
A Secure PLAN (Extended Version)

Michael Hicks
Computer Science Department

Cornell University
mhicks@cs.cornell.edu

Angelos D. Keromytis
Computer Science Department

Columbia University in the City of New York
angelos@cs.columbia.edu

Jonathan M. Smith
Computer and Information Science Department

The University of Pennsylvania
jms@central.cis.upenn.edu

Abstract

Active Networks promise greater flexibility than cur-
rent networks, but threaten safety and security by virtue
of their programmability. In this paper, we describe the
design and implementation of a security architecture for
the active network PLANet [22]. Security is obtained with
a two-level architecture that combines a functionally re-
stricted packet language, PLAN [20], with an environment
of general-purpose service routines governed by trust man-
agement [11]. In particular, we employ a technique which
expands or contracts a packet’s service environment based
on its level of privilege, termednamespace-based security.
As an application of our security architecture, we present
the design and implementation of an active-network fire-
wall. We find that the addition of the firewall imposes an
approximately 34% latency overhead and as little as a 6.7%
space overhead to incoming packets.

1 Introduction

Active Networks [43] offer the ability to program the
network on a per-router, per-user, or even per-packet ba-
sis. Unfortunately, this added programmability compro-
mises the security of the system by allowing a wider range
of potential attacks. Any feasible Active Network archi-
tecture therefore requires strong security guarantees. We
would like these guarantees to come at the lowest possi-
ble price to the flexibility, performance, and usability of the
system.

At the University of Pennsylvania, we have developed an
Active Internetwork called PLANet [22]. PLANet’s node
architecture consists of two levels: thepacket leveland the
service level. All programs at the packet level reside in the

messages, or packets, that are sent between the nodes of the
system. These programs are written in PLAN, the Packet
Language for Active Networks [20]. Packet programs are
simple by nature, and serve to ‘glue’ together service level
programs, just as a shell-script glues together calls to more
complicated programs. In contrast, service level programs
(or service routines), reside at each node and are invoked
by PLAN programs evaluating there. Service routines are
general-purpose and may be dynamically loaded across the
network [2]. This general architecture is shared by many
so-called active packet systems, including ANTS [47, 46]
(where its ’API’ is analogous to PLAN service routines, see
the companion paper in this volume for a direct compari-
son [24]), SNAP [36], PAN [41],etc.

A central goal of PLANet is to provide Internet-like ser-
vice as a baseline, augmented by its active capabilities. The
Internet allows any user with a network connection to have
some basic services. In addition to basic packet delivery
provided by IP, basic information services like DNS,fin-
ger , andwhois , and protocols like HTTP, FTP, SMTP,
and so forth are provided. Similarly, a goal of PLANet is
to allow any user of the network to have access to basic
services; these services should naturally include some ‘ac-
tiveness.’ This goal implies that some functionality, like
packet delivery in the current Internet, should not man-
date authorization. There is a pragmatic reason to make
the same choice: the converse assumption, in whichall
packetsrequire proper authorization before they can be ex-
ecuted, can be extremely costly. This is because authoriza-
tion requiresauthentication: each packet must be associated
with a principal that is relevant to the authorization policy.
Packet-level authentication uses cryptography to ensure that
a packet’s identity is not spoofed, and cryptographic oper-
ations, particularly public-key operations, can be quite ex-
pensive relative to normal packet processing. For example,

adding a 30% overhead to packet processing (based on mea-
surements of software-based cryptography that we report at
the end of the paper) on each node would severely degrade
the performance of the network.

PLANet was designed so that the programs at the packet
level are the lowest common denominator with respect to
security. That is, all packet programs by themselves (with-
out calls to service routines) are safe by definition thanks to
the formal properties of our packet language, PLAN. This
is the same model as in the IP Internet—all IP packets are
acceptable by default and need not be authorized inside the
network. Security, therefore, boils down to the services: in
particular, a packet remains safe as long as it only makes
calls to service routines that are themselves safe; therefore,
we must ask the question “which services can be consid-
ered safe?” While for some services the answer is clear
(for example, determining the address of the current node
is safe), service safety is ultimately a matter of local pol-
icy. For example, a router in the center of the network may
allow very few service routines, while an end-host might
provide a more liberal execution environment. Moreover,
a service’s safety in general is likely not absolute: calling
it might be acceptable for some packets but not for others.
For example, a properly authorized network management
packet should be allowed to update a node’s routing table,
while an untrusted packet should not.

This paper presents the design and implementation of
the security architecture in PLANet. In particular, we fo-
cus on the task of building a secure service infrastructure
based on the foundation of a safe packet language, in this
case PLAN. While here we focus on our experience with
PLANet, we expect that our approach will apply to any ac-
tive network infrastructure that uses a safe packet language
combined with more general-purpose services.

We begin by presenting a description of our architecture,
after describing the attacks it protects against. We then fol-
low up with a description of the implementation of this ar-
chitecture in PLANet. After a brief discussion of PLAN and
its relevant characteristics, we present possible methods of
security management and the one we have chosen to imple-
ment:namespace-based security. We describe how we en-
able authentication, and manage relevant security informa-
tion, such as which service routines are available to which
principals, using QCM (Query Certificate Manager [17]).
We then demonstrate how we have used our system to im-
plement a simple firewall that ‘filters’ active packets. Fi-
nally, we present some related work and conclude.

2 Overview of Secure PLAN

To evaluate the effectiveness of any security system, we
must consider the threats it defends against. Therefore, we
begin by describing the behaviors that threaten an active

network, and then describe our two-level security architec-
ture designed to secure against them.

2.1 Threat Model

The two major threats to any active networking system
are to thepublic resourcesof the system: the CPU, memory,
and network; and to thecontentsof the system: the packets
themselves and the information stored on routers. These
threats imply two forms of attack:

� Denial-of-Service. Because of the greater expressibil-
ity of active network programs (compared to protocol
packet headers), there is greater potential for the mis-
use of the system’s public resources, thus denying ser-
vice to other programs. For general programs, the pub-
lic resources should be fairly apportioned, while those
with more privilege could gain additional latitude.

