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Abstract messages, or packets, that are sent between the nodes of the
system. These programs are written in PLAN, the Packet
Active Networks promise greater flexibility than cur- Language for Active Networks [20]. Packet programs are
rent networks, but threaten safety and security by virtue simple by nature, and serve to ‘glue’ together service level
of their programmability. In this paper, we describe the programs, just as a shell-script glues together calls to more
design and implementation of a security architecture for complicated programs. In contrast, service level programs
the active network PLANet [22]. Security is obtained with (or service routineg reside at each node and are invoked
a two-level architecture that combines a functionally re- by PLAN programs evaluating there. Service routines are
stricted packet language, PLAN [20], with an environment general-purpose and may be dynamically loaded across the
of general-purpose service routines governed by trust man-network [2]. This general architecture is shared by many
agement [11]. In particular, we employ a technique which so-called active packet systems, including ANTS [47, 46]
expands or contracts a packet’s service environment basedwhere its 'API’ is analogous to PLAN service routines, see
on its level of privilege, termedamespace-based security the companion paper in this volume for a direct compari-
As an application of our security architecture, we present son [24]), SNAP [36], PAN [41]etc.
the design and implementation of an active-network fire- A central goal of PLANet is to provide Internet-like ser-
wall. We find that the addition of the firewall imposes an ;e a5 3 baseline, augmented by its active capabilities. The
approximately 34% latency overhead and as ittle as 2 6.7% |yternet allows any user with a network connection to have
space overhead to incoming packets. some basic services. In addition to basic packet delivery
provided by IP, basic information services like DNi®;
ger , andwhois , and protocols like HTTP, FTP, SMTP,
1 Introduction and so forth are provided. Similarly, a goal of PLANet is
to allow any user of the network to have access to basic
Active Networks [43] offer the ability to program the services; these services should naturally include some ‘ac-
network on a per-router, per-user, or even per-packet ba-tiveness.” This goal implies that some functionality, like
sis. Unfortunately, this added programmability compro- packet delivery in the current Internet, should not man-
mises the security of the system by allowing a wider range date authorization. There is a pragmatic reason to make
of potential attacks. Any feasible Active Network archi- the same choice: the converse assumption, in whith
tecture therefore requires strong security guarantees. Wepacketgequire proper authorization before they can be ex-
would like these guarantees to come at the lowest possi-ecuted, can be extremely costly. This is because authoriza-
ble price to the flexibility, performance, and usability of the tion requiresauthenticationeach packet must be associated
system. with a principal that is relevant to the authorization policy.
At the University of Pennsylvania, we have developed an Packet-level authentication uses cryptography to ensure that
Active Internetwork called PLANet [22]. PLANet's node a packet’s identity is not spoofed, and cryptographic oper-
architecture consists of two levels: thacket levehnd the ations, particularly public-key operations, can be quite ex-
service level All programs at the packet level reside in the pensive relative to normal packet processing. For example,



adding a 30% overhead to packet processing (based on meazetwork, and then describe our two-level security architec-
surements of software-based cryptography that we report ature designed to secure against them.
the end of the paper) on each node would severely degrade
the performance of the network. 2.1 Threat Model

PLANet was designed so that the programs at the packet
level are the lowest common denominator with respect to
security. That is, all packet programs by themselves (with-

ohut ?alls t(|) service routlfnes) are ljafpi by definition thankf]_to and network: and to theontentsof the system: the packets
the formal properties of our packet language, PLAN. ThiS 0 q6lves and the information stored on routers. These
is the same model as in the IP Internet—all IP packets areihreats imply two forms of attack:

acceptable by default and need not be authorized inside the
network. Security, therefore, boils down to the services: in

particular, a packet remains safe as long as it only makes
calls to service routines that are themselves safe; therefore,
we must ask the question “which services can be consid-
ered safe?” While for some services the answer is clear
(for example, determining the address of the current node
is safe), service safety is ultimately a matter of local pol-

icy. For example, a router in the center of the network may

allow very few service routines, while an end-host might o

The two major threats to any active networking system
are to thepublic resourcesf the system: the CPU, memory,

e Denial-of-Service Because of the greater expressibil-
ity of active network programs (compared to protocol
packet headers), there is greater potential for the mis-
use of the system’s public resources, thus denying ser-
vice to other programs. For general programs, the pub-
lic resources should be fairly apportioned, while those
with more privilege could gain additional latitude.

Protection. Programs should be protected from inter-

provide a more liberal execution environment. Moreover,
a service’s safety in general is likely not absolute: calling
it might be acceptable for some packets but not for others.
For example, a properly authorized network management

ference by other programs. In particular, one program
should not be able to read or write data private to an-
other program without authorization, either while the
packet program is in transit or when it is running |,

packet should be allowed to update a node’s routing table,
while an untrusted packet should not.

