the remote service. Attacks against the SOS infrastructure
itself only cause a temporary disruption of communication, on the
order of 10 seconds; furthermore, they must persist — otherwise
the overlay will recover from component failures and re-integrate
them seamlessly. More details can be found in [40, 24, 41].

3.2 Intrusion Detection Systems

3.2.1 Surveillance Detection
Security software must detect surveillance activities to counter

the escalating sophistication and sheer prevalence of today’s on-
line attack procedures. Surveillance, the scanning of target IPs and
ports for vulnerabilities, is the fundamental means to gather online
attack intelligence, and is an increasingly common part of precise
attack targeting. This is reflected by an alarmingly high proportion
of connection attempts that are indeed surveillance probes. The
origins of such attempts range across most countries of the world,
initiated by human attack activities as well as worms and other-
wise captured drones. The range of technical strategies to perform
surveillance is growing in variety and sophistication as methods
become more precise and more stealthy (i.e., camouflaged against
detection, such as by stretching slowly over time or using multi-
ple source addresses) [30, 55, 67]. Only with the full-scale detec-
tion of surveillance activities can security systems be augmented to
match this arms race, organizing the flood of detected surveillance
attempts with watch lists, correlation and intelligence profiling.

Full-scale surveillance detection, i.e., detecting this range of sur-
veillance activities with high precision, presents a series of tech-
nical challenges. For example, real-time tracking of all prospec-

tive scanners within a high bandwidth network presents challenges
with respect to memory use and speed, given the temporal analyses
necessary to detect increasingly prevalent and stealthy scanning.
Moreover, certain network tap points suffer from crippling infor-
mation loss, such as the partial information accessible at a peering
center due to unpredictably asymmetric routing.

System Detection (SysD)’s surveillance detection system [63]
employs a cascading filter design that coordinates a series of spe-
cialized heuristics across extrapolated connection records, individ-
ual probes, scans and coordinated scanning groups. This design
provides scalability via data reduction across aggregate filters, and
detects scans and probes in high-bandwidth environments with high
coverage and a low false positive (FP) rate. Two variations special-
ize over environment class: enclave surveillance detection (ESD)
and peering center surveillance detection (PSD).

ESD is implemented and fully operational as a module in SysD’s
Antura Recon platform (formerly known as the Hawkeye Opera-
tional Platform). The infrastructure includes tools and APIs that
allow various intrusion detection components to be “plugged in”
and deployed. Antura modules include analysis algorithms (e.g.,
ESD), feature extraction and data parsing procedures.

3.2.2 Anomaly Detection
Our work in anomaly detection has spanned multiple domains.

We discuss two common features here: registry (configuration) and
filesystem access, both of which are prevalent in situations where
an attacker gains privileged access to a system.

3.2.2.1 Registry-based anomaly detection.
Microsoft Windows is one of the most popular operating sys-

tems today, and also one of the most often attacked. There are two
widely deployed first lines of defense against malicious software
on such hosts: virus scanners and security patches. Virus scan-
ners attempt to detect malicious software on the host, and security
patches are operating system updates to fix the security holes that
malicious software exploits. Both of these methods suffer from the
same drawback: they are effective against known attacks but are
unable to detect and prevent new types of attacks.

A second line of defense is through IDS systems. Unfortunately,
most commercial host-based IDS systems that are widely in use
are based on signature algorithms, and require previous knowledge
of an attack and are rarely effective on new attacks. Recently,
however, there has been growing interest in the use of data min-
ing techniques such as anomaly detection in IDS systems [45, 48].
Anomaly detection algorithms build models of normal behavior in
order to detect deviant behavior and which may correspond to an
attack [19, 26]. The main advantage of anomaly detection is that
it can detect new attacks and can be an effective defense against
new malicious software. Anomaly detection algorithms have been
applied to network intrusion detection [26, 36, 47] and also to the
analysis of system calls for host based intrusion detection [28, 29,
33, 46, 75]. However, there are two problems to the system call ap-
proach to host based IDS which inhibits their use in actual deploy-
ment. The first is that the computational overhead of monitoring
all system calls is very high, which degrades the performance of a
system. Additionally, the distribution of system calls is irregular by
nature, which makes it difficult to differentiate between normal and
malicious behaviors, which may cause a high false positive rate.

We have developed a new approach to host-based IDS that mon-
itors a program’s use of the Windows Registry, called RAD (Reg-
istry Anomaly Detection), which monitors the accesses to the reg-
istry in real-time and detects the actions of malicious software [16].
The Windows Registry is very heavily used, making it a good source

of audit data. By building a sensor on the registry and applying the
information gathered to an anomaly detector, we can detect activ-
ity that corresponds to malicious software. The main advantages
of monitoring the Windows Registry is that the activity is regular
by nature, can be monitored with low computational overhead, and
almost all system activities interact with the registry.

Our anomaly detection algorithm is a registry-specific version of
PHAD (Packet Header Anomaly Detection) [48]. An anomaly de-
tection algorithm is then applied to this data to detect abnormal reg-
istry behavior which corresponds to the actions of malicious soft-
ware. Modifications of the PHAD algorithm are also made in the
RAD system. Results of experiments evaluating the RAD system
show that it is effective in detecting attacks while maintaining a low
rate of false alarms.

3.2.2.2 File-based anomaly detection.
In addition to Registry access, file-based anomaly detection is

critical in Unix environments, since there is no central registry to
monitor. Anomalous process executions (possibly those that are
malicious) may not truly damage a system until the malicious exe-
cution attempts to alter or damage the machine’s permanent store.
Thus, a malicious attack that alters run-time memory is perhaps
less important than actions that attempt to damage permanent store
of the host in question.