� Protection. Programs should be protected from inter-
ference by other programs. In particular, one program
should not be able to read or write data private to an-
other program without authorization, either while the
packet program is in transit or when it is running (i.e.,
no packet or program snooping). This property implies
program isolation.

In responding to these attacks with a security system,
there may be attacks on the security system itself. As men-
tioned, we would like to allot greater privilege to some
packets, such as those associated with a node’s administra-
tor. Therefore, it is important that these packets be properly
authenticated, and that no impersonation orspoofingattacks
be possible. Similarly, the authentication and authorization
mechanisms should also be robust againstreplayattacks, in
which valid, but old messages are replayed in an attempt to
gain illegal access.

2.2 Architecture

As already described in Section 1, we partition the prob-
lem of defending against these attacks into the packet level
and the service level, using different mechanisms at each
level. At the packet level, security is obtained viafunctional
restriction: the limited nature of the PLAN language pre-
vents attacks from being formulated, particularly denial-of-
service and protection attacks. We elaborate on the reasons
for this claim in the next section.

At the service level, we make use of an authorization
system to govern access to services. While some services
may be considered usable by all (we call these the ‘core’
services), many services that are necessary for the opera-
tion of the active node should not be made available to all

protocol A

routing

network management

service installation

protocol B

PLAN packet

core services

Figure 1. PLANet’s security architecture. The
contents of the dashed box are available to
all incoming packets, while the dotted boxes
encapsulate service packages available only
to select users. Services may be further
restricted by what parameters they can be
called with.

packets; an example would be network management func-
tions. Our architecture associates with each principal1 a set
of service routines and policies that are allowed at his level
of privilege. The policies are enforced and the routines are
made available after the user has been successfully autho-
rized. This architecture is illustrated in Figure 1.

This scheme provides access control for system services.
However, once access to these resources is obtained, finer-
grained management may be required. For example, more
than just say that a packet may or may not have access to a
service, we might say that a service is accessible but only
when called with certain parameters. We flesh out the de-
tails of this architecture in the next two sections. We de-
scribe PLAN’s security properties in the next section, and
then present our service management methodology.

1A principal may be a network node or a user. Each principal holds a
public/private key pair, and is identified (at least for security purposes) by
their public key.

3 Packet Security via PLAN

PLAN [20] is a small functional language resembling
ML [28, 32]. It differs most importantly from other func-
tional languages in that it includes a primitiveOnRemote
(among others) for evaluating an expression at a remote
node. InvokingOnRemote will result in a newly spawned
packet. PLAN was designed as the foundation of PLANet’s
security, with the intention that all PLAN programs can be
considered safe. PLAN’s security properties are described
below.

PLAN’s Security Properties

PLAN was designed so that all PLAN programs by their
nature are impervious to the attacks we described above.
That is, PLAN programs (which do not call service rou-
tines, or only call ‘safe’ ones) should not be able to mount
denial-of-service attacks nor should they be able to interfere
with other packets or node-resident code and/or data. This
is achieved in three ways:

� Limited expressibility . PLAN is not a general-
purpose language, but is resource- and expression-
limited in order to prevent CPU and memory denial-of-
service attacks. In particular, all PLAN programs are
guaranteed to terminate2, since PLAN does not pro-
vide a means to express non-fixed-length iteration or
recursion. In addition, PLAN does not provide means
for its programs to directly communicate, meaning
that one program cannot directly access or affect an-
other (communication is possible indirectly through
services).

� Strong Typing. In weakly-typed languages, like C,
security restrictions can be overcome by, for exam-
ple, using unsafe casts to change integers into point-
ers, or exploiting unchecked array accesses to force
buffer overflows. PLAN prevents such attacks by en-
forcing strong typing, as is done in languages like
Java [16]. This idea has become common in recent
years (cf. [9, 12, 18, 30, 35]).

� Packet Counting. While PLAN’s language restric-
tions can bound CPU and memory resource usage on
a single node, they are not sufficient in restricting use
of networkresources. For this purpose, PLAN packets
have aresource boundcounter which is decremented
each time a packet is sent (e.g., the same packet for-
warding itself, or a new packet being spawned). There-
fore, the number of hops that a PLAN program and any
of its progeny may take is limited by the initial value

2PLAN programs terminate as long as the services called also termi-
nate.

of this counter. This mimics the functionality of the IP
“Time To Live” (TTL) field.

Of these three mechanisms, the latter two have come into
common usage in packet-based active network schemes,
and mobile code in general, while the first technique is less
appreciated. Most active network systems we are aware
of assume that the use of a general-purpose, type-safe lan-
guage combined with resource counters is sufficient; mis-
behaving threads are simply killed when they exceed their
resource limits. However, recent studies have shown that
such an approach is both potentially unsound [8, 18], and
quite costly [19]. In particular, without careful engineering,
abruptly terminating a packet may leave the system in an in-
consistent state, since packets may be manipulating shared
resources when they are killed. This problem led Sun to
deprecate theThread.kill routine present in early ver-
sions of Java.

That said, all resource bounding strategies have their lim-
itations. For example, it has been shown that guaranteed ter-
mination is not really a strong enough property [20, 36, 23],
and that a tighter per-packet bound is needed. The follow-
ing following property applies to IP packets, and could well
be considered for active packets:

The amounts of bandwidth, memory, and CPU
cycles that a single packet can cause to be con-
sumed should be linearly related to the initial size
of the packet and to some resource bound(s) ini-
tially present in the packet.

As it turns out, PLAN meets this property as well, with
some suitable restrictions on function calls and iterators
(see [20] for details). More recently, a follow-on to PLAN
called SNAP [36] has been proposed, whose programs meet
this property outright. Indeed, the security architecture that
we propose here will work just as well with SNAP or with
any other packet language that prevents the attacks that
we have described above. However, while we feel that
language-based support for achieving resource bounds is a
promising approach, there is still much work to be done.