This paper presents the design and implementation of
the security architecture in PLANet. In particular, we fo- In responding to these attacks with a Security system,
cus on the task of building a secure service infrastructurethere may be attacks on the security system itself. As men-
based on the foundation of a safe packet language, in thisioned, we would like to allot greater privilege to some
case PLAN. While here we focus on our experience with packets, such as those associated with a node’s administra-
PLANet, we expect that our approach will apply to any ac- tor. Therefore, it is important that these packets be properly
tive network infrastructure that uses a safe packet languageuuthenticated, and that no impersonatiosgwofincattacks
combined with more general-purpose services. be possible. Similarly, the authentication and authorization

We begin by presenting a description of our architecture, mechanisms should also be robust agaieslayattacks, in
after describing the attacks it protects against. We then fol-which valid, but old messages are replayed in an attempt to
low up with a description of the implementation of this ar- gain illegal access.
chitecture in PLANet. After a brief discussion of PLAN and
its relevant characteristics, we present possible methods oh 5 Architecture
security management and the one we have chosen to imple-
ment: namespace-based securitye describe how we en- . . . .
able authentication, and manage relevant security informa_len'?(s)fa(ljreeg%idn ngggﬁds':r':hsei(:Igtrt]alc,kvél?nrt)c?rtt#:aogatzsert)rlc(;\?(_eI
tion, such as which service routines are available to which

principals, using QCM (Query Certificate Manager [17]). ;n(::ltrft 'csriar\”gf:l!s':fal’;s'sl% d;_f;fe_r:r;tbggnceh daﬁr:ilasz‘lt%r?;leach
We then demonstrate how we have used our system to im- vel. P vel, unty ! ' :

plement a simple firewall that ‘filters’ active packets. Fi- restriction the limited nature of the PLAN language pre-

nally, we present some related work and conclude. vent_s attacks from t_)elng formulated, particularly denial-of-
service and protection attacks. We elaborate on the reasons

for this claim in the next section.

At the service level, we make use of an authorization
system to govern access to services. While some services
To evaluate the effectiveness of any security system, wemay be considered usable by all (we call these the ‘core’
must consider the threats it defends against. Therefore, weservices), many services that are necessary for the opera-
begin by describing the behaviors that threaten an activetion of the active node should not be made available to all

no packet or program snooping). This property implies
program isolation.

2 Overview of Secure PLAN
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Figure 1. PLANet's security architecture. The
contents of the dashed box are available to
all incoming packets, while the dotted boxes
encapsulate service packages available only
to select users. Services may be further
restricted by what parameters they can be
called with.

packets; an example would be network management func-

tions. Our architecture associates with each prinéipaiet
of service routines and policies that are allowed at his level
of privilege. The policies are enforced and the routines are

made available after the user has been successfully autho-

rized. This architecture is illustrated in Figure 1.

3 Packet Security via PLAN

PLAN [20] is a small functional language resembling
ML [28, 32]. It differs most importantly from other func-
tional languages in that it includes a primiti@Remote
(among others) for evaluating an expression at a remote
node. InvokingOnRemote will result in a newly spawned
packet. PLAN was designed as the foundation of PLANet's
security, with the intention that all PLAN programs can be
considered safe. PLAN’s security properties are described
below.

PLAN'’s Security Properties

PLAN was designed so that all PLAN programs by their
nature are impervious to the attacks we described above.
That is, PLAN programs (which do not call service rou-
tines, or only call ‘safe’ ones) should not be able to mount
denial-of-service attacks nor should they be able to interfere
with other packets or node-resident code and/or data. This
is achieved in three ways:

e Limited expressibility. PLAN is not a general-
purpose language, but is resource- and expression-
limited in order to prevent CPU and memory denial-of-
service attacks. In particular, all PLAN programs are
guaranteed to termingtesince PLAN does not pro-
vide a means to express non-fixed-length iteration or
recursion. In addition, PLAN does not provide means
for its programs to directly communicate, meaning
that one program cannot directly access or affect an-
other (communication is possible indirectly through
services).

Strong Typing. In weakly-typed languages, like C,
security restrictions can be overcome by, for exam-
ple, using unsafe casts to change integers into point-
ers, or exploiting unchecked array accesses to force
buffer overflows. PLAN prevents such attacks by en-
forcing strong typing, as is done in languages like
Java [16]. This idea has become common in recent
years €f.[9, 12, 18, 30, 35]).

This scheme provides access control for system services.

However, once access to these resources is obtained, fine

grained management may be required. For example, more
than just say that a packet may or may not have access to a
service, we might say that a service is accessible but only

when called with certain parameters. We flesh out the de-
tails of this architecture in the next two sections. We de-
scribe PLAN’s security properties in the next section, and
then present our service management methodology.

1A principal may be a network node or a user. Each principal holds a
public/private key pair, and is identified (at least for security purposes) by
their public key.

r- e Packet Counting While PLAN’s language restric-
tions can bound CPU and memory resource usage on
a single node, they are not sufficient in restricting use
of networkresources. For this purpose, PLAN packets
have aresource bounaounter which is decremented
each time a packet is serd.g.,the same packet for-
warding itself, or a new packet being spawned). There-
fore, the number of hops that a PLAN program and any
of its progeny may take is limited by the initial value

2PLAN programs terminate as long as the services called also termi-
nate.



of this counter. This mimics the functionality of the IP  mount an attack. A radical solution to this problem would

“Time To Live” (TTL) field. be to prevenany service routine from being installed that

. ._._could potentially harm the node in the ways described in

Cogggﬁsjstgrzeir:ec;c?(rgigljs';ze;aciti\e;;nzgtr\;vivri Csingsr'r?égSection 2.1. However, this solution would rule out many
usage in p ; ! ) . useful service routines. Instead, we wish to allow the in-

and mobile code in general, while the first technique is less

. . clusion of potentially harmful service routines—for exam-
appreciated. Most active network systems we are aware

le, network management operations—that should only be
of assume that the use of a general-purpose, type-safe Ian?nade available to certaitrustedusers
guage combined with resource counters is sufficient; mis- '
behaving threads are simply killed when they exceed their4 1 Trust Management
resource limits. However, recent studies have shown that
such an approach is both potentially unsound [8, 18], and Given our loose goal of allowing only trusted programs
quite costly [19]. In particular, without careful engineering, to

S i 4 use potentially unsafe services, it follows we must de-
abruptly terminating a packet may leave the system in an in-

nsistent state. sin kets may be manipulating shar Fineapolicy that relates trusted programs to unsafe service
consistent state, Since packets may be manipuiating Shareq, o and a means to enforce this policy. Moreover, we
resources when they are killed. This problem led Sun to

d te th@hread Kill i iy | can expand on this observation to arrive at the following
eprecate read.ki routine present in early ver- requirements for our setting:
sions of Java.