We focus our auditing on the underlying file system, as any ma-
licious execution intended to damage a host will ultimately attempt
to manipulate it. The File Wrapper Anomaly Detection System
(FWRAP) is a host-based anomaly detector that utilizes file wrap-
per technology to monitor file system accesses. It is the counterpart
of the registry ”wrapper” developed for RAD for the registry. The
file wrappers implemented in FWRAP are based upon work de-
scribed in [78] and operate in much the same fashion as the wrapper
technology described in [42, 18]. The wrappers are implemented
to extract a set of information about each file access including, for
example, date and time of access, host, UID, PID, and filename,
etc. Each such file access thus generates a record describing that
access. Intuitively, these records provide the same type of informa-
tion associated with a Windows Registry access, and as such can
be modeled in the same fashion.

We also use the Probabilistic Anomaly Detection (PAD) algo-
rithm to model file system accesses [32]. We apply PAD to ana-
lyze and model file access data, merged with information about the
running processes that invoke such accesses, to train an anomaly
detector in much the same fashion as accomplished with RAD. In
the same way RAD modeled the actions of running programs via
the System Registry, we are modeling running processes via the
underlying file system.

3.3 Process Migration Using ZAP
Process migration [56] is the ability to transfer a process from

one machine to another. It is a useful facility in distributed comput-
ing environments, especially as computing devices become more
pervasive and Internet access becomes more ubiquitous. Among
the potential benefits of process migration are fault resilience by
migrating processes off of faulty hosts, data access locality by mi-
grating processes closer to the data, better system response time
by migrating processes closer to users, dynamic load balancing
by migrating processes to less loaded hosts, and improved service
availability and administration by migrating processes before host
maintenance so that applications can continue to run with minimal
down-time.

Although process migration provides substantial potential bene-
fits and many approaches have been considered [50], achieving pro-

cess migration functionality has been difficult in practice. Toward
this end, there are four important goals that need to be met. First,
given the large number of widely used legacy applications, appli-
cations should be able to migrate and continue to operate correctly
without modification, without requiring that they be written using
uncommon languages or toolkits, and without restricting their use
of common operating system services. For example, networked
applications should be able to maintain their network connections
even after being migrated. Second, migration should leverage the
large existing installed base of commodity operating systems. It
should not necessitate use of new operating systems or substantial
modifications to existing ones. Third, migration should maintain
the independence of independent machines. It should avoid creat-
ing residual dependencies that limit the utility of process migration
by requiring machines where a process was previously executed to
continue to service a process even after it has migrated to another
machine. Fourth, migration should be fast and efficient. Overhead
should be small for normal execution and migration.

To overcome limitations in previous approaches to general-purpose
process migration, we have created Zap. Zap provides a thin vir-
tualization layer on top of the operating system that introduces a
PrOcess Domain (pod) abstraction. A pod provides a group of pro-
cesses with a private namespace that presents the process group
with the same virtualized view of the system. This virtualized view
associates virtual identifiers with operating system resources such
as process identifiers and network addresses. This decouples pro-
cesses in a pod from dependencies on the host operating system
and from other processes in the system.

Zap virtualization is integrated with a checkpoint-restart mech-
anism that enables processes within a pod to be migrated as a unit
to another machine. Since pods are independent and self-contained
they can be migrated freely without leaving behind any residual
state after migration, even when migrating network applications
while preserving their network connections. Zap can therefore al-
low applications to continue executing after migration even if the
machine on which they previously executed is no longer available.
In using a checkpoint-restart approach, Zap not only supports pro-
cess migration, but also allows processes to be suspended to sec-
ondary storage and transparently resumed at a later time.

Zap is designed to support migration of unmodified legacy ap-
plications while minimizing changes to existing operating systems.
This is done by leveraging loadable kernel module functionality in
commodity operating systems that allows Zap to intercept system
calls as needed for virtualization and save and restore kernel state
as needed for migration. Zap’s compatibility with existing appli-
cations and operating systems makes it simple to deploy and use.
We have implemented a Zap prototype as a loadable kernel mod-
ule in Linux that supports transparent migration, without any ker-
nel modifications, among separate machines running independent
Linux operating systems; it does not require a single-system image
across all machines. Our experimental results on our Linux Zap
prototype demonstrate that it can provide general-purpose process
migration functionality with low overhead.

3.4 Autonomic Software Patching
Recent incidents [12, 13] have demonstrated the ability of self-

propagating code, also known as “network worms” [65, 21], to in-
fect large numbers of hosts, exploiting vulnerabilities in the largely
homogeneous deployed software base [14, 79, 10]. Even when a
worm carries no malicious payload, the direct cost of recovering
from the side effects of an infection epidemic can be tremendous
[1]. Thus, countering worms has recently become the focus of
increased research, generally focusing on content-filtering mech-

anisms combined with large-scale coordination strategies [51, 68,
54, 35]. The same issues and mechanisms are relevant to the case
of automatically-exploitable (scripted) vulnerabilities.

Despite some promising early results, we believe that this ap-
proach will be insufficient by itself in the future. We base this pri-
marily on two observations. First, to achieve coverage, such mech-
anisms are intended for use by routers (e.g., Cisco’s NBAR [9]);
given the routers’ limited budget in terms of processing cycles per
packet, even mildly polymorphic worms (mirroring the evolution of
polymorphic viruses, more than a decade ago) are likely to evade
such filtering. Network-based intrusion detection systems (NIDS)
have encountered similar problems, requiring fairly invasive packet
processing and queuing at the router or firewall. When placed in the
application’s critical path, as such filtering mechanisms must, they
will have an adverse impact on performance. Second, end-to-end
“opportunistic”1 encryption in the form of TLS/SSL [27] or IPsec
[39] is being used by an increasing number of hosts and applica-
tions [6]. We believe that it is only a matter of time until worms
start using such encrypted channels to cover their tracks. Similar
to the case for distributed firewalls [20, 34], we believe that these
trends argue for an end-point worm-countering mechanism.