As we have described it, the safety of a packet program is
predicated on the safety of the services it calls. If a service
allows a program to, for example, perform unbounded it-
eration, then denial-of-service attacks can be launched. For
this reason, it is of critical importance that a system for man-
aging the services be in place. We discuss our approach,
among others, of using trust management to manage names-
paces in the following section.

4 Service Security via Trust Management

Because of their general-purpose nature, service routines
may perform actions which, if exploited, could be used to

mount an attack. A radical solution to this problem would
be to preventanyservice routine from being installed that
could potentially harm the node in the ways described in
Section 2.1. However, this solution would rule out many
useful service routines. Instead, we wish to allow the in-
clusion of potentially harmful service routines—for exam-
ple, network management operations—that should only be
made available to certain,trustedusers.

4.1 Trust Management

Given our loose goal of allowing only trusted programs
to use potentially unsafe services, it follows we must de-
fine a policy that relates trusted programs to unsafe service
routines and a means to enforce this policy. Moreover, we
can expand on this observation to arrive at the following
requirements for our setting:

� Security policies:

– Policies should bemodifiableas needed, by the
proper administrative entities, while the system
is operating. This is particularly important for
active networks, as both new users and new ser-
vices that should be governed by the security pol-
icy will appear over time.

– Policy abstractions should beflexibleso as to ad-
dress current as well as future application needs.
Again, this requirement derives from the inherent
dynamicism of an active network, both in terms
of users and services.

� Enforcement mechanisms:

– To minimize the size of ourtrusted computing
base, enforcement mechanisms should be simple
to understand and employ. That is, in general,
trustworthiness decreases with complexity, since
the likelihood of both implementation and user
error is higher.

– It should be possible to implement enforcement
mechanisms without relying on the existence of
a widely-available infrastructure. That is, each
node should be able to make decisions locally,
based on its own policy and/or credentials that a
user program might present.

– Security mechanisms mustscale to support in-
creasing numbers of different applications, users,
administrative entities, and their trust relations.
Note that the previous requirement for decentral-
ization should improve scalability.

In general, many of these requirements can be met by em-
ploying atrust management system[11]. In a trust manage-
ment system, each user, orprincipal, is assigned some level

of privilege (or trust). Based on this trust level, the principal
is permitted to perform certain actions, and may potentially
delegate those actions to other principals. The novelty of
the approach is that trust relationships are managed inde-
pendently of the particular actions that an application might
perform. Instead, the relationships between principals and
the actions they may perform are specified in a separate pol-
icy, expressed in a special policy language. On each action
that requires authorization, the program can invoke the trust
management system to determine if the action is authorized
for the principal in question. If so, the program can invoke
corresponding action, perhaps with some additional param-
eters provided by the trust management system in response
to the query.

Typical trust management systems provide means for up-
dating local policies, for distributing policies across the net-
work, and for using cryptographically-sealed credentials to
assert trust relationships. In particular, cryptography is used
to authenticate the principal associated with a message be-
fore the local policy is checked for that principal.

Applying a trust management system to PLANet is rea-
sonably straightforward. Each PLANet node uses a policy
manager from the trust management system to manage its
local policy. When a running PLAN program wishes to in-
voke a privileged service routine or alter the node’s state, the
principal associated with the packet is authenticated, and
the operation is checked against the appropriate policy by
the policy manager. If either step fails, the operation is de-
nied. The interesting questions are how to choose policies
that admit useful services to the widest number of princi-
pals, and how to ensure scalability and good performance
through the choice of enforcement mechanisms. We con-
sider the question of policy and mechanism for authoriza-
tion below; details about our particular implementation of
authentication and authorization are presented in the next
section.

4.2 Policy

To start, we must consider what kind of policies we
would like to express. As mentioned, we essentially want
to encode our policy as a mapping between principals and
services. Conceptually, each principal has associated with
it a list of services that it can access,i.e.,a per-principal ac-
cess control list (ACL). Furthermore, we want to refine this
mapping to specify not onlywhethera service routine may
be invoked, buthow it may be used. For example, asoft
stateservice which allows packets to leave temporary state
on the routers might apportion different amounts of space
to different principals. We call such per-principal differ-
ences in service evaluationpolicy-based parameterization.
In general, because different services will have different us-
age policies, we permit services to define service-specific

policies based on generic service parameters; we present
more detail on policy-based parameterization in Section 5.2.
Finally, we would like to manage delegation policies with
regard to these mappings. For example, we might specify
that the services in sets may be accessed not only by prin-
cipalp, but also by those principals authorized byp.

Encoded naively, a per-principal ACL would not scale as
the number of services and principals grows large. To im-
prove scalability, we change our specification of the ACL
in two ways. First, we assume a set of core services on the
node. The ACL then indicates what services, above the core
services, are available to certain principals. We also find it
convenient to indicate which services should besubtracted
from the default environment for a particular principal; this
will be motivated in Section 6. Second, rather than map in-
dividual principals to lists of services, we define sets of prin-
cipals and sets of services, and indicate mappings between
them. This idea is similar to the use of group permissions
in the Unix filesystem: rather than store a list of user id’s
with each i-node, a single group id is stored instead, which
indirectly refers to a set of user id’s.

By using a suitably expressive trust management infras-
tructure, we should be able to encode this set-based policy,
and then rely on the trust management infrastructure to pro-
vide delegation, admit the possibility of updating the policy,
and to administer it in a distributed, decentralized manner.
We describe the trust management system we use in our im-
plementation, the Query Certificate Manager (QCM), and
the way that we formulate our policies in Section 5.2.