That said, all resource bounding strategies have theirlim- e Security policies:
itations. For example, it has been shown that guaranteed ter-
mination is not really a strong enough property [20, 36, 23],
and that a tighter per-packet bound is needed. The follow-
ing following property applies to IP packets, and could well
be considered for active packets:

— Policies should benodifiableas needed, by the
proper administrative entities, while the system
is operating. This is particularly important for
active networks, as both new users and new ser-
vices that should be governed by the security pol-

The amounts of bandwidth, memory, and CPU icy will appear over time.

cycles that a single packet can cause to be con- — Policy abstractions should lfexibleso as to ad-

sumed should be linearly related to the initial size dress current as well as future application needs.

qf the packet_and to some resource bound(s) ini- Again, this requirement derives from the inherent

tially present in the packet. dynamicism of an active network, both in terms
As it turns out, PLAN meets this property as well, with of users and services.

some suitable restrictions on function calls and iterators
(see [20] for details). More recently, a follow-on to PLAN

o Enforcement mechanisms:

called SNAP [36] has been proposed, whose programs meet — To minimize the size of outrusted computing
this property outright. Indeed, the security architecture that base enforcement mechanisms should be simple
we propose here will work just as well with SNAP or with to understand and employ. That is, in general,
any other packet language that prevents the attacks that trustworthiness decreases with complexity, since
we have described above. However, while we feel that the likelihood of both implementation and user
language-based support for achieving resource bounds is a error is higher.

promising approach, there is still much work to be done. — It should be possible to implement enforcement

mechanisms without relying on the existence of
a widely-available infrastructure. That is, each
node should be able to make decisions locally,
based on its own policy and/or credentials that a
user program might present.

As we have described it, the safety of a packet program is
predicated on the safety of the services it calls. If a service
allows a program to, for example, perform unbounded it-
eration, then denial-of-service attacks can be launched. For
this reason, it is of critical importance that a system for man-

aging the services be in place. We discuss our approach, — Security mechanisms mustaleto support in-
among others, of using trust management to manage names- creasing numbers of different applications, users,
paces in the following section. administrative entities, and their trust relations.

Note that the previous requirement for decentral-

4 Service Security via Trust Management ization should improve scalability.

In general, many of these requirements can be met by em-
Because of their general-purpose nature, service routinegploying atrust management systdri]. In a trust manage-
may perform actions which, if exploited, could be used to ment system, each user,mincipal, is assigned some level



of privilege (or trust). Based on this trust level, the principal policies based on generic service parameters; we present
is permitted to perform certain actions, and may potentially more detail on policy-based parameterizationin Section 5.2.
delegate those actions to other principals. The novelty of Finally, we would like to manage delegation policies with
the approach is that trust relationships are managed indefregard to these mappings. For example, we might specify
pendently of the particular actions that an application might that the services in setmay be accessed not only by prin-
perform. Instead, the relationships between principals andcipal p, but also by those principals authorizediby
the actions they may perform are specified in a separate pol- Encoded naively, a per-principal ACL would not scale as
icy, expressed in a special policy language. On each actionthe number of services and principals grows large. To im-
that requires authorization, the program can invoke the trustprove scalability, we change our specification of the ACL
management system to determine if the action is authorizedn two ways. First, we assume a set of core services on the
for the principal in question. If so, the program can invoke node. The ACL then indicates what services, above the core
corresponding action, perhaps with some additional param-services, are available to certain principals. We also find it
eters provided by the trust management system in responseonvenient to indicate which services shouldsoibtracted
to the query. from the default environment for a particular principal; this
Typical trust management systems provide means for up-will be motivated in Section 6. Second, rather than map in-
dating local policies, for distributing policies across the net- dividual principalsto lists of services, we define sets of prin-
work, and for using cryptographically-sealed credentials to cipals and sets of services, and indicate mappings between
assert trust relationships. In particular, cryptography is usedthem. This idea is similar to the use of group permissions
to authenticate the principal associated with a message bein the Unix filesystem: rather than store a list of user id’'s
fore the local policy is checked for that principal. with each i-node, a single group id is stored instead, which
Applying a trust management system to PLANet is rea- indirectly refers to a set of user id’s.
sonably straightforward. Each PLANet node uses a policy By using a suitably expressive trust management infras-
manager from the trust management system to manage it¢ructure, we should be able to encode this set-based policy,
local policy. When a running PLAN program wishes to in- and then rely on the trust management infrastructure to pro-
voke a privileged service routine or alter the node’s state, thevide delegation, admit the possibility of updating the policy,
principal associated with the packet is authenticated, andand to administer it in a distributed, decentralized manner.
the operation is checked against the appropriate policy byWe describe the trust management system we use in our im-
the policy manager. If either step fails, the operation is de- plementation, the Query Certificate Manager (QCM), and
nied. The interesting questions are how to choose policiesthe way that we formulate our policies in Section 5.2.
that admit useful services to the widest number of princi-  Beyond this simple policy, we would like to be able to
pals, and how to ensure scalability and good performancespecify general resource usage parameters, such as CPU
through the choice of enforcement mechanisms. We con-and memory use. While we do not consider such param-
sider the question of policy and mechanism for authoriza- eters in this paper, they have been considered in work we
tion below; details about our particular implementation of have done elsewhere. In particular, we have found that such
authentication and authorization are presented in the nextesource-based policies can be achieved with assistance

