Automated Recovery in a Secure Bootstrap Process

William A. Arbaugh
Angelos D. Keromytis
David J. Farber
Jonathan M. Smith
University of Pennsylvania
Distributed Systems Laboratory
Philadelphia, PA. 19104-6389
{waa, angelos, farber, jrh@dsl.cis.upenn.edu

MS-CS-97-13
August 1, 1997

Abstract is easily generalized to applications other than AEGIS,
such as standardized desktop management and secure au-

Integrity is rarely a valid presupposition in many sydomated recovery of network elements such as routers or

tems architectures, yet it is necessary to make any secuiftgtive Network” elements.

guarantees. To address this problem, we have designed a

secure bootstrap process, AEGIS, which presumes a min-

imal amount of integrity, and which we have prototyped |ntroduction

on the Intel x86 architecture. The basic principle is se-

gquencing the bootstrap process as a chain of progressiwftems are organized as layered levels of abstraction, in
higher levels of abstraction, and requiring each layer éfect defining a series of virtual machines. Each virtual
check a digital signature of the next layer before copachine presumes the correctnastegrity) of whatever

trol is passed to it. A major design decision is the cofjirtual or real machines underlie its own operation. With-
sequence of a failed Integrlty check. A SlmpllSth Strab'ut integrity’ no system can be made secure, and con-
egy is to simply halt the bootstrap process. However, gsrsely, any system is only as secure as the foundation
we show in this paper, the AEGIS bootstrap process Ggson which it is built. Thus, without such a secure boot-
be augmented with automated recovery procedures whighyp the operating system kernel cannot be trusted since
preserve the security properties of AEGIS under the aflis invoked by an untrusted process. We believe that
ditional assumption of the availability of a trusted repogesigning trusted systems by explicitly trusting the boot
itory. We describe a variety of means by which such@mponents provides a false sense of security to the users
repOSitory can be implemented, and focus our attenti@ﬂthe operating system, and more important, iS unneces-
on a network-accessible repository. The recovery procegsy.

We have previously reported[AFS97] the design and

*Smith and Farber’s work is supported by DARPA under Contra . ; ;
HDABTE3-95.C-0073, #NBB00L.96.C-852, and #MDAG72.95-1.001Hr€iMinary implementation results for AEGIS, a secure

with additional support from the Hewlett-Packard and Intel CorporROOtStrap process. AEG|S ing:reasgs the security of the
tions. boot process by ensuring the integrity of bootstrap code.

1 INTRODUCTION 2

It does this by constructing a chain of integrity checks, b#:1 Responses to integrity failure
ginning at power-on and continuing until the final transf . . .
of control from the bootstrap components to the operati%g;e.n a system detect; an integrity failure, one of three
system itself. The integrity checks compare a compu sible courses of action can be taken.

cryptographic hash value with a stored digital signatur The firstis 1o continue normally, but ISSUE & warning.
nfortunately, this may result in the execution or use of

associated with each component. : 2
. . either a corrupt or malicious component.
The AEGIS model relies explicitly on three assump- : :
tions: The second is to not use or execute the component. This
' approach is typically callethil secure and creates a po-
. tential denial of service attack.

1. The motherboard, processor, and a portion of the sySTne final approach is to recover and correct the incon-
tem ROM (BIOS) are not compromiséd., the ad- sjstency from arusted sourcéefore the use or execution
versary is unable or unwilling to replace the mothegs the component.
board or BIOS. The first two approaches are unacceptable when the

_ _ . __systems are important network elements such as switches,

2. Existence of a cryptographic certificate authority ifntrusion detection monitors, or associated with electronic

frastructure to bind an identity with a public key, alcommerce, since they either make the component unavail-

though no limits are placed on the type of infrastrugple for service, or its results untrustworthy.
ture.

3. A trusted source exists for recovery purposes. Tr‘]]isz Goals

source may be a host on a network that is reachalpigere are six main goals of the AEGIS recovery protocol.
through a secure communications protocol, or it may

be a trusted ROM card located on the protected hostl- Allow the AEGIS client and the trusted repository to
mutually authenticate their identities with limited or

The AEGIS architecture, which we outline below in no prior contact (mobility between domains).

Section 2, includes a recovery mechanism for repairing
integrity failures protecting against some classes of denial
of service attacks. An added benefit of the recovery mech3. Prevent replay attacks.

anism is the potential for reducing the Total Cost Oper- N)))

ation (TCO) of a computer system by reducing trouble4- Mitigate certain classes of denial of service attacks.
calls and down time associated with failures of the boot5
process.

From the start, AEGIS has been targeted for commer-
cial operating systems on commaodity hardware, making it
a practical “real-world” system. In AEGIS, the boot pro- 6. Be as simple as possible: Complexity breeds design
cess is guaranteed to end up in a secure state, even in theand implementation vulnerabilities.
event of integrity failures outside of a minimal section of
trusted code. . 1.3 Outline of the Paper

We define aguaranteed securboot process in two
parts. The first is that no code is executed unless itlisSection 2, we make the goals of the AEGIS design ex-
either explicitlytrustedor its integrity is verified prior to plicit. Sections 3, 4, and 5 form the core of the paper, giv-
its use. The second is that when an integrity failure iilsg an overview of AEGIS, and the IBM PC boot process.
detected a process can recover a suitable verified replé@eetion 4 provides an introduction to the cryptographic
ment module. This recovery process is the focus of thad system tools needed to build a secure recovery pro-
current paper. tocol, and describes such a protocol. Section 5 describes

. Prevent man in the middle attacks.

. Allow the participating parties to agree upon a shared
secret in a secure manner in order to optimize future
message authentication.