Beyond this simple policy, we would like to be able to
specify general resource usage parameters, such as CPU
and memory use. While we do not consider such param-
eters in this paper, they have been considered in work we
have done elsewhere. In particular, we have found that such
resource-based policies can be achieved with assistance
from lower-level system software, as in the SQoSH [3] and
RCANE [5] systems, which share a software base used to
implement many PLAN services. SQoSH used trust man-
agement techniques to control a virtual-clock based band-
width allocation system, and RCANE used trust manage-
ment techniques to control a more general resource mul-
tiplexing scheme. The scheme was implemented both by
changes to language runtimes (unnecessary with appropri-
ate use of our scheme) and by use of a node operating sys-
tem, Nemesis [29], to provide resource guarantees.

4.3 Mechanism

While the policy manager will handle the issues relat-
ing to policy and trust management, we must still decide
how to use it most effectively. In particular, we must decide
when authentication and authorization will take place, so as
to maximize flexibility and performance.

There is a space of possible decisions, bounded roughly
by the following two approaches:

1. Perform policy checks at each service-routine invoca-
tion. Each time a service routine is called from PLAN,
a check is made to see if the ‘current principal’ is al-
lowed to access the service. If this is the first such
check, then the principal must be authenticated. If
either the authentication or authorization check fails,
an exception is raised. In effect, we are proposing a
more elaborate variation of the Unix system-call mech-
anism.

The benefit of this approach is its flexibility. In par-
ticular, policies can take advantage of dynamic infor-
mation, such as the values of arguments to the service
functions. The drawback is thatall service calls are
subject to a runtime checkat each invocation. This is
because the set of services subject to policy, and the
policies themselves, might change over time. There-
fore, service routines in general need a ‘hook’ for
checking the most recent policy. We can mitigate some
of this cost by limiting the routines that might be sub-
ject to policy. This might be applicable to the set of
standard, core services, or to services that do not re-
quire policy-based parameterization.

2. Perform all checks once-and-for-all, before the packet
executes.That is, all service calls in the packet are au-
thorized before the packet is allowed to execute. The
advantage of this approach is that once authorized, the
packet can run without dynamic checks. On the other
hand, there are two drawbacks. First, policies based on
information that is not known at the time of the early
check are precluded, reducing flexibility. Second, the
static check must consider all possible execution paths,
even ones that may not be executed. As a result, one
static check could be more costly than a series of dy-
namic ones.

We employ the middle ground of these two approaches,
using two mechanisms. First, before it wishes to access
a privileged service, a packet authenticates itself with the
node. At this time, the policy is checked, and those ser-
vices that the packet is authorized (unauthorized) to invoke
are added to (subtracted from) the packet’s current service
symbol table (which at the outset of execution contains just
the core services). From then on, if a packet attempts to
invoke a service for which it is not authorized, that service
will not be in the symbol table and thus access will be de-
nied. Since PLAN is strongly typed and its interpreter looks
up services on an as-needed basis, programs are incapable
of invoking code outside of this updated table. We call this
approachnamespace-based security.

Second, we allow those services which may require
policy-based parameterization to query the policy manager
as necessary during their execution. For example, the soft
state service mentioned above would query the local policy
on each attempt to store new soft state, thereby determining
whether the current principal was allowed to allocate addi-
tional storage.

There are a number of advantages to our approach. First,
only those packets that use privileged (non-core) services
must pay for authentication and authorization; unauthenti-
cated programs may run without any performance penalty.
This mimics the model of the Internet, which allows nor-
mal packets to flow without authentication, while special-
ized packets, like router control protocol messages and net-
work management messages, need to be authenticated. Sec-
ond, privileged services that only appear in the policy as ac-
cess/deny (i.e., they are not subject to policy-based param-
eterization), do not require a per-invocation check. Finally,
services whose usage depends on dynamic information (i.e.,
the arguments of the invocation, or some other system state)
can specify their own policies and invoke the policy man-
ager as needed.

There is more that could be done in our current system.
As we have described them, policies only apply to PLAN
service routine calls, not calls between service routines.
However, this functionality can be added, as we demon-
strated in work on a related system [6]. Here we used the
service language’s support for implementing namespace-
based security, calledmodule thinning, to support our poli-
cies. The use of module thinning has been explored for ac-
tive networks in ALIEN [1] and for mobile agent systems
in Safe-Tcl [30].

5 Implementation

In this section, we describe the mechanisms used by
PLAN programs for authentication and authorization. A
thorough description of our implementation is found in the
PLAN documentation [25].

5.1 Authentication

Before a PLAN program may invoke a trusted service,
its associated principal must be determined; this is the pro-
cess of authentication. Authentication is typically done in
a public-key setting by verifying a digital signature in the
context of some communication (e.g.,a packet). In PLAN,
one obvious link between communication and authentica-
tion is thechunk.

A chunk (orcodehunk) may be thought of as a func-
tion that is waiting to be applied. In PLAN, chunks are
first-class—they may be manipulated as data—and consist
internally of some PLAN code, a function name, and a list

of values to be used as arguments during the application.
A chunk is typically used as an argument toOnRemote
to specify some code to evaluate remotely. A chunk may
also be evaluated locally by passing it to theeval service,
which resolves the function name with the current environ-
ment, performs the application, and returns the result.

We have added an additional service calledauthEval
which takes as arguments a chunk, a digital signature, and
a public key.authEval verifies the signature against the
binary representation of the chunk. If successful, the chunk
is evaluated; otherwise, an exception is raised. The authen-
ticated principal is associated with its chunk during evalua-
tion. Because our PLAN interpreter evaluates each packet
in its own thread, this can be done by associating the prin-
cipal with that thread’s identifier. Services can determine
the ‘current principal,’ perhaps to query a service-specific
policy, by checking this mapping. Because a caller’s thread
identifier cannot be forged, and because the authentication
service is itself a separate service, this provides a safe way
to track a principal without worry that some malicious ser-
vice will change the associated principal after the authenti-
cation phase.

There are two key advantages to this approach. One is
that a principal signs exactly the piece of code it wants to
execute, and may only have extra privilege while executing
that piece of code. Secondly, only those programs which re-
quire authorization will have the extra time and space over-
heads.