section. from lower-level system software, as in the SQoSH [3] and
RCANE [5] systems, which share a software base used to
4.2 Policy implement many PLAN services. SQoSH used trust man-

agement techniques to control a virtual-clock based band-
width allocation system, and RCANE used trust manage-
would like to express. As mentioned, we essentially want r_nent_technlques to control a more g_eneral resource mul-

tiplexing scheme. The scheme was implemented both by

to encode our policy as a mapping between principals andchan es to language runtimes (unnecessary with appropri-
services. Conceptually, each principal has associated with 9 guag y pprop

it a list of services that it can acces®., a per-principal ac- ate u;e of our szcgeme) an% by use of a node operating sys-
cess control list (ACL). Furthermore, we want to refine this tem, Nemesis [29], to provide resource guarantees.
mapping to specify not onlwhethera service routine may )

be invoked, buhow it may be used. For example,saft 4.3 Mechanism

stateservice which allows packets to leave temporary state

on the routers might apportion different amounts of space  While the policy manager will handle the issues relat-
to different principals. We call such per-principal differ- ing to policy and trust management, we must still decide
ences in service evaluatigrolicy-based parameterization  how to use it most effectively. In particular, we must decide
In general, because different services will have different us- when authentication and authorization will take place, so as
age policies, we permit services to define service-specificto maximize flexibility and performance.

To start, we must consider what kind of policies we



There is a space of possible decisions, bounded roughly Second, we allow those services which may require
by the following two approaches: policy-based parameterization to query the policy manager
as necessary during their execution. For example, the soft
1. Perform policy checks at each service-routine invoca- State service mentioned above would query the local policy
tion. Each time a service routine is called from PLAN, on each attempt to store new soft state, thereby determining
a check is made to see if the ‘current principal’ is al- Whether the current principal was allowed to allocate addi-
lowed to access the service. If this is the first such tional storage.
check, then the principal must be authenticated. If ~ There are a number of advantages to our approach. First,
either the authentication or authorization check fails, only those packets that use privileged (non-core) services
an exception is raised. In effect, we are proposing a must pay for authentication and authorization; unauthenti-
more elaborate variation of the Unix system-call mech- cated programs may run without any performance penalty.
anism. This mimics the model of the Internet, which allows nor-
) . . I mal packets to flow without authentication, while special-
The benefit of this approach is its flexibility. In par- ized packets, like router control protocol messages and net-

:f:tli?)rl% psc:JthrI]e;sC;r; t\?;la(lieasd(\;?gtggiwgggsyroa{p:acslgfr(\)/irc_:ework management messages, need to be authenticated. Sec-
L . . ond, privileged services that only appear in the policy as ac-
functions. The drawback is thatl service calls are P 9 yapp policy

X X . : o cess/denyi(e., they are not subject to policy-based param-
EUbJeCt totr? runttlmfe cheFat eaci;)_lnv:)i:anorr_Ths ISd th eterization), do not require a per-invocation check. Finally,
elc_:a_useth € sel 0 ser\_/|(r:§s su Ject to p;)_ ey, "flrr;] €services whose usage depends on dynamic informateon (
policies themselves, might change over |n"‘|e. ,ere- the arguments of the invocation, or some other system state)
fore, service routines in general need a ‘hook’ for

. . - can specify their own policies and invoke the policy man-
checking the most recent policy. We can mitigate some ager as needed
.Of this cos.t by I|m!t|ng_the routme; that might be sub- There is more that could be done in our current system.
ject to policy. This might be applicable to the set of

tandard . ¢ . that d ¢ As we have described them, policies only apply to PLAN
standard, coré€ services, or 1o services that do not ré-goice routine calls, not calls between service routines.
quire policy-based parameterization.

However, this functionality can be added, as we demon-

strated in work on a related system [6]. Here we used the

executesThat is, all service calls in the packet are au- service Iang_uages support fqr u_nplementmg namespace-
based security, callestiodule thinningto support our poli-

thorized before the packet is allowed to execute. The . s
. . : cies. The use of module thinning has been explored for ac-
advantage of this approach is that once authorized, the

packet can run without dynamic checks. On the other m/g:f?#zﬁ;c;? ALIEN [1] and for mobile agent systems

hand, there are two drawbacks. First, policies based on '

information that is not known at the time of the early .

check are precluded, reducing flexibility. Second, the © Implementation

static check must consider all possible execution paths,

even ones that may not be executed. As a result, one In this section, we describe the mechanisms used by

static check could be more costly than a series of dy- PLAN programs for authentication and authorization. A

namic ones. thorough description of our implementation is found in the

PLAN documentation [25].
We employ the middle ground of these two approaches,

using two mechanisms. First, before it wishes to access5.1 Authentication
a privileged service, a packet authenticates itself with the
node. At this time, the policy is checked, and those ser- Before a PLAN program may invoke a trusted service,
vices that the packet is authorized (unauthorized) to invokeits associated principal must be determined; this is the pro-
are added to (subtracted from) the packet’s current servicecess of authentication. Authentication is typically done in
symbol table (which at the outset of execution contains just a public-key setting by verifying a digital signature in the
the core services). From then on, if a packet attempts tocontext of some communication.g.,a packet). In PLAN,
invoke a service for which it is not authorized, that service one obvious link between communication and authentica-
will not be in the symbol table and thus access will be de- tion is thechunk
nied. Since PLAN is strongly typed and its interpreterlooks A chunk (orcode hunk) may be thought of as a func-
up services on an as-needed basis, programs are incapabte®n that is waiting to be applied. In PLAN, chunks are
of invoking code outside of this updated table. We call this first-class—they may be manipulated as data—and consist
approachhamespace-based security internally of some PLAN code, a function name, and a list