A preventative approach to the worm problem is the elimina-
tion or minimization of remotely-exploitable vulnerabilities, such
as buffer overflows. Detecting potential buffer overflows is a very
difficult problem, for which only partial solutions exist (e.g., [23,
44]). “Blanket” solutions such as StackGuard or MemGuard [25]
typically exhibit at least one of two problems: reduced system per-
formance, and self-induced denial of service (i.e., when an over-
flow is detected, the only alternative is to terminate the applica-
tion). Thus, they are inappropriate for high-performance, high-
availability environments such as a heavily-used e-commerce web
server. An ideal solution would use expensive protection mecha-
nisms only where needed and allow applications to gracefully re-
cover from such attacks.

The autonomic software patching mechanism is an end-point
first-reaction system that tries to automatically patch vulnerable
software by identifying and transforming the code surrounding the
exploited software flaw. Briefly, we use instrumented versions of
an enterprise’s important services (e.g., web server) in a sandboxed
environment. This environment is operated in parallel with the pro-
duction servers, and is not used to serve actual requests. Instead,
we use it as a “clean room” environment to test the effects of “sus-
picious” requests, such as potential worm infection vectors. Appro-
priate instrumentation allows us to determine the buffers and func-
tions involved in a buffer overflow attack. We then apply several
source-code transformation heuristics that aim to contain the buffer
overflow. Using the same sandboxed environment, we test the pro-
duced patches against both the infection vectors and a site-specific
functionality test-suite, to determine correctness. If successful, we
update the production servers with the new version of the targeted
program.

Our architecture makes use of several components that have been
developed for other purposes. Like SABER itself but on a smaller
scale, its novelty lies in the combination of all the components in
fixing vulnerable applications without unduly impacting their per-
formance or availability. Our major assumption is that we can ex-
tract a worm’s infection vector (or, more generally, one instance of
it, for polymorphic worms). We envision the use of various mecha-
nisms such as honeypots, host-based, and network-based intrusion

1By “opportunistic” we mean that client-side, and often server-
side, authentication is often not strictly required, as is the case with
the majority of web servers or with SMTP over TLS (e.g., send-
mail’s STARTSSL option).

detection sensors. Note that vector-extraction is a necessary pre-
condition to any reactive or filtering-based solution to the worm
problem. A secondary assumption is that the source code for the
application is available.2

To determine the effectiveness of the approach, we tested a set
of 17 applications vulnerable to buffer overflows, compiled by the
Cosak project [8]. We simulated the presence of a worm (even for
those applications that were not in fact network services) by trig-
gering the buffer overflow that the worm would exploit to infect the
process. Our experiments show that our architecture was able to fix
the problem in 82% of all cases. An experiment with a hypothetical
vulnerability in the Apache web server showed that the total time
to produce a correct and tested fix was 8.3 seconds [66].

3.5 Event-Based Command and Control

3.5.1 MEET
The goal of the Multiply Extensible Event Transport (MEET) is

to provide an extensible, survivable, and efficient publish/subscribe
substrate for advanced distributed applications. While pub/sub is
an elegant paradigm for any network program, it becomes a neces-
sity when the number of components and interactions rises beyond
the point of manual administration. MEET offers additional useful
features to a distributed security system: decentralized architec-
ture, modular and extensible architecture, secure communication,
and high performance. These are described in detail below.

When a distributed system consists of many data sources, many
data sinks, and multicast distribution patterns (multiple recipients
for a single data item), the traditional network paradigm of unicast-
ing data to a specific communication partner begins to break down.
The complexity of managing the patterns of communication over-
whelms the primary tasks of the distributed system. By offloading
the problem of distributed multicast (or unicast) communication to
a dedicated middleware component, the design, construction, and
integration of the distributed system is vastly simplified. Publish-
ers simply push data into the ether. Subscribers describe the data
they’re interested in. The pub/sub system ensures that the data goes
to the right places, securely and efficiently. Pub/sub is particularly
tolerant of nodes appearing and disappearing, a useful attribute for
any large distributed system in the real world.

MEET’s distributed architecture sets it apart from other pub/sub
systems such as Elvin [64] or Siena [22]. Elvin passes all traffic
through a set of one or more core nodes, and Siena distributes all
data along a statically defined tree, but MEET allows participating
nodes to be configured in an arbitrary graph. While any individual
data publication is distributed along a tree, MEET’s awareness of
the full network topology allows it to instantly and transparently
reconfigure and recover in cases of network partition. Nodes can
auto-discover peers, and merge themselves into the fabric automat-
ically. The system can be configured for varying degrees of routing
information redundancy. Overall, MEET provides a high degree of
infrastructure survivability for higher-level applications.

MEET is designed as a set of cooperating components that can
be replaced at runtime, e.g., routing modules (BGP, OSPF), chan-
nel modules (TCP, UDP, IPsec), message types, and so on. This
allows MEET to reconfigure itself to run on low-end PDAs or high-
end servers, to adjust to changing environments (e.g., a laptop re-
moved from its docking station), and to add new capabilities, while
continuing to route messages. The extensibility of MEET extends

2Although our architecture can use binary rewriting techniques
[60], we focus on source-code transformations. We should also
note that several popular server applications are in fact open-source
(e.g., Apache [10], Sendmail, MySQL, and BIND).

pub/sub’s tolerance of changes in network topology to the soft-
ware itself, allowing new features, protocols, and standards to be
added to the system without downtime. As security protocols and
standards are constantly evolving, this feature greatly eases the ad-
ministration of the network. Additionally, advanced application-
specific features (e.g., bloom-filter-based subscriptions) can be in-
tegrated directly into the messaging framework.

MEET offers a range of security support, under the end-to-end
assumption that higher-level applications will have their own secu-
rity architecture, which shouldn’t be duplicated at the lowest level.
MEET supports a number of security protocols for inter-node com-
munication, including IPsec and TLS/SSL, and of course more can
be added. MEET also provides hooks for private channel support.
In addition, pub/sub greatly simplifies the use of shared secret key
systems, where a key is split into multiple pieces, and majority of
subkey holders are needed to decrypt a secret. By requiring, for
instance, that a majority of nodes must agree to a change in pol-
icy, a distributed system can become much more resistant to the
compromise of a few nodes.