2 AEGIS ARCHITECTURE 3

the details of adding the recovery protocol to existing Dgion card, any additional expansion cards will fail the in-
namic Host Configuration Protocol (DHCP), and Trividkgrity test. Similarly, a new operating system cannot be
File Transfer Protocol (TFTP) implementations and pretarted since the boot block would change, and the new
vides performance information. We discuss the systdmoot block would fail the integrity test.

status and our next steps in section 6, and conclude the

paper in section 7. 2.2 AEGIS Boot Process
Every computer with the IBM PC architecture follows ap-
2 AEGIS Architecture proximately the same boot process. We have divided this

process into four levels of abstraction (see figure 1), which
) correspond to phases of the bootstrap operation. The first
2.1 Overview phase is the Power on Self Test or POST [Ltd91]. POST

o is invoked in one of four ways:
To have a practical impact, AEGIS must be able to work

with commodity hardware with minimal changes (ideally 1. Applying power to the computer automatically in-
none) to the existing architecture. The IBM PC archi- vokes POST causing the processor to jump to the en-
tecture was selected as our prototype platform because try point indicated by the processor reset vector.
of its large user community and the availability of the .
source code for several operating systems. We also uge Hardware reset aI;o causes the processor to jump to
the FreeBSD operating system, but the AEGIS architec- the entry point indicated by the processor reset vec-
ture is not limited to any specific operating system. Port- tOr-
Ing to a new operating system only requires a few MINOT3 \Warm boot ¢trl-alt-del under DOS) invokes POST
changes to the boot block code so that the kernel can be _ . : L

. . . o o without testing or initializing the upper 64K of sys-
verified prior to passing control to it. Since the verifica- tem memor
tion code is contained in the BIOS, the changes will not Y-

substantially increase the size of the boot loader, nor thg. Software programs, if permitted by the operating
boot block. system, can jump to the processor reset vector.
AEGIS modifies the boot process shown in figure 1 so
that all executable code, except for a very small sectiBheach of the cases above, a sequence of tests are con-
of trusted code, is verified prior to execution by using ducted. All of these tests, except for the initial processor
digital signature. This is accomplished through modifs€lf test, are under the control of the system BIOS.
cations and additions to the BIOS. The BIOS contains the©Once the BIOS has performed all of its power on tests,
verification code, and public key certificate(s). In essendebegins searching for expansion card ROMs which are
the trusted software serves as the root of an authenticatféntified in memory by a specific signature. Once a valid
chain that extends to the operating system and potenti&}@M signature is found by the BIOS, control is immedi-
beyond to application software [PG89] [GDM89] [Mic]_ately passed to it. When the ROM completes its execu-
In the AEGIS boot process, either the operating systdi@n. control is returned to the BIOS.
kernel is started, or a recovery process is entered to repaif Ne final step of the POST process calls the BIOS op-
any integrity failure detected. Once the repair is corffating system bootstrap interrupt (Int 19h). The boot-
pleted, the system is restarted to ensure that the sysféfap code first finds a bootable disk by searching the

boots. This entire process occurs without user interveéhisk search order defined in the CMOS. Once it finds a
tion. bootable disk, it loads the primary boot block into mem-

In addition to ensuring that the system boots in a ¥ and passes control to it. The code contained in the

cure manner, AEGIS can also be used to maintain th@Ot Plock proceeds to load the operating system, or a

hardware a'nd _SOftware Conﬁgura.-tion of a machine. Sincegealy, the signature would be embedded in the firmware of the
AEGIS maintains a copy of the signature for each expaom.

2 AEGIS ARCHITECTURE 4

secondary boot block depending on the operating sgse responsible for loading the operating system kernel.
tem [Gri93] [Eli96] or boot loader [AIm96]. The fourth level contains the operating system, and the
Ideally, the boot process would proceed in a seriesfdth and final level contains user level programs and any
levels with each level passing control to the next untietwork hosts.
the operating system kernel is running. Unfortunately, theThe transition between levels in a traditional boot pro-
IBM architecture uses a “star like” model which is showoess is accomplished with a jump or a call instruction
in figure 1. without any attempt at verifying the integrity of the next
level. AEGIS, on the other hand, uses public key cryptog-
raphy and cryptographic hashes to protect the transition
from each lower level to the next higher one, and its re-
Level 4 covery process ensures the integrity of the next level in the
event of failures. The pseudo code for the action taken at
each level L, before transition to level + 1 is:

Operating System

Boot Block

Level 3 if (IntegrityValid(L+1))) {
Expansion ROMs Expansion ROMs GOTO(L+1);

} else {
GOTO(Recovery);
}

\\ /’/ Level 2
2.2.2 AEGIS BIOS Modifications

System BIOS

AEGIS modifies the boot process shown in figure 1 by
dividing the BIOS into two logical sections. The first sec-
tion contains the bare essentials needed for integrity veri-

Initiate POST fication and recovery. It comprises the “trusted software”.

The second section contains the remainder of the BIOS
Figure 1: IBM PC boot process and the CMOS.

The first section executes and performs the standard
checksum calculation over its address space to protect
against ROM failures. Following successful completion
of the checksum, the cryptographic hash of the second
We have divided the boot process into several levelsgection is computed and verified against a stored signa-
simplify and organize the AEGIS BIOS modifications, asire. If the signature is valid, control is passed to the sec-
shown in figure 2. Each increasing level adds functionalrd sectioni.e., Level 1.
ity to the system, providing correspondingly higher lev- The second section proceeds normally with one
els of abstraction. The lowest level is Level 0. Level éhange. Prior to executing an expansion ROM, a cryp-
contains the small section tblustedsoftware, digital sig- tographic hash is computed and verified against a stored
natures, public key certificates, and recovery code. Tdigital signature for the expansion code. If the signature
integrity of this level is assumed to be valid. We do, hovis valid, then control is passed to the expansion ROM.
ever, perform an initial checksum test to identify PROMnce the verification of each expansion ROM is complete
failures. The first level contains the remainder of the usuakvel 2), the BIOS passes control to the operating sys-
BIOS code, and the CMOS. The second level contaitesn bootstrap code. The bootstrap code was previously
all of the expansion cards and their associated ROMsydfrified as part of section 2 of the BIOS, and thus no fur-
any. The third level contains the operating system baber verification is required. The bootstrap code finds the
block(s). These are resident on the bootable device dmmbtable device and verifies the boot block.