But the approach has three problems. The first is that
the authentication performed here isone-way authentica-
tion. While the node authenticates the principal, the princi-
pal never authenticates the node. This could be a problem if
a program is diverted from its intended destination and in-
voked on a different node. The second problem is that there
is nothing guarding against replay attacks. Finally, public
key operations are notoriously slow.

To address these problems, we make use of the proto-
col we defined in SANE (Secure Active Network Environ-
ment) [4, 5]. This protocol allows a principal and a node
to authenticate each other and generate a shared secret and
an identifier for that secret (named the Security Parameters
Index, or “SPI”). The protocol is essentially a variation of
the Station-to-Station protocol [14]; the reader is referred
to [4, 7] for more details. Our PLAN implementation of
this protocol is described in more detail in the PLAN docu-
mentation [25].

Once the protocol is completed, parties can use the
shared secret to authenticate via HMAC-SHA1 [27], in a
way similar to that used in the IPsec [26] protocols. To
prevent replay, each principal associates a monotonically
increasing counter with the shared secret, also included in
every transmitted message. To deal with out-of-order de-
livery, we use a sliding-window scheme, again similar to

the scheme used in IPsec. The additional state required is
minimal: an integer keeping track of the largest sequence
number received, and a 64-bit mask showing which of the
previous 64 packets have been received (the window size
is configurable; our choice of 64 as the default value was
based on IPsec). We reflect the use of HMAC-SHA1 in
PLAN by altering the signature ofauthEval to take a
chunk and a tuple consisting of the SPI, the counter, and
the HMAC signature over all of the previously mentioned
items.

5.2 Authorization

As our policy manager, we have chosen to use the Query
Certificate Manager (QCM) [17], which provides compre-
hensive security credential location and retrieval services
for set-based policies. While in this paper we are making
use of QCM, our architecture is designed so that other pol-
icy managers can be used instead. In particular, we have
used the KeyNote [10] trust-management system in related
work [6].

5.2.1 Namespace control policies

Following our general policy requirements discussed in
Section 4.2, our QCM namespace control policy specifies
an ACL in terms of the services to be added to or sub-
tracted from the default service-environment (i.e., the core
services) by associating certainthickenandthin sets of ser-
vices with a principal or set of principals. Once a princi-
pal has been authenticated, QCM is queried to discover the
thickenandthin sets, which are then used to add or subtract
services from the service symbol table maintained by the
PLAN interpreter; this modified symbol table is used for the
duration of the authenticated chunk’s evaluation. As an op-
timization, we cache the modified table for future reference,
thus avoiding repeated invocations of QCM and reconstruc-
tions of the table as long as the policy has not changed.

The following is an example QCM ACL that considers
two principals,p1 andp2:

p1 = <p1’s public key> ;
p1_thicken = f"print" g;

p2 = <p2’s public key> ;
p2_thicken = f"thisHost" g;

acl = f
(p1, p1_svcs, fg),
(p2, union (p2_svcs, p1_svcs), fg)

g;

In addition to identifying the keys ofp1 andp2, we define
two sets,p1 thicken andp2 thicken , which are used

to specify the thicken sets of those principals in the ACL.
The ACL itself is defined by the variableacl , which is
a set of three-tuples. The first tuple indicatesp1’s envi-
ronment should be thickened following authentication by
p1 svcs , while the second says thatp2’s environment
should be thickened by bothp1 svcs andp2 svcs . In
both cases, the thin sets are empty, specified byfg. Note
that in this case, the first element of the three-tuple is an
individual principal; more generally, it can be a set of prin-
cipals.

5.2.2 Policy-based Parameterization

In addition to specifying namespace-based policies, we
can specify per-service policies to be used by the ser-
vices themselves, allowing policy-based service parameter-
ization. Such policies are specified as a set identified by the
service’s name, whose elements are two-tuples that contain:

1. a principal or set of principals (as in the ACL)

2. a labeled record of length 1, with the label correspond-
ing to a service-dependent parameter name (where
multiple parameters per service are reflected as mul-
tiple records).

As an example, consider the PLANresident state pack-
age which provides user-defined soft state. The resident
state policy specifies how much state particular principals
are allowed to keep. For example:

def = <default user’s key> ;
resident = f (def, <amount=100>),

(p1, <amount=1000>) g;

This policy indicates that default users (which are automat-
ically given thedef key) are allowed to have at most 100
words of information stored on the node at any given time,3

while principalp1 may store up to 1000 words of informa-
tion. This policy is enforced in the resident state implemen-
tation itself by calling QCM on each store attempt.

5.2.3 Distributed Policies

Though we have not shown it so far, a key advantage of
using QCM is that it provides linguistic support for spec-
ifying distributed policies. Moreover, sets described in a
distributed manner impose no additional query complexity.
For example, a nodeA may define a setl in terms of a set
mwhich resides at another nodeB:

l = f p1, p2, ::: , pn g union B$m;

3Note that because all unauthenticated principals share thedef key,
this means that those principals can do little damage to the node, but can
deny service to other unauthenticated principals.

If the authorization service onA makes a membership
test on setl , QCM will automatically queryB if necessary.
The version of QCM that we use in PLAN actually makes
use of PLAN packets to perform its communications. These
packets query the QCM service on remote nodes on behalf
of the QCM service of the querying node. Interestingly, the
QCM service can itself be privileged (and thus subject to
policy) as long as there are no cycles in the policy specifi-
cation of the thicken and thin sets. If this were not the case,
QCM would fall into into a distributed, infinite loop.

One way to short-circuit remote queries in QCM is to use
certificates, which are signed assertions about set relation-
ships. Certificates may be passed as additional arguments to
authEval , or may be obtained during node-node authen-
tication. This allows QCM to implement bothpush- and
pull-based information-retrieval.