Finally, MEET is designed to run in embedded, hard real-time
environments. The central core routes messages with high effi-
ciency, guaranteeing bounded-time performance (assuming bounded-
time subscription tests). The native message format is optimized
for fast routing, with key bits for classification at the front. Mes-
sages with large or variable-length fields have an index structure to
speed processing.

3.5.2 XUES Event Correlation
Most commercial event-based cross-platform problem detection

and repair tools are largely application-neutral, leaving understand-
ing of what the system is supposed to be doing (and how and why)
to the human administrator. Thus only the simplest general-purpose
analyses and repairs can be automated, and complex cross-domain
security scenarios are difficult to support.

Our solution to this problem is what we call XUES [38], or
XML Universal Event Service. XUES runs as a lightweight, de-
centralized, easily integrable collection of active middleware com-
ponents, tied together via a publish/subscribe (content-based mes-
saging) event system. We have used XUES to monitor a variety of
target applications employing application-level semantics. XML is
used as a native data format, providing rich expressiveness.

XUES consists chiefly of two services. The Event Packager pro-
vides event translation and “flight recorder” services to standardize
and log all incoming event streams. The Event Distiller performs
sophisticated cross-stream temporal event pattern analysis and cor-
relation to monitor desirable (and, correspondingly, undesirable)
behavior; we describe it in further detail.

3.5.3 Event Distiller
In many monitored systems, the key is to determine what orig-

inal failure (“root cause”) started a cascading problem [59]. The
Event Distiller is the component responsible for detecting causal-
ity among the events in significant event sequences, by perform-
ing time-based pattern matching. Internally, it uses a collection of
nondeterministic state engines for temporal complex event pattern
matching. While this is memory-intensive, it allows a richer repre-
sentation of event sequences: logic constructs are supported, as are
loops, rule chaining, and variable binding. We also mitigate mem-
ory usage by supporting timeouts and automatic garbage collection.
Timestamped event reordering is also supported, so if events arrive
out-of-order within a certain window, the Event Distiller will rear-
range them appropriately so that sequences, and causality, can still
be recognized correctly.

Event Distiller rules may be populated in one of several ways:
First, an XML rulebase is supported, where event sequences are
specified, along with time-bound parameters as well as “success”
and “failure” notifications; we have also developed a GUI to assist
a XUES integrator; it also works as a systems management console
for human engineers, although our goal is to automate many repairs
within a XUES feedback loop. Second, the Event Distiller supports
dynamic rule generation – messages can be sent to the Event Dis-
tiller with XML snippets specifying a rule or a segment of a rule
(e.g., to construct new rules on the fly or modify existing rules).
Third, as with the Event Packager, other sources can be easily in-
tegrated; for example, new SABER components can be added and
rules modified on-the-fly.

4. SCENARIOS
In this section, we discuss deployment possibilities and look at

various category of attacks, and how SABER is well-equipped to
handle them.

4.1 Deployment scenario
For the context of this section, we envision an Internet-enabled

bank whose goal is to provide both customers and peers with the
ability to securely conduct transactions.

The bank’s commodity Internet connection is heavily firewalled,
but more importantly, firewalling is also done at their ISP to only
allow legitimate SOS “overlay traffic” to prevent saturation of the
link by a DoS attack. At the same time, IDS sensors are placed in
the firewall at both the ISP and bank’s endpoints to monitor incom-
ing traffic.

Within the bank’s LAN, a number of servers and a number of
teller machines (frontends) are scattered throughout. IDS sensors
are also placed here. Critical server services (such as customer
databases) are embedded within Zap pods to make process migra-
tion simple. Worm vaccine monitors are deployed on servers that
provide services to either internal bank clients or to teller machines.
Extra servers are provided for redundancy’s sake; these servers are
configured to provide minimal external interfaces, but still have Zap
services and IDS sensors located on them to continue monitoring
and to ease service migration.

Each of the SABER components has two communication mech-
anisms: the ability to report alerts and to accept controls. These
messages are communicated through a decentralized MEET net-
work, whose nodes are scattered redundantly throughout the LAN.
XUES is colocated with MEET at critical points to aggregate and
monitor alerts.

Note that this scenario can be scaled up to multiple-site scenar-
ios, depending on the requirements. The sites may act as indepen-
dent SABER deployments, or can communicate attack information
via external MEET nodes.

4.2 Simple attack scenarios
We outline a sample of single-attack scenarios, how SABER

would handle them, and the net effect on survivability.

1. Bandwidth denial-of-service attack: A cluster of computers,
potentially distributed across the Internet, issue a brute-force
DoS attack against the bank (e.g., SYN floods). Several as-
pects of the system prevent the DoS. First, the overlay net-
work will drop the vast majority of these packets as the ma-
chines do not have the necessary credentials to perform a
transaction. Any traffic directly hitting the bank’s ISP will
also be dropped, as it’s not sent from a trusted secret servlet.

2. Service denial-of-service attack: A credentialed “user” at-
tempts a large number of multiple transactions with the bank,
hoping to consume the resources of the webserver. Apart
from standard webserver rate-limiting and IP threshholding,
protocols such as JFK [15] prevent the server from being
computationally bound for secure transactions. Application-
specific instances of SOS, such as WebSOS [24], can be used
in a similar fashion for particular applications.

3. Outside attacker: Posing as a “credentialed” user, a malicious
entity attempts to exploit the web service, via buffer overflow
or other known vulnerability. Possibilities include:

• The outside attacker is thwarted because the IDS has
already detected suspicious scan behavior, and SABER
triggered the revocation of the user’s credentials, es-
sentially firewalling the user away as SOS no longer
tolerates the user.