Level 1

2.2.1 A Layered Boot Process

2 AEGIS ARCHITECTURE 5

Assuming that the boot block is verified successfull2.4 Trusted Repository
control is passed to it (Level 3). If a secondary boot block
is required, then it is verified by the primary block beforghe trusted repository can either be an expansion ROM
passing control to it. Finally, the kernel is verified by theoard that contains verified copies of the required soft-
last boot block in the chain before passing control toviare, or it can be a network host. If the repository is

(Level 4). a ROM board, then simple memory copies can repair or
Any integrity failures identified in the above processhadow failures. If the repository is a network host, then
are recovered through a trusted repository. a protocol with strong authentication is required

In the case of a network host, the detection of an in-

tegrity failure causes the system to boot into a recovery

2.3 Integrity Policy kernel contained on the network card ROM. The recovery
kernel contacts a “trusted” host through the secure pro-

Formalizing the discussion in Section 1.1, the AEGIS itecol described in this paper to recover a signed copy of
tegrity policy prevents the execution of a componenttifie failed component. The failed component is then shad-
its integrity can not be validated. There are three reasavged or repaired, and the system is restarted (warm boot).

why the integrity of a component could become invalid. The resultant AEGIS boot process is shown in fig-
The first is the integrity of the component could changge 2. Note that when the boot process enters the recov-
because of some hardware or software malfunction, &y procedure it becomes isomorphic to a secure network
it could change because of some malicious act. Finalyyot. We leverage this fact by adding authentication to the
the component’s certificate timestamp may no longer §Rj| known network protocols supporting the boot pro-

valid. In each case,'the clieMUST attempt to TeCOVer cess DHCP[Dro97], and TFTP[Fin84] and using them as
from a trusted repository. Should a trusted repository Bgr recovery protocol.

unavailable after several attempts, then the client’s fur-
ther action depends on the security policy of the user. For
instance, a user may choose to continue operation in
limited manner, or they may choose to halt operations al-—
together. ‘

Level 5

Level 4

following pseudo code:

Level 3

StartOver:
if (ComponentCertificateValid) {
if (ComponentintegrityValid) {
continue;
} elseif (Recover(Component)) {
continue;
} else {
User_Policy();

\
\Level 2
h

Level 1

} else if (Recover(Certificate)) { ' Initists POST Legend
goto StartOver; I 4 o Ry renston
} else {
} UserPolicy(); Figure 2: AEGIS boot control flow

3 AEGIS NETWORK RECOVERY PROTOCOL 6

3 AEGIS Network Recovery Proto- ((cert (issuer (hash-of-key (hash shal

cakey)))
col (subject (hash-of-key (hash shal
) keyholderkey)))
The AEGIS network recovery protocol combines proto- (tag (client))

cols and algorithms from networking and cryptography (not-before 03/29/97-0000)
to ensure the security of the protocol. This section first (not-after 03/29/98-0000))
provides an introduction to the material needed to fu"y(signature (hash shal hashbytes)
understand the recovery protocol. We then describe the(hash-of-key (hash shal cakey))
protocol and provide examples of its use. (sigbytes)))

3.1 Certificates

The usual purpose of a certificate with respect to public
key cryptography is to bind a public key with an identity.

While this binding is essential for strong amhenticatiofﬁfrastructure and access control lists. In AEGIS. we use
it severely limits the potential of certificates, e.g. anony- '

. . I ¥wvo capabilities: SERVER, and CLIENT with the obvious
mous transactions. The most widely used certificate st%]é anings
dard, the X.509[Com89] and its variants, provaidythis ' N
binding. The X.509 standard, also, suffers from other se-/N AEGIS we only use three types of certificates. The
rious problems in addition to its limited use. The modirst is an authorization certificate. This certificate, signed
significant is ambiguity in the parsing of compliant ceRY a trusted third party or certificate authority, _grants to
tificates because of its use of the Basic Encoding Rufé§ keyholder (the machine that holds the private key)
(BER)[Com88]. The encoding rules also require a gretgp capability to generate the second type of certificate-
deal of space to implement, and the encoded certifica@@sauthentication certificate. The authentication certifi-
are usually large. cate demonstrates that the client or server actually hold
Because of the limits and problems with the X_50de private key corresponding to the public key identified
certificate standard, we use a subset of the propoﬂ?:éhe authentication certificate. The nonce field is used
SDSI/SPKI 2.0 certificate structure[EFRT97][EII97] in&long with & corresponding nonce in the server authenti-
stead. The SDSI/SPKI format does not suffer from ti§&tion certificate to ensure that the authentication proto-

same problems as X.509, and it offers additional furigQ! is “Fail Stop”[GS95] detecting and preventing active
tionality. attacks such as a man—in—-the—middle. Titsg-hastiield

ensures that the entire message containing the certificates
has not been modified. Using thesg-hastin the authen-
tication certificate eliminates a signature and verification
Since the SDSI/SPKI standard is still under developmeaperation since the entire message no longer needs to be
we have chosen to support the small subset of SDSI/SRigned. The additional server fields are used to pass op-
needed for AEGIS. We call this subset SDSI/SPKI Lite tional Diffie-Helman parameters to the client so that these

SDSI/SPKI provides for functionality beyond the simparameters need not be global values. While clients are
ple binding of an identity with a public key. Identity baseéftee to set the validity period of the authentication certifi-
certificates require the existence of an Access Control Léstte to whatever they desire, we expect that clients will
(ACL) which describe the access rights of an entity. Maikeep the period short. Examples of these certificates are
taining such lists in a distributed environment is a corshown in figures 3, 4, and 5. The third and final certifi-
plex and difficult task. In contrast, SDSI/SPKI providesate format is the component signature certificate shown
for the notion of a capability [Lev84]. In a capabilityin figure 6. This certificate is either embedded in a com-
based model, the certificate itself carries the authorizmenent or stored in atable. Itis used with the AEGIS boot
tions of the holder eliminating the need for an identitgrocess described earlier in this paper.