2. Perform all checks once-and-for-all, before the packet



of values to be used as arguments during the applicationthe scheme used in IPsec. The additional state required is
A chunk is typically used as an argument@mRemote minimal: an integer keeping track of the largest sequence
to specify some code to evaluate remotely. A chunk may number received, and a 64-bit mask showing which of the
also be evaluated locally by passing it to theal service, previous 64 packets have been received (the window size
which resolves the function name with the current environ- is configurable; our choice of 64 as the default value was
ment, performs the application, and returns the result. based on IPsec). We reflect the use of HMAC-SHAL1 in

We have added an additional service cakethEval PLAN by altering the signature cduthEval to take a
which takes as arguments a chunk, a digital signature, and=hunk and a tuple consisting of the SPI, the counter, and
a public key.authEval verifies the signature against the the HMAC signature over all of the previously mentioned
binary representation of the chunk. If successful, the chunkitems.
is evaluated; otherwise, an exception is raised. The authen-
ticated principal is associated with its chunk during evalua- 5.2  Authorization
tion. Because our PLAN interpreter evaluates each packet
in its own thread, this can be done by associating the prin-  As our policy manager, we have chosen to use the Query
cipal with that thread’s identifier. Services can determine Certificate Manager (QCM) [17], which provides compre-
the ‘current principal,’ perhaps to query a service-specific hensive security credential location and retrieval services
policy, by checking this mapping. Because a caller’s threadfor set-based policies. While in this paper we are making
identifier cannot be forged, and because the authenticationyse of QCM, our architecture is designed so that other pol-
service is itself a separate service, this provides a safe wayicy managers can be used instead. In particular, we have
to track a principal without worry that some malicious ser- ysed the KeyNote [10] trust-management system in related
vice will change the associated principal after the authenti- work [6].
cation phase.

There_ are two_ key advantages t_o this approa_ch. Oneisg 5 1 Namespace control policies
that a principal signs exactly the piece of code it wants to
execute, and may only have extra privilege while executing Following our general policy requirements discussed in
that piece of code. Secondly, only those programs which re-Section 4.2, our QCM namespace control policy specifies
quire authorization will have the extra time and space over-an ACL in terms of the services to be added to or sub-
heads. tracted from the default service-environmeirg.( the core

But the approach has three problems. The first is thatServices) by associating certafrickenandthin sets of ser-
the authentication performed heredse-way authentica-  Vices with a principal or set of principals. Once a princi-
tion. While the node authenticates the principal, the princi- Pal has been authenticated, QCM is queried to discover the
pal never authenticates the node. This could be a problem ifthickenandthin sets, which are then used to add or subtract
a program is diverted from its intended destination and in- S€rvices from the service symbol table maintained by the
voked on a different node. The second problem is that therePLAN interpreter; this modified symbol table is used for the
is nothing guarding against replay attacks. Finally, public duration of the authenticated chunk’s evaluation. As an op-
key operations are notoriously slow. timization, we cache the modified table for future reference,

To address these problems, we make use of the proto—thus avoiding repeated invocations of QCM and reconstruc-

col we defined in SANE (Secure Active Network Environ- 1i0ns of the table as long as the policy has not changed.
ment) [4, 5]. This protocol allows a principal and a node ' N€ following is an example QCM ACL that considers
to authenticate each other and generate a shared secret affC Principalsp: andps:

an identifier for that secret (named the Security Parameters
Index, or “SPI”). The protocol is essentially a variation of
the Station-to-Station protocol [14]; the reader is referred
to [4, 7] for more details. Our PLAN implementation of
this protocol is described in more detail in the PLAN docu-

pl = <pl’s public key> ;
pl_thicken =  {"print" };

p2 = <p2’s public key>

mentation [25]. p2_thicken =  {"thisHost" };
Once the protocol is completed, parties can use the 54 = {
shared secret to authenticate via HMAC-SHAL [27], in a ( pl, pl_svcs, 0,
way similar to that used in the IPsec [26] protocols. To ( p2, union ( 'p2_sves, pl_sves ), m

prevent replay, each principal associates a monotonically
increasing counter with the shared secret, also included in
every transmitted message. To deal with out-of-order de-In addition to identifying the keys gf;, andp,, we define
livery, we use a sliding-window scheme, again similar to two setspl _thicken andp2_thicken , which are used



to specify the thicken sets of those principals in the ACL. If the authorization service oA makes a membership
The ACL itself is defined by the variablecl , which is test on set , QCM will automatically quenB if necessary.

a set of three-tuples. The first tuple indicajgs envi- The version of QCM that we use in PLAN actually makes
ronment should be thickened following authentication by use of PLAN packets to perform its communications. These
pl_svcs , while the second says that's environment  packets query the QCM service on remote nodes on behalf
should be thickened by bothil _svcs andp2_svcs . In of the QCM service of the querying node. Interestingly, the
both cases, the thin sets are empty, specified byNote QCM service can itself be privileged (and thus subject to
that in this case, the first element of the three-tuple is anpolicy) as long as there are no cycles in the policy specifi-
individual principal; more generally, it can be a set of prin- cation of the thicken and thin sets. If this were not the case,

cipals. QCM would fall into into a distributed, infinite loop.
One way to short-circuit remote queries in QCM is to use
5.2.2 Policy-based Parameterization certificates which are signed assertions about set relation-

ships. Certificates may be passed as additional arguments to
In addition to specifying namespace-based policies, weauthEval , or may be obtained during node-node authen-
can specify per-service policies to be used by the ser-tication. This allows QCM to implement bothush and
vices themselves, allowing policy-based service parameterpull-based information-retrieval.
ization. Such policies are specified as a set identified by the an avenue of future work is to determine how to best up-
service’s name, whose elements are two-tuples that containgate the QCM policy for each node as the policy changes.
For example, we could augment local policy when certifi-
cates are provided by authenticating programs. We could