• The outside attacker is thwarted because the IDS has al-
ready detected suspicious scan behavior and the port it
was occurring on, which prompted the worm vaccine to
simulate, trap, and patch the buffer overflow or similar
vulnerability.

• The outside attacker manages to compromise the web
server, but the software patcher shortly thereafter patches
and restarts the web server, eliminating the outside at-
tacker’s access.

• The outside attacker manages to compromise the web
server (and, possibly, the database server), but the IDS
detects anomalous behavior on the web server and, as a
last resort, triggers a safety lockdown, where the database
process is suspended by Zap and safely migrated to
a secure spare server, thereby denying users’ data but
keeping the bank’s critical infrastructure secure and pro-
tected from the attacker.

4. Inside attacker: Posing as an “employee”, a malicious entity
attempts to exploit services within the network, particularly
but not limited to teller services, to gain access to unautho-
rized information or to cause service damage3. A number of
possibilities may occur here as well:

• The inside attacker succeeds in gaining general access
on the teller service server. The IDS detects anoma-
lous behavior and triggers the shutdown down the teller
service, and optionally triggers a Zap migration of the
database to a more secure, but less available, location,
preventing intrusion into the database server.

• The inside attacker fails in gaining general access; a
known vulnerability on the teller server is automatically
patched using the vaccination facilities.

• The inside attacker gains general access to a worksta-
tion, and attempts to launch an attack from there. The
IDS detects the attack and triggers the revocation of the
workstation user account, and possibly triggers a Zap
migration of the sensitive database information.

• The inside attacker unplugs network wires to try and
trigger a partition, thereby reducing SABER’s ability to
coordinate. The redundant MEET and XUES compo-
nents continue to function on the partition not entirely

3A recent FBI study determined that as much as 70% of all suc-
cessful attacks are launched from insiders.

Bank’s LAN

Internet

ISP

SOS

Overlay

IDS node

Web server

Teller

server

Database

server

Router

Spare server pool

Teller

station

Teller

station

Teller

station

Workstation

Workstation
MEET/XUES node

User

workstation

Zap pod

DDoS nodes

Figure 2: Example SABER deployment.

isolated, including the server banks, and automatically
trigger a shutdown of the servers.

These list of possible attacks is not meant to be comprehensive.
However, it is notable that in the vast majority of cases the ser-
vice largely survives unscathed: 6 of the above 10 possibilities ul-
timately result in little or no degradation of service. In the other
4 intrinsically nonrecoverable attacks, data compromise is averted,
which is often an acceptable alternative. If this is not sufficient, ser-
vice migration across redundant, disjoint networks is a possibility,
as is better physical access restrictions for the inside attacker.

4.3 Complex attack scenarios
Complex attacks often involve multiple attack approaches. This

is common in a number of situations: the attacker may actually
be comprised of a distributed yet organized team taking different
approaches, there may be an “attack competition”, or there might
be one attacker who has managed to gain “zombie control” over a
number of unsuspecting machines distributed around the Internet,
enabling him to launch a DDoS to cover his tracks while perform-
ing actual attacks.

SABER stresses redundancy and decentralization throughout its
core, which enables it to degrade gracefully, even with multiple at-
tackers. By employing a publish/subscribe event system capable
of self-healing and self-management, network partitions or packet
loss triggered by an attack need not be the end of coordination. In-
stead, given sufficient redundancy, SABER supports a broad variety
of worst-case scenarios.

5. RELATED WORK
Related work naturally draws from a number of fields, due to the

broad set of tools presented in this paper. We do not address related
work for each of the individual components here, but rather just the

framework; see the respective cited papers for more details on the
appropriate subjects.

Secure survivable architectures are typically very application- or
domain-specific. Ghosh, et al. [31] propose “fault injection anal-
ysis” applied to software, while Strunk, et al. [70] apply a low-
level approach: they propose an intrusion detection and recovery
model at the storage layer. Kreidl, et al. [43] propose a formal-
ized feedback-driven model for individual COTS applications. In
contrast, SABER is a generalized, system-level, application-neutral
architecture that encompasses a broad array of tools, yet can be in-
tegrated into existing third-party solutions, although we may inves-
tigate integrating application-level semantics in the future.

Some recent preliminary research has begun on building frame-
works to support a wider variety of software. The DARPA OASIS
[2] (“Organically Assured and Survivable Information System”)
program sponsored several projects that address a number of re-
lated issues. In particular, the Willow project [76] supports intru-
sion tolerance by establishing a high-level language for specifying
intrusion tolerance policies that are translated into control code as
well as the notion of “postures” which dictate the state of a sys-
tem (e.g., in neutral mode, under attack, etc.). The SITAR project
[73] utilizes components that wrap COTS services and utilizes a set
of policies to determine legitimate requests. In contrast to Willow,
SITAR, and a number of the other OASIS projects, SABER aims
to be a more ad hoc framework designed to be applied in already-
deployed service environments with minimal disruption.

The HACQIT architecture [37, 62, 61] uses various sensors to
detect new types of attacks against secure servers, access to which
is limited to small numbers of users at a time. Any deviation from
expected or known behavior results in the possibly subverted server
to be taken off-line. Similar to our approach on autonomic patch-
ing, a sandboxed instance of the server is used to conduct “clean
room” analysis, comparing the outputs from two different imple-
mentations of the service (in their prototype, the Microsoft IIS and

Apache web servers were used to provide application diversity).
Machine-learning techniques are used to generalize attack features
from observed instances of the attack. Content-based filtering is
then used, either at the firewall or the end host, to block inputs that
may have resulted in attacks, and the infected servers are restarted.
Due to the feature-generalization approach, trivial variants of the
attack will also be caught by the filter.