Figure 3: AEGIS Authorization Certificate

3.1.1 SDSI/SPKI Lite

3 AEGIS NETWORK RECOVERY PROTOCOL

((cert (issuer (hash-of-key (hash shal
clientkey)))
(subject (hash-of-key (hash shal
clientkey)))
(tag (client (cnonce chytes)
(msg-hash
(hash shal hbytes))))
(not-before 09/01/97-0000)
(not-after 09/01/97-0000))
(signature (hash shal hashbytes)
(public-key dsa-shal clientkey)

(sigbytes)))

Figure 4: AEGIS Client Authentication Certificate

((cert (issuer (hash-of-key (hash shal
serverkey)))
(subject (hash-of-key (hash shal
serverkey)))
(tag (server (dh-g gbytes)
(dh-p pbytes)
(dh-Y ybytes)
(msg-hash
(hash shal hbytes))
(cnonce chytes)
(snonce shytes)))
(not-before 09/01/97-0900)
(not-after 09/01/97-0900))
(signature
(hash shal hashbytes)
(public-key dsa-shal serverkey)

(sighytes)))

Figure 5: AEGIS Server Authentication Certificate

((cert (issuer (hash-of-key (hash shal
approverkey)))
(subject (hash shal
hashbytes))
(not-before 09/01/97-0000)
(not-after 09/05/97-0000))
(signature (hash shal
hashbytes)
(public-key dsa-shal
approverkey)
(sigbytes)))

Figure 6: AEGIS Component Certificate

3.1.2 Certificate Revocation Lists

Requiring each client to maintain a Certificate Revocation
List (CRL) places a significant burden on the non-volatile
storage of the client. Rather than use CRLs, we choose
instead to keep the validity period of certificates short as
in the SDSI/SPKI model and require the client to update
the certificates when they expire. This serves two pur-
poses beyond the ability to handle key revocation. First,
we eliminate the storage requirements for CRLs. Second,
we can potentially reduce the amount of system mainte-
nance required of the client. Since the client must connect
to the server on a regular basis to update the component
certificates, the server can, at the same time, update the
actual component as well if a new version is available.

3.2 Diffie Hellman Key Agreement

The Diffie Hellman Key Agreement (DH) [DH76] per-
mits two parties to establish a shared secret between them.
Unfortunately, the algorithm as originally proposed is sus-
ceptible to a man-in-the-middle attack. The attack can be
defeated, however, by combining DH with a public key al-
gorithm such as DSA as proposed in the Station to Station
Protocol[DvOW92].

The algorithm is based on the difficulty of calculat-
ing discrete logarithms in a finite field. Each participant
agrees to two primes; and p, such thatg is primitive
mod n. These values do not need to be protected in or-
der to ensure the strength of the system, and therefore can
be public values. Each participant then generates a large

3 AEGIS NETWORK RECOVERY PROTOCOL 8

random integer. Bob generatess his large random in-3.4 SHA1 Message Authentication Code

teger and compute¥ = ¢* mod p. He then sendX L .

to Alice. Alice generateg as her large random integerlvlhes’s":‘jgbe f\utherl['[r;catlon COd?S E,MAC) L:,t'l'ze adseoket,

and compute¥” = ¥ mod p. She then sends to Bob. shared between the communicating parties and a message

; digest. We use the Secure Hash Algorithm (SHA1), and
Bob and Alice can now each compute a shared sekyet) . .
by computingt = Y mod p andk = XY mod p, re- the HMAC described in RFC 2104[KBC97]. The MAC is

spectively. defined as:

SH A1(k XOR opad, SH A1(k XOR ipad, M)),

3.3 Digital Signature Standard where)/ is the message or datagraspad is an array of

-64 bytes each with the value 0x5c, aipgd is an arra
The Digital Signature Standard (DSS) includes a d|g|t8+ si>></ty four bytes each with the vaﬁf?Oxs& is zerg

signature algorithm (DSA) [0S94] and a cryptographic , ; .
hash algorithm (SHA1) [0S95]. DSA produces a 320 added to sixty four bytes. The result of this MAC is the

signature using the following parameters: %O_blt SHAL digest.

A prime, p, between 512 and 1024 bits in length. Thd.5 DHCP

size of the prime must also be a multiple of 64. . . .
P P The DHCP protocol[Dro97] provides clients the ability to

A 160 bit prime factorg, of p — 1 configure their networking and host specific parameters
’ ' dynamically during the boot process. The typical param-
g, whereg = h»=D/7 mod p andh is less thamp — 1 eters are the IP addresses of the client, gateways, and DNS

such thay is greater than 1. server. DHCP, however, supports up to 255 configuration

parameters, or options. Currently approximately one hun-

«, wherez is less than. dred options are defined for DHCP [AD97]. One of these

’ options is an authentication option which is described in
y, wherey = ¢ mod p. Section 4.1.

The format of a DHCP message is shown in fig-
The parameters, ¢, andg are public. The private key isure 7[Dro97]. The first field in the DHCP message is the
z, and the public key ig. opcode The opcode can have one of two values, 1 for
A signature of a messag@/, is computed in the fol- @8 BOOTREQUEST message, and 2 for a BOOTREPLY
lowing manner. The signer generates a random numiegssage. The next fieldtype is the ha},rdware address
k, that is less thag. They then compute = (¢*modp) YP€ defined by the “Assigned Numbers” RFC[RP94], and
mod ¢, ands = (k- '(SHAL(M) + zr)) mod q. The hlenindicates the length of the hardware addrésgsis
valuesr ands, each 160 bits in length, comprise the sigiet to zero by the client and used by BOOTP relay agents

nature. The receiver verifies the signature by computintp determine if they should forward the message.isa
random number chosen by the client. Its use is to permit

w=s"1 modgq the client and the server to associate messages between
each othersecsis set by the client to the number of sec-

u = (SHA1(M) *w) mod ¢ onds elapsed since the start address acquisition process.
Currently, only the leftmost bit of thBagsfield is used

uy = (r+*w) mod g to help solve an IP multicast problem. The remaining bits
must be zero.ciaddr is the client address if the client

v=((g"* *y*2) mod p) mod gq. knows it alreadyyiaddris “your” address set by the server

if the client did not know (or had a bad one) its address.
The signature is verified by comparingndr. If they are giaddris the relay agent addresshaddris the client's
equal, then the signature is valid. hardware addresssnameis an optional null terminated