2. alabeled record of length 1, with the label correspond- also allow local policies to refer to a global policy that re-

ing to a service-dependent parameter name (whereSides on another node in the local administrative domain.
multiple parameters per service are reflected as mul-11US, when this node’s policy changes, those changes are
tiple records). reflected in all of the policies that refer to it.

1. aprincipal or set of principals (as in the ACL)

As an example, consider the PLANSsident  state pack-
age which provides user-defined soft state. The residen
state policy specifies how much state particular principals

t6 A Simple Active Firewall

are allowed to keep. For example: As a proof-of-concept of our security architecture, we
have designed and implemented active firewall using

def = <default user’s key> ; PLANet. In today’s Internet, firewalls are used to prevent

resident = { ( def, <amount=100> ), the entry of potentially harmful packets arriving from an

( pl, <amount=1000> ) + outside, untrusted network. This is visualized in Figure 2.

] o ) When packets can be active, this simple approach is too lim-
This policy indicates that default users (which are automat- iting. In this section, we describe how we adapt the tradi-

ically given thedef key) are allowed to have at most 100 {jona) notion of a firewall to work in an active setting.
words of information stored on the node at any given time,

while principalp; may store up to 1000 words of informa-
tion. This policy is enforced in the resident state implemen-
tation itself by calling QCM on each store attempt.

6.1 Implementation

Firewalls typically filter certain types of packets, such
as all TCP connection requests on certain port numbers.
Usually such packets are easily identified by their proto-
Though we have not shown it so far, a key advantage ofcol headers. In PLANet, and indeed in any active-packet
using QCM is that it provides linguistic support for spec- system, there is no quick way to determine a packet's func-
ifying distributed policies. Moreover, sets described in a tionality without delving into its contents, which would be a
distributed manner impose no additional query complexity. significant performance bottleneck. Therefore, we need an
For example, a nodd may define a sdt in terms of a set  alternate way of filtering out those packets which may be

5.2.3 Distributed Policies

mwhich resides at another nodie potentially harmful.
Our approach is that rather than filter packets at the fire-
Il = { p1, p2, .., pn } union DB$m; wall, we associate with themthinnedservice environment

SNote that because all unauthenticated principals shardehekey, in which any potentlally harmful_se_rwces are removed. The
this means that those principals can do little damage to the node, but carr_%‘(:l«':‘tS may then b_e evaluat_e‘j |n_S|de the trusted network_us'
deny service to other unauthenticated principals. ing only those services. While this may seem to contradict
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Figure 2. A trusted network behind a firewall.

our premise, stated in Section 2.2, that the default environ-| firewall = <firewall's key>
ment should consist only of ‘safe’ services, in the context |guest = <guest’'s key>
of a trusted Intranet we would expect that the default privi- |acl = {

lege allowed to local packets exceeds that of foreign pack-| ...

ets. Furthermore, we would not want to impose the over-| ( { guest }, {},

head of authentication and authorization on local packets in firewall$guest_thinned_services )

the general case.
To thin the environment of foreign packets, our firewall |}

associates them withguestidentity that has the appropriate

policy. To do this, the firewalF’ wraps the packet's chunk
c as follows: Figure 3. Host QCM Program

fun wrapper(c, sign) =

(zeroRB(); authEval(c,sign)) case, and can derive the performance for this more opti-

mized one.

This wrapper first exhausts the packet’s resource bound How we choose to specify the guest's thinned environ-
by calling the servicezeroRB , thus preventing it from  ment may be accomplished in a number of ways. The sim-
sending any additional packets. It then evaluates theplest way would be specify the thinned environment stat-
packet’s chunk: using the guest identity, as indicated by ically, at each hostd and B. However, a more uniform
the signature, for the duration of the evaluation. This meansand manageable approach would be that the guest identity
that if c attempts to call any services that have been thinned,is known locally, but its environment is defined at the fire-
the call will fail. wall. The salient part of our host QCM program is shown

This scheme implies that the firewall signs each packet,in Figure 3.
using the guest's identity, and provides the signature to The thin set is defined by the variable
authEval . In order to make this process as fast as pos- guestthinnedservicesat principalfirewall. Notice that the
sible, the firewall would authenticate with hostsand B thickenset is empty. To short-circuit remote queries, the
ahead of time using the guest key. firewall provides certificates during node-node authentica-