An avenue of future work is to determine how to best up-
date the QCM policy for each node as the policy changes.
For example, we could augment local policy when certifi-
cates are provided by authenticating programs. We could
also allow local policies to refer to a global policy that re-
sides on another node in the local administrative domain.
Thus, when this node’s policy changes, those changes are
reflected in all of the policies that refer to it.

6 A Simple Active Firewall

As a proof-of-concept of our security architecture, we
have designed and implemented anactive firewall using
PLANet. In today’s Internet, firewalls are used to prevent
the entry of potentially harmful packets arriving from an
outside, untrusted network. This is visualized in Figure 2.
When packets can be active, this simple approach is too lim-
iting. In this section, we describe how we adapt the tradi-
tional notion of a firewall to work in an active setting.

6.1 Implementation

Firewalls typically filter certain types of packets, such
as all TCP connection requests on certain port numbers.
Usually such packets are easily identified by their proto-
col headers. In PLANet, and indeed in any active-packet
system, there is no quick way to determine a packet’s func-
tionality without delving into its contents, which would be a
significant performance bottleneck. Therefore, we need an
alternate way of filtering out those packets which may be
potentially harmful.

Our approach is that rather than filter packets at the fire-
wall, we associate with them athinnedservice environment
in which any potentially harmful services are removed. The
packets may then be evaluated inside the trusted network us-
ing only those services. While this may seem to contradict

Trusted Network Untrusted Network

A

F

B

C

Figure 2. A trusted network behind a firewall.

our premise, stated in Section 2.2, that the default environ-
ment should consist only of ‘safe’ services, in the context
of a trusted Intranet we would expect that the default privi-
lege allowed to local packets exceeds that of foreign pack-
ets. Furthermore, we would not want to impose the over-
head of authentication and authorization on local packets in
the general case.

To thin the environment of foreign packets, our firewall
associates them with aguestidentity that has the appropriate
policy. To do this, the firewallF wraps the packet’s chunk
c as follows:

fun wrapper(c, sign) =
(zeroRB(); authEval(c,sign))

This wrapper first exhausts the packet’s resource bound
by calling the servicezeroRB , thus preventing it from
sending any additional packets. It then evaluates the
packet’s chunkc using the guest identity, as indicated by
the signature, for the duration of the evaluation. This means
that if c attempts to call any services that have been thinned,
the call will fail.

This scheme implies that the firewall signs each packet,
using the guest’s identity, and provides the signature to
authEval . In order to make this process as fast as pos-
sible, the firewall would authenticate with hostsA andB
ahead of time using the guest key.

However, because the guest environment will provide
less privilege than the default environment, we should be
able to avoid the cryptographic cost: any authenticating
principal whose environment is thinned and not thickened
can be ‘taken at its word.’ We could extend our framework
to allowauthEval to take a public key rather than a signa-
ture, accepting the identity of the keyiff the principal whose
key it is hasat mosta thin set in the node policy (as is the
case for the guest). We present results for the more naive

firewall = <firewall’s key>
guest = <guest’s key>
acl = f

...
(f guest g, fg,

firewall$guest_thinned_services)
...

g

Figure 3. Host QCM Program

case, and can derive the performance for this more opti-
mized one.

How we choose to specify the guest’s thinned environ-
ment may be accomplished in a number of ways. The sim-
plest way would be specify the thinned environment stat-
ically, at each hostA andB. However, a more uniform
and manageable approach would be that the guest identity
is known locally, but its environment is defined at the fire-
wall. The salient part of our host QCM program is shown
in Figure 3.

The thin set is defined by the variable
guestthinnedservicesat principalfirewall. Notice that the
thickenset is empty. To short-circuit remote queries, the
firewall provides certificates during node-node authentica-
tion that indicate the contents of itsguestthinnedservices
variable. Should the firewall policy be updated after initial
authentication, the firewall would push certificates to the
end host to reflect this change.

6.2 Performance Analysis

We analyze the performance of our active firewall by
comparing a filtered and non-filtered ping. In both cases,

fun reply(payload) =
print ("Success")

fun ping(payload) =
OnRemote(|reply|(payload),

getSource (), getRB (),
defaultRoute)

Figure 4. Ping in PLAN. Service invocations
are in italics.

the initiating host lies in the trusted network and is pinging
a node in the untrusted network. The PLAN code for ping is
illustrated in Figure 4. Our analysis examines the additional
cost to elapsed time and packet size.4 For our experimen-
tal setup, we daisy-chain connect three machines with 100
Mbit Ethernet, configuring the middle machine as the ac-
tive firewall. Each machine is a 300 MHz Pentium II with
250 MB of memory running Linux 2.0.30. PLANet runs
directly on top of Ethernet.

Time Overhead

As described in the previous section, the addition of the fire-
wall affects the packet processing time on the router and on
the host initiating the “ping.” While a router would nor-
mally just forward any packet it receives, the firewall has to
additionally sign and encapsulate packets destined for the
trusted network. On the initiating host, normal interpreta-
tion of the “reply” packet is further burdened by the need
to decapsulate, verify the firewall’s signature, and thin the
environment.

Figure 5 illustrates the elapsed time of ping with and
without the firewall. The left figure is the end-to-end time,
in which the black bar is the unmodified ping and the white
bar is the overhead imposed by the firewall. The right
figure similarly illustrates salient component costs for the
end host and the firewall with the addtional overhead. For
the end host, the time consists of evaluating ping’s “reply”
packet, while for the firewall, this is the cost of forwarding
the packet. The portion of the overhead which may be at-
tributed to signing (at the firewall) and verifying (at the end
host) is singled out. In both figures, times are given for 0-
byte payloads and maximally-sized payloads. Notice that
the overhead added to the component costs, which are the
white and gray bars in the figure on the right, add up to the
difference in elapsed time for the overall cost, which are the
white bars in the figure on the left.

4The reader may note that the numbers reported here are slightly differ-
ent than those reported in [22]; this is due to changes made to the PLANet
implementation.