The APOD project [17, 57, 58] uses a combination of intrusion
detection, firewalls, TCP stack probes, virtual private networks,
bandwidth reservation, and traffic shaping mechanisms, to allow
applications to detect attacks and contain the damage of successful
intrusions by changing their behavior. They also discuss the use
of fine-grained access control at the object level (using CORBA),
as well as the use of randomizing techniques, such as changing the
TCP ports applications listen to, and service replication. Although
APOD shares some similarities with SABER, our architecture fo-
cuses on fixing the vulnerabilities at the software level, as well as
using scalable DoS-protection mechanisms. Thus, it could be com-
bined with some of the mechanisms developed for use in APOD.

Other related work includes Secure Computing Corporation’s
“Intrusion Tolerant Server Infrastructure” [11], the ITS project [77],
and SITAR [74]. These architectures emphasize intrusion detec-
tion, filtering of known attacks, and reconfiguration. Although they
share these components with SABER, the latter better addresses
root causes (such as software flaws), and uses scalable distributed
mechanisms to achieve protection against some common network-
based attacks. The MAFTIA project [3] is developing an open
architecture for transactional operations on the Internet, modeling
(successful) attacks as faults and applying approaches developed in
the realm of fault tolerance.

Finally, autonomic computing is rapidly growing as its own field.
Sterritt, et al. [69] suggest an overall model of how survivable
systems require a number of properties, including self-protecting,
self-configuring, self-healing, and self-optimizing capabilities. We
feel that the application of SABER to a target system enable it to
be self-protecting as well as self-healing.

6. FUTURE WORK
We have identified the next main steps in the development of the

SABER architecture to make it more autonomic and survivable,
and discuss them briefly.

• Coordination language: In the current model, inter-component
logic has to be manually developed, e.g., the communication
of IDS results to Zap via MEET. We envision the develop-
ment of higher-level semantics to improve an organization’s
ability to deploy SABER components. Such a higher-level
language would help define what “approved services” and
“approved operations” are, and would then compile these
down for use by the individual components. Learning ap-
proaches could also be utilized to assemble these lists. Fi-
nally, various workflow process approaches could be adopted
as effectors for such a language, such as our previous work
on Workflakes [72].

• Recovery assistance: SABER’s architecture is currently ar-
chitected to prevent attacks and, given a successful attack, to
limit damage with a minimum of human intervention. How-
ever, the semantics captured by SABER could additionally
be useful after human intervention, i.e., SABER could sup-
port the reverse migration of a process back to a patched
server.

Future work could also support a “staged” autonomic re-
covery, where process are migrated off of a machine which
has been attacked until such time SABER’s patching com-
ponents could develop a solution, at which point the compo-
nent would be seamlessly migrated back. Ongoing work in
the individual components that support our proposed SABER
implementation will also make it easier to develop such a so-
lution.

7. CONCLUSIONS
SABER has tremendous utility as a general framework to sup-

port the collaboration of best-of-breed security technologies to max-
imize service survivability not only in preventing attacks, but also
to minimize loss in networks where attack has been successful. Our
proposed implementation of uses a number of unique tools to sup-
port a broad array of scenarios. Given more coordination support,
we feel that SABER will be adequately prepared to meet the next
generation of attacks and security vulnerabilities.

8. REFERENCES
[1] 2001 Economic Impact of Malicious Code Attacks.

http://www.computereconomics.com/cei/
press/pr92101.html.

[2] DARPA OASIS (Organically Assured and Survivable
Information System). http:
//www.tolerantsystems.org/index.html.

[3] Malicious- and Accidental-Fault Tolerance for Internet
Applications. RTD Research Project IST-1999-11583, IST
Programme. http://maftia.org/.

[4] Microsoft Security Tool Kit: Installing and Securing a New
Windows 2000 System. Microsoft TechNet.
http://www.microsoft.com/technet/
security/tools/tools/w2knew.asp.

[5] Microsoft Windows Software Update Services.
http://www.microsoft.com/windows2000/
windowsupdate/sus/.

[6] OC48 Analysis – Trace Data Stratified by Applications.
http://www.caida.org/analysis/workload/
byappli\-cation/oc48/port_analy%sis\
_app.xml.

[7] RedHat 9 Security Advisories. https://rhn.redhat.
com/errata/rh9-errata-security.html.

[8] The Code Security Analysis Kit (CoSAK). http:
//serg.cs.drexel.edu/cosak/index.shtml/.

[9] Using Network-Based Application Recognition and Access
Control Lists for Blocking the ”Code Red” Worm at Network
Ingress Points. Technical report, Cisco Systems, Inc.

[10] Web Server Survey. http://www.securityspace.
com/s_survey/data/200304/.

[11] Intrusion Tolerant Server Infrastructure.
http://www.tolerantsystems.org/
ProjectSummaries/Intrusion_Tolerant_
Serv%er_Infrastructure.html, 2000.

[12] CERT Advisory CA-2001-19: ‘Code Red’ Worm Exploiting
Buffer Overflow in IIS Indexing Service DLL. http://
www.cert.org/advisories/CA-2001-19.html,
July 2001.

[13] Cert Advisory CA-2003-04: MS-SQL Server Worm.
http://www.cert.org/advisories/
CA-2003-04.html, January 2003.

[14] The Spread of the Sapphire/Slammer Worm.
http://www.silicondefense.com/research/
worms/slammer.php, February 2003.

[15] W. Aiello, S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis,
A. D. Keromytis, and O. Reingold. Efficient, DoS-Resistant,
Secure Key Exchange for Internet Protocols. In Proceedings
of the ACM Computer and Communications Security (CCS)
Conference, pages 48–58, November 2003.

[16] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. J. Stolfo.
Detecting malicious software by monitoring anomalous
windows registry accesses. In Proceedings of the Fifth
International Symposium on Recent Advances in Intrusion
Detection (RAID-2002), Zurich, Switzerland, October 2002.