However, because the guest environment will pro\/ide tion that indicate the contents of igilestthinnedservices
less priv”ege than the default environment, we should bevariable. Should the firewall p0||Cy be UpdatEd after initial
able to avoid the cryptographic cost: any authenticating authentication, the firewall would push certificates to the
principal whose environment is thinned and not thickened end host to reflect this change.
can be ‘taken at its word.” We could extend our framework
to allowauthEval to take a public key ratherthan asigna- 6.2 Performance Analysis
ture, accepting the identity of the kéf/the principal whose
key it is hasat mosta thin set in the node policy (as is the We analyze the performance of our active firewall by
case for the guest). We present results for the more naivecomparing a filtered and non-filtered ping. In both cases,



fun reply(payload) = The base ping times for 0-byte and maximal payloads are

print  ("Success") 2.13 and 3.06 ms, respectively; the firewall adds 37% and

32% of respective overhead to these times (raising them to

fun ping(payload) = 2.91 and 4.03 ms). By examining the component costs, we
OnRemote(|reply|(payload), can see that of this overhead, betwd¢8 and1/2 is at-

getSource (), getRB (), tributable to signing and verification, based on the packet

defaultRoute) size. For the firewall, the remaining overhead is due to

encapsulation costs (which requires extra marshalling and
copying), while for the end-host it is due to decapsulation
and the additional interpretation cost of the wrapper code.
The time to thin the environment at the end host is negligi-
ble because we cache the thinned environment. If we elim-
inate the cryptographic operations, by the means described
the initiating host lies in the trusted network and is pinging earlier, we reduce the end-to-end ping times to 2.58 and
a node in the untrusted network. The PLAN code for ping is 3.41 ms for 0-byte and maximal payload, respectively. This
illustrated in Figure 4. Our analysis examines the additional reduces the firewall-induced overhead to 20% and 11%.
cost to elapsed time and packet stz&or our experimen- Notice that the graph depicts verification (which in the
tal setup, we daisy-chain connect three machines with 100figure is the cryptographic component cost for the host) as
Mbit Ethernet, configuring the middle machine as the ac- twice as expensive as signing (which is the cryptographic
tive firewall. Each machine is a 300 MHz Pentium Il with cost for the firewall). This is due to two related points:
250 MB of memory running Linux 2.0.30. PLANet runs we unmarshal PLAN progranesgerly and in order to ver-
directly on top of Ethernet. ify a PLAN value (that is, the original packet’'s chunk) us-
ing authEval , that value must first be marshalled into

a binary format. These two points combine to mean that
we unmarshal the encapsulated chunk when the packet ar-

As described in the previous section, the addition of the fire- V€S, only to re-marshal it when performing the signature
wall affects the packet processing time on the router and onVerification. A smarter implementation would unmarshal
the host initiating the “ping.” While a router would nor- chunkslazily, thus_a_v0|d|_ng _thls extra r_e_—me_lrshglllng cost
mally just forward any packet it receives, the firewall has to @nd thereby equalizing signing and verification time.
additionally sign and encapsulate packets destined for the ~There is room for further improvement. The cost of the
trusted network. On the initiating host, normal interpreta- cryptographic operations (for cases when they are actually
tion of the “reply” packet is further burdened by the need Needed) could be reduced through parallelism (to improve
to decapsulate, verify the firewall's signature, and thin the throughput) and special-purpose hardware (to improve both
environment. throughput and latency). Furthermore, the cost of PLAN in-
Figure 5 illustrates the elapsed time of ping with and Ferpretation is extremely high; a ;mqrter interpreter would
without the firewall. The left figure is the end-to-end time, IMProve both the cost of the basic ping as well as the en-
in which the black bar is the unmodified ping and the white ca@psulated version. In fact, we have recently been de-
bar is the overhead imposed by the firewall. The right Veloping a compiler from PLAN to the low-level packet
figure similarly illustrates salient component costs for the language SNAP, resulting in significantly improved perfor-
end host and the firewall with the addtional overhead. For mance [23, 36].
the end host, the time consists of evaluating ping’s “reply”
packet, while for the firewall, this is the cost Qf forwarding Space Overhead
the packet. The portion of the overhead which may be at-
tributed to signing (at the firewall) and verifying (at the end The firewall also imposes a space-cost due to the extra code
host) is singled out. In both figures, times are given for 0- and signature that is attached to the incoming packets. Ta-
byte payloads and maximally-sized payloads. Notice thatble 6 illustrates the basic space overheads, with and without
the overhead added to the component costs, which are thenhe firewall.
white and gray bars in the figure on the right, add up to the  The no-payload reply packet is 80 bytes (consisting of
difference in elapsed time for the overall cost, which are the code and fixed fields), while the encapsulated version is 181
white bars in the figure on the left. bytes, for an overhead of 126%. Of the 101 bytes of over-

4The reader may note that the numbers reported here are slightly differ- .head’ 12 bytes are due to the signature. Since the overhead

ent than those reported in [22]; this is due to changes made to the PLANet!S fixed, _its impa_Ct is reduced with packet S_ize- Looking at
implementation. the maximally-sized packet, we see that this 101 bytes only

Figure 4. Ping in PLAN. Service invocations
are in italics.
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Figure 5. Ping elapsed time with and without the firewall. The left bar of each pair is with a 0-byte
payload, and the right bar is for maximally-sized (1500 byte) packets.

No payload Maximal payload
packet size| rel. overhead| payload size| rel. overhead
ping reply 80B n/a 1420B n/a
+firewall 181B 126% 1319B 6.8%

Figure 6. Ping reply packet overhead with and without the firewall. Illustrates the additional cost of
encapsulation and signing of foreign packets. Note that the signature itself is 12 bytes long.

adds 6.8% of overhead above the 5.3% already imposed byluding chunks) aranmutablethe contents of a remote ref-

the ping program. erence may be safely cached without the need for a coher-
A particular concern is that by adding code to the packet €nce protocol. In the case of our firewall, the wrapper func-

as it passes through the firewall we might exceed the |inkti0n code could reside at the firewall, while being cached

layer MTU and be forced to fragment the packet. In the at the various hosts in the trusted network, thus reducing

patho|ogica| (though probab|y not uncommon) case, eachthe in-packet space costs. The issue of code Caching is dis-

packet received by the firewall will be just smaller than the cussed in more detail in [24].