3 AEGIS NETWORK RECOVERY PROTOCOL 9

0 8 16 24 31 Client Server
OPCODE | HTYPE HLEN HOPS

Ti DISCOVER
XID \
SECS FLAGS OFFER

Client IP Address OFFER

Your (Client) IP Address

REQUEST
IP Address of Next Server in Bootstrap \

Relay Agent IP Address ACK

Client Hardware Address (16 bytes)) i
Figure 8: Initial DHCP Message Exchange

Optional Server Name (64 bytes) cation of a bootstrap program to support diskless clients.
After the client receives the IP address of the boot server
and the name of the bootstrap program, the client uses
TFTP[So0l92] to contact the server and transfer the file.

Boot File Name (128 bytes)

3.6 TFTP
_ _ TFTP was designed to be simple and small to fitin a ROM
Options (variable) on a diskless client. Because of this, TFTP uses UDP
rather than TCP with no authentication included in the
Figure 7: DHCP Message Format protocol. TFTP does, however, have an option capabil-

ity [MH95] similar to DHCP.

TFTP has five uniqgue messages that are identified by a
string containing the server’s naméle is the name of two byte opcode value at the beginning of the packet. The
the boot file. In AEGIS, this is the name of the comp®Read Request (RRQ) and the Write Request (WRQ) pack-
nent to recover. Finallypptionsis a variable length field ets, opcodes 1 and 2 respectively, share the same format,
containing any options associated with the message. see figure 12. The Data (DATA) packet contains three

The initial message exchange between the client diwlds. The first field is the two byte opcode, 3 for DATA.
the server is shown in figure 8. The client begins the preellowing the opcode is a two byte field containing the
cess by sending a DHCPDISCOVER message as a brdsldek number of the data, beginning at 1 and increasing.
cast message on its local area network. The broadcHs¢ third and final field of the packet contains the actual
message may or may not be forwarded beyond the LAdck of data transferred. Typically, the block size is 512
depending on the existence of relay agents at the gdsgtes. However, the size can be increased through the use
ways. Any or all DHCP servers respond with a DHCPOIef the TFTP options. Should the block be smaller than
FER message. The client selects one of the DHCPOFFER blocksize, this identifies the packet as the final DATA
messages and responds to that server with a DHCPIR&eket. Each DATA packet is acknowledged by a four
QUEST message, and the server acknowledges it withyae ACK packet, opcode 4, containing the opcode and
DHCPACK. the acknowledged block number. The final packet, op-

In addition to providing networking and host specificode 5, is the ERROR packet with three fields. The firstis
parameters, DHCP can provide the name and serverttte two byte opcode. The second is a two byte error code,

4 IMPLEMENTATION 10

and the final field is a zero terminated netascii string comencesnonce. The Server receives the message and veri-

taining an error message. Figure 13 depicts the varidies the signature and thatonce matches that sent in its

TFTP messages. previous message. If both are valid, then the Server can
A TFTP session for reading/downloading a file begimggenerate the shared secigtusing DH,k = XY mod p.

with the client sending a RRQ packet to the sever and figdie Client similarly generates the shared sedret, Y*

ceiving either the first DATA packet in response, or amod p. The shared secret, can now be used to authen-

ERROR packet if the request was denied. The client tesate messages between the Server and the Client until

sponds with an ACK packet, and the process continugech time as both agree to charigd-igure 9 depicts the

until the file is transferred. entire exchange between the Client and the Server with

the DHCP messages identified. The use of the authen-

tication certificate assists in ensuring that the protocol is

“Fail Stop” through the use of nonces and a short validity

A Client (AEGIS) and a Server (Trusted Repository) wisberiod for the certificate. The use @fonce also permits

to communicate and establish a shared secret after e Server to reusg over a limited period. This reduces

thenticating the identity of each other. There has bettre computational overhead on the server during high ac-

no prior contact between the Client and the Server othigity periods. The potential for a TCPSYN like denial

than to agree on a trusted third party, or a public key iof service attack[HB96] is mitigated in the same manner

frastructure, to sign their authorization certificat€s,z. by the authentication certificate. The authorization certifi-

The Server and the Client also need to have a copy of tae also prevents clients from masquerading as a server

trusted third party’s public keyP- 4. The Client sends because of the client/server capability tag. This is a bene-

a message to the Server containing the Client’s autlfibnot possible with X.509 based certificates.

rization and authentication certificat&€s, y. The Server

receives the message and verifies the Client’'s signatyr C g

on the authentication certificate and that the hash ct(?rig Subsequent Message Authentication

tained in the authentication certificate matches that of tBabsequent messages, e.g. TFTP messages, use the

message M. The signature of the CA on the authoSHA1 HMAC defined in section 3.4 augmented with a

rization certificate is also verified. If all are valid an@ne up counter to prevent replays. The counter is initially

the timestamp on the authentication certificate is with#fet to zero when the shared seckeis derived.

bounds, then the Server sends to the Client a message con-

taining its authorization and authentication certificates. .