[17] M. Atighetchi, P. Pal, C. Jones, P. Rubel, R. Schantz,
J. Loyall, and J. Zinky. Building Auto-Adaptive Distributed
Applications: The QuO-APOD Experience. In Proceedings
of the 3rd International Workshop on Distributed
Auto-adaptive and Reconfigurable Systems, in conjunction
with the 23rd International Conference on Distributed
Computing Systems, May 2003.

[18] R. Balzer. Mediating connectors. In 19th IEEE International
Conference on Distributed Computing Systems Workshop,
1994.

[19] V. Barnett and T. Lewis. Outliers in Statistical Data. John
Wiley and Sons, 1994.

[20] S. M. Bellovin. Distributed Firewalls. ;login: magazine,
special issue on security, pages 37–39, November 1999.

[21] J. Brunner. The Shockwave Rider. Del Rey Books, Canada,
1975.

[22] A. Carzaniga, D. Rosenblum, and A. Wolf. Design and
evaluation of a wide-area event notification service. In ACM
Transactions on Computer Systems, volume 19(3), pages
332–383, August 2001.

[23] H. Chen and D. Wagner. MOPS: an Infrastructure for
Examining Security Properties of Software. In Proceedings
of the ACM Computer and Communications Security (CCS)
Conference, pages 235–244, November 2002.

[24] D. L. Cook, W. G. Morein, A. D. Keromytis, V. Misra, and
D. Rubenstein. WebSOS: Protecting Web Servers From
DDoS Attacks. In Proceedings of the IEEE International
Conference on Networks (ICON), September/October 2003.

[25] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard:
Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of the 7th USENIX
Security Symposium, January 1998.

[26] D. E. Denning. An intrusion detection model. IEEE
Transactions on Software Engineering, SE-13:222–232,
1987.

[27] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC
2246, January 1999.

[28] E. Eskin. Anomaly detection over noisy data using learned
probability distributions. In Proceedings of the Seventeenth
International Conference on Machine Learning
(ICML-2000), 2000.

[29] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff.
A sense of self for unix processes. pages 120–128. IEEE
Computer Society, 1996.

[30] Fyodor. The art of port scanning. Phrack 51, 7, September
1997.
http://www.phrack.com/phrack/51/P51-11.

[31] A. K. Ghosh and J. M. Voas. Inoculating software for

survivability. Communications of the ACM, 42(7):38–44,
1999.

[32] S. Hershkop, R. Ferster, L. H. Bui, K. Wang, and S. J. Stolfo.
Host-based anomaly detection by wrapping file system
accesses. Technical report, Columbia University Department
of Computer Science, April 2003.

[33] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detect
using sequences of system calls. Journal of Computer
Security, 6:151–180, 1998.

[34] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith.
Implementing a Distributed Firewall. In Proceedings of
Computer and Communications Security (CCS), pages
190–199, November 2000.

[35] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A
peer-topeer approach to network intrusion detection and
prevention. In Proceedings of the IEEE International
Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Workshop on
Enterprise Security, June 2003.

[36] H. S. Javitz and A. Valdes. The nides statistical component:
Description and justification. Technical report, SRI
International, 1993.

[37] J. E. Just, L. A. Clough, M. Danforth, K. N. Levitt,
R. Maglich, J. C. Reynolds, and J. Rowe. Learning Unknown
Attacks – A Start. In Proceedings of the 5th International
Symposium on Recent Advances in Intrusion Detection
(RAID), October 2002.

[38] G. Kaiser, J. Parekh, P. Gross, and G. Valetto. Kinesthetics
eXtreme: An external infrastructure for monitoring
distributed legacy systems. In Proceedings of the Autonomic
Computing Workshop, Fifth Annual Workshop on Active
Middleware Services, 2003.

[39] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol. RFC 2401, Nov. 1998.

[40] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
Overlay Services. In Proceedings of ACM SIGCOMM, pages
61–72, August 2002.

[41] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS: An
Architecture For Mitigating DDoS Attacks. IEEE Journal on
Selected Areas of Communications (JSAC), 2003. (to
appear).

[42] C. Ko, G. Fink, and K. Levitt. Automated detection of
vulnerabilities in privileged programs by execution
monitoring. In 10th Annual Computer Security Applications
Conference, pages 134–144, December 1994.

[43] O. Kreidl and T. Frazier. Feedback control applied to
survivability: a host-based autonomic defense system. IEEE
Transactions on Reliability, Vol. 52, No. 3, September 2003.

[44] D. Larochelle and D. Evans. Statically Detecting Likely
Buffer Overflow Vulnerabilities. In Proceedings of the 10th
USENIX Security Symposium, pages 177–190, August 2001.

[45] W. Lee, S. Stolfo, and K. Mok. A data mining framework for
building intrusion detection models. 1999.

[46] W. Lee, S. J. Stolfo, and P. K. Chan. Learning patterns from
unix processes execution traces for intrusion detection. pages
50–56. AAAI Press, 1997.

[47] W. Lee, S. J. Stolfo, and K. Mok. Data mining in work flow
environments: Experiences in intrusion detection. In
Proceedings of the 1999 Conference on Knowledge
Discovery and Data Mining (KDD-99), 1999.

[48] M. Mahoney and P. Chan. Detecting novel attacks by

identifying anomalous network packet headers. Technical
Report CS-2001-2, Florida Institute of Technology,
Melbourne, FL, 2001.

[49] M. V. Mahoney and P. K. Chan. Learning nonstationary
models of normal network traffic for detecting novel attacks.
In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
376–385. ACM Press, 2002.

[50] D. Milojicic, F. Douglis, and R. Wheeler. Mobility:
Pro-cesses, Computers, and Agents. Addison Wesley
Longman, February 1999.

[51] D. Moore, C. Shannon, G. Voelker, and S. Savage. Internet
Quarantine: Requirements for Containing Self-Propagating
Code. In Proceedings of the IEEE Infocom Conference, April
2003.