MTU and thus have to be fragmented after addition of the

wrapper code. This problem also appears in the IPsec con7  Related Work

text, where it remains open to further research. One advan-

tage that we have over IP is that in PLANet we may easily

send PLAN programs to customize the host processiag (

as a more expressive ICMP). It would be worth examining

how to best express in PLAN a mechanism similar to “Path

MTU Discovery” [33]. Another possible approach would

be to compress the incoming packet, adding a wrapper to

perform the decompression upon arrival at the end-host.

A concern about the approach of PLANet in general is
the space cost of carrying the code in the packet. To miti-
gate this overhead, we have considered ways in which the
participants in a protocol may cache code rather than al- e
ways transmitting it with the packet. One approachis to add
language-levelemote-referenceshich may be thought of
as pointers to remote objects. Since all PLAN values (in-

Securing active networks [37] has demanded three major
research thrusts:

e First is the use of programming environments to of-
fer safety and security guarantees, for example the
careful design of PLAN and SNAP for safety, the use
of module-thinning in ALIEN, and the capability-like
namespace isolation scheme ANTS achieves with its
MD5 hashes of active packets.

Second is the extension of the local guarantees achiev-
able within a programming environment to the collec-
tion of nodes comprising a network. While PLAN
or SNAP, as examples of domain-specific languages,



provide such guarantees irrespective of location, they said, it is an important avenue of future work to find ways
cannot make such guarantees when remote service$o automatically certify services as safe, so that they do not
are invoked. Cryptographic techniques can extend lo- need to be protected by a trust-based policy. Proof-Carrying
cal safety properties by providing capability-like au- Code [39, 40] is one way to certify safety in low-level code,
thorizations for services, as was done in extending but so far only simple safety properties have been explored.
ALIEN'’s protection to remote systems in SANE, and A related approach uses dependent types to ensure that ser-
similarly in SANTS [38]. SANTS, which uses an au- vices consume a bounded amount of time and/or space [13].
thorization scheme similar to ours, further considers
how to handle changes made to the contents of cryp-y,

. . a
tographically signed packets as they traverse the net-
work. However, as Alexander showed in his Caml-
based architecture [1], the performance penalty of fre-
guent cryptographic operations can be substantial.

While our system uses both programming environment-
sed safety and cryptography-based techniques to sup-
port use of services in networks (and is compatible with
any NodeOS approach), the novel architectural contribution
is the combination of enforcement mechanisms to allow
policy-writers to balance flexibility with performance. In
e Third is support for multithreaded operation of ac- particular, we support both namespace-based security to add
tive networking systems in ways that provide resource to or subtract from a packet's default service namespace,
protection. This work has been centered around theand policy-based parameterization to allow services to for-
lowest levels of the DARPA active network architec- mulate their own per-principal usage policies. Namespace-
ture, the so-called “Node Operating System” [42], ex- based security can be enforced cheaply at authentication-
amples of which include RCANE [31], JanOS [44], time, while policy-based parameterization may require per
AMP [42] and Scout [34]. These systems manage re- invocation checks. We have sought to enable scalability by
sources which may be used by safe programming envi-carefully encoding the namespace-based policy, and by us-
ronmentin service invocations, including management ing a decentralized trust management system [11].

of resources used concurrently by multiple program- g active firewall is a novel application of namespace-
ming environments. based security. The firewall uses PLAN packets’ activeness
to protect a trusted environment from untrusted computa-
(JSI) [15, 45]. In our case, code is afforded the privi- tions: We have dem.onst.rated that.ourarchiteptg.re addresses
lege of the principal that signs it for the duration that it po_ssble threats while still preserving t.he flexibility and us-
runs. JSI refines this idea by examining the call stack ang@Plility of the system, byctivelymodifying the packet be-

giving the code the privilege of the least privileged prin- avior, under control of a trust management policy, rather
than simply making a permit/deny decision as would be

cipal found on the stack, except when more trusted code N | / : -

explicitly widens the privilege of its callers by invoking madt_e by a traditional firewall arch|tecture._ Th_|s architec-

enablePrivilege . It would be interesting to apply the ture is based on language safety, autheqtlca_tlon, and trust

same approach to nestedithEval calls to ensure the management. We demonstrated the praqtlcallty and gccept-

same sort of security guarantees. able perform_ance of our a_lppr_oach experimentally, using an
implementation of the active firewall.

Our use ofauthEval resembles Java stack inspection

8 Conclusions

The Secure PLAN architecture is a hybrid which cou- Acknowledgements
ples highly-scrutinized active extensions with unauthenti-
cated active packets supported by these extensions. This
has two major advantages. First, packets which do not re-
quire the computational cost of authentication and autho-

rization do not pay it. This is because all potentially unsafe work, and the anonymous referees for providing useful
m ion is rel h rvice level, which can ' ) )
computation is relegated to the service level, chca befeedback. We would also like to thank Trevor Jim for pro-

governed by trust-management techniques. Our experience; . . :
is that the majority of active packet programs, from diag- viding the PLAN-based implementation of QCM.

nostics such apingto best-effort data delivery, require no This work was done while all authors were at the Univer-
potentially unsafe services, and therefore should not requiresity of Pennsylvania, supported by DARPA under Contract
authentication. The second advantage, which follows from #N66001-96-C-852, NSF under grant #ANI 98-13875, with
the first, is that security analysis, perhaps including valida- additional support from the Intel Corporation. A shorter
tion and verification, can be focused on a small set of ser-version of this paper was published in the International
vice routines rather than all possible active programs. ThatWorking Conference on Active Networks [21].
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