The server's authentication certificate may include the of- Implementation

tional DH parametersg andp, andY’, whereY = ¢¥

mod p. If the DH parameters are not included in the ceMoving from a high level design to an implementation re-

tificate, then default values fay andp are used. Cur- quires a great deal of work. In this section we take the

rently, we are using the same default values as thggetocol and certificates described in section 4 and de-

used in SKIP[AMP]. The server's nonceponce, and scribe their implementation using DHCP and TFTP. We

the client’s noncegnonce, are also included in the mesalso provide the message formats and type information.

sage. The Client receives this message and verifies @ conclude the section by providing performance infor-

signatures on the authentication and authorization certifiation, and discussing related work.

cates, that the hash in the servers authentication certificate

matches thg message hash, and &haﬁce matchgs that 4.1 DHCP Authentication Option

sentin the first message. If all are valid and the timestamp

value of the authentication certificate is within bounds amHCP is extensible through the use of the variable length

cnonce matches that sent in the first message, then thgtions field at the end of each DHCP message. The for-

Client sends a signed message to the Server containingritt and use of this field is currently defined by an In-

DH parameteX whereX = g* mod p, and the server’s ternet RFC [AD97]. An option for authentication is also

3.7 Initial Mutual Authentication Protocol

4 IMPLEMENTATION

Client Server
Fea Fea
Client Client
i - B hash 2 H(M)
DHCPDISCOVER _cr
lent
VaGe)
Client
VCIient (c;\N)
Server _ Server Y=g¥ mod p
hash £ H(M) —~ ST
N DHCPOFFER
cnonce = cnonce
Server
Vea (Gr)
\éer (CAServer)
Vir X X, snonce, Sy (M) 2
X=g* mod p DHCPREIUEST g SNONCe = snonce
X Q \élient (%Iient (M))
k=Y modp y
k=X"modp
SHALIMAC(M, K)
—

DHCPACK

Figure 9: Authentication Message Exchange

4 IMPLEMENTATION 12

defined by an expired draft RFC [Dro96]. The formatType Value
of the message is shown in figure 10. The DHCP quAuthorization Certificate 0
Client Authentication Certificate 1
0 8 16 24 81 Server Authentication Certificate 2
90 Length Protocol Component Authentication Certificate3
X value 4
. . snonce 5
Authentication Information -
signature 6
SHA1IMAC 7

Table 1: AEGIS Types
Figure 10: DHCP Authentication Option Format

thentication option was designed to support a wide v&-2 Adding Authentication to TFTP

riety of authentication schemes by using the single bX}\‘?e define a new TETP option, HMAC-SHAL, that uses

protocol and length fields. Unfortunately, a single by{ﬂe HMAC defined in section 3.4 along with a 32 bit one

value for the size in octets of authentication information . .
is too small for the AEGIS authentication informatio Up counter for use with the TETP Read (RRQ) and Write

. . . . (WRQ) r . The format of a RRQ or WR k
To solve this problem, our choices were to either viol Q) requests e format of a RRQ o Q packet

. h the HMA ionis sh in fi .
the current DHCP options standard and use a two bytc'et the C optionis shown in figure 12. The counter

size field and potentially cause interoperability problems;—— _
or place an additional restriction on the AEGIS authep®Pd FileName | 0| Mode| 0F'hmac-shal” | 0| Count | 0| Digest| 0

tication packet, requiring it to be the last option on any—rrrp Message ——TFTP Option Extension —————
DHCP packet. We have selected the latter. Using this and

a unique AEGIS option number permits interoperabilif¥igure 12: TFTP RRQ/WRQ Authentication Packet For-
with current DHCP servers. mat

Since we are unable to use the authentication option
message format shown in figure 10, we must defindsawo bytes in length, and its purpose is to prevent replay
new DHCP option format for AEGIS Authentication. Thattacks. Both the client and the server initialize the count
AEGIS option uses the same basic format as the norrttakero immediately aftek is derived from the protocol
DHCP format. The only difference is the use of a two byshown in figure 9.
size field. Embedded in the data portion of the option areThe TFTP option extension, however, is not defined for
the AEGIS certificates, and other data as required. Thd$elP DATA or ERROR packets. Therefore, we must ex-
fields are identified through the use of a one byte AEGt&ndf those packets in the same manner as we did with the
type followed by a two byte size field. The AEGIS AuRRQ and WRQ packets shown in figure 12. The TFTP
thentication format is shown in figure 11. The differeqgacket formats are shown in figure 13.

Another TFTP implementation problem is how to han-
dle the “lock-step” nature of the protocol and still prevent
TBD Length AEGISType replays. The solution we have adopted provides a nar-
row window for an adversary to obtain a copy of the file
from the server without proper authentication by replay-
AEGIS Authentication Information ing the message to the server before the clients next mes-
sage. We believe the benefits of this approach, not having
to change the TFTP protocol other than a small message

0 8 16 24 31

AEGISSze

Figure 11: AEGIS Authentication Option Format

) 2We are currently investigating the interoperability issues with exist-
AEGIS types are shown in table 1. ing servers raised by this modification

4 IMPLEMENTATION 13

Algorithm Time
3 Block Data
Number SHA1 6.1 MB/sec
DATA DSA Verify (1024bit) 36 msec
2 — = DSA Sign (1024bit) 23 msec

4 [Number Generate X,Y (1024bit) 22 msec

ACK Generate k (1024bit) | 71 msec
5 it Error Message Table 2: CryptoLib 1.1 Benchmarks

ERROR

Figure 13: TFTP packets certificate is negligible and therefore not included in the

estimates below.

format change, outweigh the potential problems asso&iz1r 1

ated with dramatically changing the protocol. Initial Exchange

The initial authentication exchange includes the first three
DHCP message§)HCPDISCOVER, DHCPOFFERNd
DHCPREQUESTDHCPDISCOVERrequires the client

to perfom one signature operation, and the server must

Once authentication is added to DHCP and TFTP, AEGﬁ)grform tvyo verify operations. Thus, the total cost O.f this
can use them without further modifications as its recovely >>29¢ 1S 95 msec. TDeICPOFFERmessage requires

protocol. In AEGIS, the client follows the DHCP protoI. € server to generaiéand perform one signature opera-

col but adds to the DHCPDISCOVER message the na%oen' The client must perform two verify operqtions. This
of the required component needed followed by the Sngiu'tS in a message cost of 117 msec. The final message,
S

4.3 Using DHCP/TFTP as the Recovery
Protocol

hash of the component in the boot file name field. On CPREQUESTTequires the client to generaf and

the DHCP protocol is completed and the shared secret %nd perform one S|gnatFure opgratlon.b'{he slﬁrver must
tablished, the AEGIS client contacts the trusted repositc?r‘ge/r orm one verify operation, and generateesulting in

using TFTP with authentication and downloads the new‘nessage cost OT 107 msec. Summing the cost of these
component. three messages gives a total cost of 319 msec.