[52] D. Moore, G. M. Voelker, and S. Savage. Inferring internet
Denial-of-Service activity. In Proceedings of the 10th Usenix
Security Symposium, pages 9–22, 2001.

[53] D. Newman, J. Snyder, and R. Thayer. Crying wolf: False
alarms hide attacks. Network World, June 2002.
http://www.nwfusion.com/techinsider/
2002/0624security1.html.

[54] D. Nojiri, J. Rowe, and K. Levitt. Cooperative Response
Strategies for Large Scale Attack Mitigation. In Proceedings
of the 3rd DARPA Information Survivability Conference and
Exposition (DISCEX), pages 293–302, April 2003.

[55] S. Northcutt. Network Intrusion Detection: An Analyst’s
Handbook, pages 122–139. New Riders, Indianapolis, 1999.

[56] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and
implementation of Zap: A system for migrating computing
environments. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI
2002), pages 361–376, Boston, MA, December 2002.

[57] P. PAl, M. Atighetchi, F. Webber, R. Schantz, and C. Jones.
Adaptive Use of Netwokr-Centric Mechanisms in
Cyber-Defense. In Proceedings of the 6th IEEE International
Symposium on Object-oriented Real-time Distributed
Computing, May 2003.

[58] P. Pal, M. Atighetchi, F. Webber, R. Schantz, and C. Jones.
Reflections on Evaluating Survivability: The APOD
Experiments. In Proceedings of the 2nd IEEE International
Symposium on Network Computing and Applications, April
2003.

[59] L. Perrochon. Using context-based correlation in network
operations management. Technical report, Stanford
University Department of Computer Science, 1999.
http://pavg.stanford.edu/cep/cidf.ps.gz.

[60] M. Prasad and T. Chiueh. A Binary Rewriting Defense
Against Stack-based Buffer Overflow Attacks. In
Proceedings of the USENIX Annual Technical Conference,
June 2003.

[61] J. C. Reynolds, J. Just, L. Clough, and R. Maglich. On-Line
Intrusion Detection and Attack Prevention Using Diversity,
Generate-and-Test, and Generalization. In Proceedings of the
36th Annual Hawaii International Conference on System
Sciences (HICSS), January 2003.

[62] J. C. Reynolds, J. Just, E. Lawson, L. Clough, and
R. Maglich. The Design and Implementation of an Intrusion
Tolerant System. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN),
June 2002.

[63] S. Robertson, E. V. Siegel, M. Miller, and S. J. Stolfo.

Surveillance detection in high bandwidth environments. In
Proceedings of the 2003 DARPA DISCEX III Conference,
April 2003.

[64] B. Segall, D. Arnold, J. Boot, et al. Content-based routing
with Elvin4. In Proceedings of AUUG2K, June 2000.

[65] J. F. Shoch and J. A. Hupp. The “worm” programs – early
experiments with a distributed computation.
Communications of the ACM, 22(3):172–180, March 1982.

[66] S. Sidiroglou and A. D. Keromytis. A Network Worm
Vaccine Architecture. In Proceedings of the IEEE Workshop
on Enterprise Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Workshop on Enterprise Security,
June 2003.

[67] S. Staniford, J. Hoagland, and J. McAlerney. Practical
automated detection of stealthy portscans. In Proceedings of
the Seventh ACM Conference on Computer and
Communications Security, Athens, Greece, 2000.

[68] S. Staniford, V. Paxson, and N. Weaver. How to Own the
Internet in Your Spare Time. In Proceedings of the 11th
USENIX Security Symposium, pages 149–167, August 2002.

[69] R. Sterritt and D. Bustard. Autonomic computing–a means of
achieving dependability? In Proceedings of IEEE
International Conference on the Engineering of Computer
Based Systems (ECBS’03), pages 247–251, April 2003.

[70] J. D. Strunk, G. R. Goodson, A. G. Pennington, C. A. Soules,
and G. R. Ganger. Intrusion detection, diagnosis, and
recovery with self-securing storage. Technical report,
Carnegie Mellon University, 2002.

[71] P. Thompson. Web services – beyond http tunneling. In W3C
Workshop on Web Services, April 2001.

[72] G. Valetto and G. Kaiser. Using process technology to
control and coordinate software adaptation. In Proceedings
of International Conference on Software Engineering, May
2003.

[73] F. Wang, F. Gong, C. Sargor, K. Goseva-Popstojanova,
K. Trivedi, and F. Jou. Sitar: A scalable intrusion tolerance
architecture for distributed servers. In Proceedings of the
IEEE 2nd SMC Information Assurance Workshop, 2001.

[74] F. Wang and R. Uppalli. SITAR: A Scalable
Intrusion-Tolerant Architecture for Distributed Services. In
Volume II of the Proceedings of DISCEX III, pages 153–155,
April 2003.

[75] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting
intrusions using system calls: alternative data models. pages
133–145. IEEE Computer Society, 1999.

[76] A. Wolf, D. Heimbigner, A.Carzaniga, J. Knight,
P. Devenbu, and M. Gertz. Bend, don’t break: Using
reconfiguration to achieve survivability. In Proceedings of
the Third Information Survivability Workshop (ISW2000),
pages 187–190, October 2000.

[77] A. Wolf, D. Heimbigner, A. Carzaniga, J. Knight,
P. Devenbu, and M. Gertz. Bend, Don’t Break: Using
Reconfiguration to Achieve Survivability. In Proceedings of
the 3rd Information Survivability Workshop, pages 187–190,
October 2000.

[78] E. Zadok and I. Badulescu. A stackable file system interface
for Linux. In LinuxExpo 99, May 1999.

[79] C. C. Zou, W. Gong, and D. Towsley. Code Red Worm
Propagation Modeling and Analysis. In Proceedings of the
9th ACM Conference on Computer and Communications
Security (CCS), pages 138–147, November 2002.