The base ping times for 0-byte and maximal payloads are
2.13 and 3.06 ms, respectively; the firewall adds 37% and
32% of respective overhead to these times (raising them to
2.91 and 4.03 ms). By examining the component costs, we
can see that of this overhead, between1=3 and1=2 is at-
tributable to signing and verification, based on the packet
size. For the firewall, the remaining overhead is due to
encapsulation costs (which requires extra marshalling and
copying), while for the end-host it is due to decapsulation
and the additional interpretation cost of the wrapper code.
The time to thin the environment at the end host is negligi-
ble because we cache the thinned environment. If we elim-
inate the cryptographic operations, by the means described
earlier, we reduce the end-to-end ping times to 2.58 and
3.41 ms for 0-byte and maximal payload, respectively. This
reduces the firewall-induced overhead to 20% and 11%.

Notice that the graph depicts verification (which in the
figure is the cryptographic component cost for the host) as
twice as expensive as signing (which is the cryptographic
cost for the firewall). This is due to two related points:
we unmarshal PLAN programseagerly, and in order to ver-
ify a PLAN value (that is, the original packet’s chunk) us-
ing authEval , that value must first be marshalled into
a binary format. These two points combine to mean that
we unmarshal the encapsulated chunk when the packet ar-
rives, only to re-marshal it when performing the signature
verification. A smarter implementation would unmarshal
chunkslazily, thus avoiding this extra re-marshalling cost
and thereby equalizing signing and verification time.

There is room for further improvement. The cost of the
cryptographic operations (for cases when they are actually
needed) could be reduced through parallelism (to improve
throughput) and special-purpose hardware (to improve both
throughput and latency). Furthermore, the cost of PLAN in-
terpretation is extremely high; a smarter interpreter would
improve both the cost of the basic ping as well as the en-
capsulated version. In fact, we have recently been de-
veloping a compiler from PLAN to the low-level packet
language SNAP, resulting in significantly improved perfor-
mance [23, 36].

Space Overhead

The firewall also imposes a space-cost due to the extra code
and signature that is attached to the incoming packets. Ta-
ble 6 illustrates the basic space overheads, with and without
the firewall.

The no-payload reply packet is 80 bytes (consisting of
code and fixed fields), while the encapsulated version is 181
bytes, for an overhead of 126%. Of the 101 bytes of over-
head, 12 bytes are due to the signature. Since the overhead
is fixed, its impact is reduced with packet size. Looking at
the maximally-sized packet, we see that this 101 bytes only

overall
0

1

2

3

4

E
la

ps
ed

 T
im

e
(m

s) +Firewall

Ping

firewall host
0.0

0.2

0.4

0.6

+Overhead
+Crypto
Ping

Figure 5. Ping elapsed time with and without the firewall. The left bar of each pair is with a 0-byte
payload, and the right bar is for maximally-sized (1500 byte) packets.

No payload Maximal payload
packet size rel. overhead payload size rel. overhead

ping reply 80 B n/a 1420 B n/a
+firewall 181 B 126% 1319 B 6.8%

Figure 6. Ping reply packet overhead with and without the firewall. Illustrates the additional cost of
encapsulation and signing of foreign packets. Note that the signature itself is 12 bytes long.

adds 6.8% of overhead above the 5.3% already imposed by
the ping program.

A particular concern is that by adding code to the packet
as it passes through the firewall we might exceed the link
layer MTU and be forced to fragment the packet. In the
pathological (though probably not uncommon) case, each
packet received by the firewall will be just smaller than the
MTU and thus have to be fragmented after addition of the
wrapper code. This problem also appears in the IPsec con-
text, where it remains open to further research. One advan-
tage that we have over IP is that in PLANet we may easily
send PLAN programs to customize the host processing (i.e.,
as a more expressive ICMP). It would be worth examining
how to best express in PLAN a mechanism similar to “Path
MTU Discovery” [33]. Another possible approach would
be to compress the incoming packet, adding a wrapper to
perform the decompression upon arrival at the end-host.

A concern about the approach of PLANet in general is
the space cost of carrying the code in the packet. To miti-
gate this overhead, we have considered ways in which the
participants in a protocol may cache code rather than al-
ways transmitting it with the packet. One approach is to add
language-levelremote-referenceswhich may be thought of
as pointers to remote objects. Since all PLAN values (in-

cluding chunks) areimmutable, the contents of a remote ref-
erence may be safely cached without the need for a coher-
ence protocol. In the case of our firewall, the wrapper func-
tion code could reside at the firewall, while being cached
at the various hosts in the trusted network, thus reducing
the in-packet space costs. The issue of code caching is dis-
cussed in more detail in [24].

7 Related Work

Securing active networks [37] has demanded three major
research thrusts:

� First is the use of programming environments to of-
fer safety and security guarantees, for example the
careful design of PLAN and SNAP for safety, the use
of module-thinning in ALIEN, and the capability-like
namespace isolation scheme ANTS achieves with its
MD5 hashes of active packets.

� Second is the extension of the local guarantees achiev-
able within a programming environment to the collec-
tion of nodes comprising a network. While PLAN
or SNAP, as examples of domain-specific languages,

provide such guarantees irrespective of location, they
cannot make such guarantees when remote services
are invoked. Cryptographic techniques can extend lo-
cal safety properties by providing capability-like au-
thorizations for services, as was done in extending
ALIEN’s protection to remote systems in SANE, and
similarly in SANTS [38]. SANTS, which uses an au-
thorization scheme similar to ours, further considers
how to handle changes made to the contents of cryp-
tographically signed packets as they traverse the net-
work. However, as Alexander showed in his Caml-
based architecture [1], the performance penalty of fre-
quent cryptographic operations can be substantial.

� Third is support for multithreaded operation of ac-
tive networking systems in ways that provide resource
protection. This work has been centered around the
lowest levels of the DARPA active network architec-
ture, the so-called “Node Operating System” [42], ex-
amples of which include RCANE [31], JanOS [44],
AMP [42] and Scout [34]. These systems manage re-
sources which may be used by safe programming envi-
ronment in service invocations, including management
of resources used concurrently by multiple program-
ming environments.