While the above time may seem too high a cost to pay
for security, the total time is small when compared to the
4.4 Performance Information total time spent booting a computer system. It is unlikely

that users will see the increase in time required to perform
We are currently in the process of implementing thige authentication.

work using the Internet Software Consortium’s DHCP
server [Lem97], and AT&T's Cryptolib [LMB95]. We
will provide specific performance information on our im#-4.2 Subsequent Exchanges

Efvzznctig?r}é?etge:g;gtl Coepgf(:a;hif:vpeerr' Vyc?ci);zeba ubsequent messages use the MAC described earlier, and
P P yp yp Y Wi likely (in a LAN situation) be bounded by the speed

for;i] anscngz?r::tré ;nut:ii mean .tlme, we are.prowdlng F.’ﬁf'SH AL 6.1 MB/sec.
g the times shown in table 2. The
results were generated using a 200Mhz PentiumPro with
32MB of memory. For the purposes of these estimategss Related Work
we assume that each DHCP message is three kilobytes in
length. The cost of hashing the first and second messageour knowledge, there is no previous work involving
for comparison to the hash contained in the authenticatibe secure recovery of bootstrap components. There have

6 CONCLUSIONS 14

been, however, several efforts at incorporating authentiegement of the bootstrap process. This has many practi-
tion into DHCP. Two are expired draft RFCs. The first etal uses, including desktop managementin LAN-attached
fort [Dro] involves the use of a shared secret between th€s (where integrity failures might be stimulated by
DHCP client and server. While this approach is securgruses or user-inserted cards), as well as secure, recover-
it severely limits the mobility of clients to those domainable bootstrap for network elements with processors, such
where a shared secret was previously established. Fag-bridges and IP routers.

thermore, the maintenance and protection of the shared’he recovery protocol itself will be fully incorporated
secrets is a difficult process. Another effort at incorporatto the DHCP model, and we intend to propose it as an
ing authentication into DHCP was by TIS. This proposaluthentication RFC standard, perhaps as soon as the De-
combines DHCP with DNSSEC[EK97]. This approactember 1997 Internet Engineering Task Force meeting.
provides for the mobility of DHCP clients, but at a signif-

icant increase in cost in terms of complexity. The clie .

implementation, in order to support this approach, must Conclusions

also include an implementation of DNSSEC. This will)
significantly increase the size of client code- possibly b¥/ introduced the AEGIS secure bootstrap architecture,

yond the ROM size available to the client. Recently, IntgkPlained its approach to integrity and the assumptions
has proposed authentication support for DHCP [Patg'fjmakes about the operating environment, and discussed
Their proposal uses a two phase approach. In the fiRg general idea behllnd automated recovery in a secure
phase, the computer system boots normally using DHABO!Strap process using trusted sources. We are currently
The second phase begins after the system completesTHiementing this new automated recovery process in the
DHCP process and uses ISAKMP [MSST96] to exchan gntext of the PC archltecturg using a small portion of the
a security association. This security association is thel?S: We have shown how it can be extended to recov-
used to once again obtain the configuration informatiGhY OVer networks by use of cryptographic protocols, and
from the DHCP server using a secure channel, if suclPepvided one such protocol, with expected data structures
channel can be established. This information is then cofffld Packet formats. - o _

pared to that obtained in the first phase. If they differ or a VW& believe that this work has a significant impact on
secure channel cannot be established, then the boot f&]§. 2dministration and manage-ability of systems. While
The benefit of this approach is that it requires no chang¥§ have previously demonstrated the need and provided
to DHCP. The drawbacks are the same as the DNSSgtarchitecture for a secure bootstrap for any trusted sys-
approach with the addition of two problems. The first is®§™M> here we have shown how that architecture can be
possible race condition vulnerability during the time béifilized in a very realistic environment, with no loss of
fore the two configurations are compared. The secondREUrty. Thus, we can build distributed computer sys-

that the approach does not protect against denial of 46MS Of nodes which are in two logical states: (1) non-
vice attacks. operational (e.g., down or recovering), and (2) operational

and trusted. Such simple states and transitions ease, and
in some sense make possible, verification of applications

5 Future Work built on the distributed systems.

One of the major goals of the AEGIS research has beR'é
the development of new ideas for the construction of se- ferences
cure systems, with the additional constraint that the id 3H97] S. Alexander and R. Droms. DHCP Op-

must be realizable today or in the very near term with tions and BOOTP Vendor Extensions. Inter-

commercial platforms. While_ confinilng, this constrai.nt net REC 2132, March 1997.
ensures that AEGIS results will have impact beyond sim-
ply the academic community. [AFS97] William A. Arbaugh, David J. Farber, and

We intend to further investigate the centralized man- Jonathan M. Smith. A Secure and Reliable

REFERENCES

[AIM96]

[AMP]

[Com88]

[Com89]

[DH76]

[Dro]

[Dro96]

[Dro97]

[DVvOW92]

[EFRT97]

[EK97]

Bootstrap Architecture. IRroceedings 1997 [Eli96]
IEEE Symposium on Security and Privacy
pages 65-71, May 1997.

Werner Almesberger. LILO Technical [EI97]
Overview version 19 edition, May 1996.

Ashar

Hemma
signed Numbers for
http://skip.incog.com/spec/numbers.html.

Aziz, Tom Markson, and[Fin84]
Prafullchandra. As-

SKIP Protocols.
[GDM89]

Consultation Committee. Recommenda-
tion X.209: Specification of Basic Encod-
ing Rules for Abstract Syntax Notation One

(ASN.1)1988.]
[Gri93]

Consultation Committee.X.509: The Di-
rectory Authentication Framework Inter-
national Telephone and Telegraph, Interna-
tional Telecommunications Union, Geneva[,

1989. S935]
W. Diffie and M.E. Hellman. New Direc-
tions in Cryptography EEE Transactions on
Information Theory|T-22(6):644—654, Nov
1976. [HB96]

R. Droms. Authentication for DHCP mes-
sages. Work in Progress.

R. Droms. Authentication for DHCP Mes{KBC97]
sages. Work in Progress, November 1996.

R. Droms. Dynamic Host Configuration Pro-
tocol, RFC 2131, March 1997.

- [Lem97]
W. Diffie, P.C. van Oorschot, and M.J.

Wiener. Authentication and Authenticated
Key ExchangesDesigns, Codes and Cryp-[Lev84]
tography 2:107-125, 1992.

Carl M. Ellison, Bill Frantz, Ron Rivest, andLMB95]
Brian M. Thomas. Simple Public Key Cer-
tificate. Work in Progress, April 1997.

D. Eastlake and C. Kaufman. Dynamic Namf.td91]
Service and Security. Internet RFC 2065,
January 1997.

15

Julian Elischer. 386 boot.
/sysli386/boot/biosboot/README.386,
July 1996. 2.1.5 FreeBSD.

Carl M. Ellison. SDSI/SPKI BNF. Private
Email, July 1997.

Ross Finlayson. Bootstrap Loading using
TFTP. Internet RFC 906, June 1984.

Y. Desmedt G. Davida and B. Matt. Defend-
ing Systems Against Viruses through Cryp-
tographic Authentication. 1989 IEEE
Symposium on Security and Privagages
312-318. IEEE, 1989.

R. Grimes. AT386 Pro-
tected Mode Bootstrap Loader.
/sysl/i386/boot/biosboot/README.MACH,
October 1993. 2.1.5 FreeBSD.

Li Gong and Paul Syverson. Fail-Stop Pro-
tocols: An Approach to Designing Secure
Protocols. InProceedings of IFIP DCCA;5
September 1995.

L.T. Heberlein and M. Bishop. Attack Class:
Address Spoofing. IRroceedings of the 19th
National Information Systems Security Con-
ference pages 371-377, October 1996.

H. Krawczyk, M. Bellare, and R. Canetti.
HMAC:Keyed-Hashing for Message Au-

thentication. Internet RFC 2104, February
1997.
Ted Lemon. Dynamic Host Configuration

Server. ftp://ftp.fugue.com/pub/, 1997.

H.M. Levy. Capability Based Computer Sys-
tems Digital Press, 1984.

Jack Lacy, Don Mitchell, and Matt
Blaze. Cryptolib 1.1. Email to cryp-
tolib@research.att.com, 1995.

Phoenix Technologies LtdSystem BIOS for
IBM PCs, Compatibles, and EISA Comput-
ers. Addison Wesley, 2nd edition, 1991.

REFERENCES

[MH95]

[Mic]

[MSST96]

[0S94]

[0S95]

[Pat97]

[PG8Y]

[RP94]

[S0192]

G. Malkin and A. Harkin. TFTP Option Ex-
tension. Internet RFC 1782, March 1995.

Microsoft. Authenticode Techonology. Mi-
crosoft's Developer Network Library, Octo-
ber 1996.

Douglas Maughan, Mark Schertler, Mark
Schneider, and Jeff Turner. Internet Secu-
rity Association and Key Management Proto-
col (isakmp). Internet—draft, IPSEC Working
Group, June 1996.

National Institute of Standards. Digital Sig-
nature Standard. Technical Report FIPS-186,
U.S. Department of Commerce, May 1994.

National Institute of Standards. Secure Hash
Standard. Technical Report FIPS-180-1, U.S.
Department of Commerce, April 1995. Also
known as: 59 Fed Reg 35317 (1994).

Baiju V. Patel. Securing dhcp. Work in
Progress, July 1997.

Maria M. Pozzo and Terrence E. Gray. A
Model for the Containment of Computer
Viruses. In1989 IEEE Symposium on Se-
curity and Privacy pages 312-318. IEEE,

1989.

J. Reynolds and J. Postel. Assigned Num-
bers. Internet RFC 1700, October 1994.

K. R. Sollins. The TFTP Protocol (revision
2). Internet RFC 1350, July 1992.

16

APPENDIX A SDSI/SPKI LITE BNF

Appendix A SDSI/SPKI Lite BNF

<byte-string> :: <bytes> ;

<bytes> :: <decimal> *:” {binary byte string of that length} ;

<cert> : “(* “cert” <issuer> <subject> <deleg>? <tag> <valid>?")" ;

<client> :: “(* “client” <cnonce>? <msg-hash>?)" ;

<cnonce> :: “(* “cnonce” <byte-string>)" ;

<date> :: <byte-string> ;

<ddigit> :: “0” | <nzdigit> ;

<decimal> :: <nzddigit> <ddigit> ;

<deleg> :: “(* “propagate”)" ;

<hash> :: “(* "hash” “shal” <byte-string> “)" ;

<issuer> :: “(* “issuer” <issuer-name> ‘)" ;

<issuer-name> :: <principal>;

<msg-hash> :: “(* “msg-hash” <hash> *)" ;

<not-after> :: “(* “not-after <date>)" ;

<not-before> :: “(* “not-before” <date>)" ;

<nzdigit> :: “1”]“2"|“3"|“4"|“5"|“6"|“7"|"“8"|“9";

<obj-hash> :: “(* “object-hash” <hash> “)" ;

<principle> :: <pub-key> | <hash-of-key> ;

<pub-key> :: “(* “public-key” <pub-sig-alg-id> <s-expr>* <uri>?")" ;

<pub-sig-alg-id> :: “dsa-shal” ;

<s-expr> : “(* <byte-string> “)" ;

<server> :: “(* “server’ <dh-g>? <dh-p>? <dh-Y>? <snonce>?
<msg-hash>? *)" ;

<signature> :: “(* “signature” <hash> <principle> <byte-string> *)" ;

<subject> :: <principal> | <obj-hash> ;

<tag> : “("* “tag”)" | “(* "tag” <tag-body>)" ;

<tag-body> :: <client> | <server> ;

<valid> :: <not-before>? <not-after>? ;

17