0ur use ofauthEval resembles Java stack inspection
(JSI) [15, 45]. In our case, code is afforded the privi-
lege of the principal that signs it for the duration that it
runs. JSI refines this idea by examining the call stack and
giving the code the privilege of the least privileged prin-
cipal found on the stack, except when more trusted code
explicitly widens the privilege of its callers by invoking
enablePrivilege . It would be interesting to apply the
same approach to nestedauthEval calls to ensure the
same sort of security guarantees.

8 Conclusions

The Secure PLAN architecture is a hybrid which cou-
ples highly-scrutinized active extensions with unauthenti-
cated active packets supported by these extensions. This
has two major advantages. First, packets which do not re-
quire the computational cost of authentication and autho-
rization do not pay it. This is because all potentially unsafe
computation is relegated to the service level, which can be
governed by trust-management techniques. Our experience
is that the majority of active packet programs, from diag-
nostics such asping to best-effort data delivery, require no
potentially unsafe services, and therefore should not require
authentication. The second advantage, which follows from
the first, is that security analysis, perhaps including valida-
tion and verification, can be focused on a small set of ser-
vice routines rather than all possible active programs. That

said, it is an important avenue of future work to find ways
to automatically certify services as safe, so that they do not
need to be protected by a trust-based policy. Proof-Carrying
Code [39, 40] is one way to certify safety in low-level code,
but so far only simple safety properties have been explored.
A related approach uses dependent types to ensure that ser-
vices consume a bounded amount of time and/or space [13].

While our system uses both programming environment-
based safety and cryptography-based techniques to sup-
port use of services in networks (and is compatible with
any NodeOS approach), the novel architectural contribution
is the combination of enforcement mechanisms to allow
policy-writers to balance flexibility with performance. In
particular, we support both namespace-based security to add
to or subtract from a packet’s default service namespace,
and policy-based parameterization to allow services to for-
mulate their own per-principal usage policies. Namespace-
based security can be enforced cheaply at authentication-
time, while policy-based parameterization may require per
invocation checks. We have sought to enable scalability by
carefully encoding the namespace-based policy, and by us-
ing a decentralized trust management system [11].

The active firewall is a novel application of namespace-
based security. The firewall uses PLAN packets’ activeness
to protect a trusted environment from untrusted computa-
tions. We have demonstrated that our architecture addresses
possible threats while still preserving the flexibility and us-
ability of the system, byactivelymodifying the packet be-
havior, under control of a trust management policy, rather
than simply making a permit/deny decision as would be
made by a traditional firewall architecture. This architec-
ture is based on language safety, authentication, and trust
management. We demonstrated the practicality and accept-
able performance of our approach experimentally, using an
implementation of the active firewall.

Acknowledgements

We would like to thank Scott Nettles, Jonathan Moore,
and Trevor Jim for helpful discussions concerning this
work, and the anonymous referees for providing useful
feedback. We would also like to thank Trevor Jim for pro-
viding the PLAN-based implementation of QCM.

This work was done while all authors were at the Univer-
sity of Pennsylvania, supported by DARPA under Contract
#N66001-96-C-852, NSF under grant #ANI 98-13875, with
additional support from the Intel Corporation. A shorter
version of this paper was published in the International
Working Conference on Active Networks [21].

References

[1] D. S. Alexander.ALIEN: A Generalized Computing Model
of Active Networks. PhD thesis, University of Pennsylvania,
September 1998.

[2] D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. D.
Keromytis, J. T. Moore, C. A. Gunter, S. M. Nettles, and
J. M. Smith. The SwitchWare active network architecture.
IEEE Network Magazine, special issue on Active and Pro-
grammable Networks, 12(3):29–36, 1998.

[3] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, S. Muir,
and J. M. Smith. Secure quality of service handling
(SQoSH). IEEE Communications, 38(4):106–112, April
2000.

[4] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M.
Smith. A secure active network environment architecture:
Realization in SwitchWare.IEEE Network Magazine, spe-
cial issue on Active and Programmable Networks, 12(3):37–
45, 1998.

[5] D. S. Alexander, P. B. Menage, A. D. Keromytis, W. A. Ar-
baugh, K. G. Anagnostakis, and J. M. Smith. The price
of safety in an active network.Journal of Communications
(JCN), special issue on programmable switches and routers,
3(1):4–18, March 2001.

[6] K. G. Anagnostakis, M. W. Hicks, S. Ioannidis, A. D.
Keromytis, and J. M. Smith. Scalable resource control in ac-
tive networks. In H. Yashuda, editor,Proceedings of the Sec-
ond International Working Conference on Active Networks,
volume 1942 ofLecture Notes in Computer Science, pages
343–358. Springer-Verlag, October 2000.

[7] W. A. Arbaugh, A. D. Keromytis, and J. M. Smith.
DHCP++: Applying an efficient implementation method for
fail-stop cryptographic protocols. InProceedings of Global
Internet (GlobeCom) ’98, pages 59–65, November 1998.

[8] G. Back, W. C. Hsieh, and J. Lepreau. Processes in Kaf-
feOS: Isolation, resource management, and sharing in Java.
In Proceedings of the 4th USENIX Symposium on Operating
Systems Design and Implementation, San Diego, CA, Oct.
2000. USENIX.

[9] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczyn-
ski, D. Becker, S. Eggers, and C. Chambers. Extensibility,
safety and performance in the SPIN operating system. In
Proceedings of 15th Symposium on Operating Systems Prin-
ciples, pages 267–284, December 1995.

[10] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The role of trust management in distributed systems security.
In Secure Internet Programming, Lecture Notes in Com-
puter Science. Springer-Verlag Inc., New York, NY, USA,
1999.

[11] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. InProceedings of the 17th Symposium on Se-
curity and Privacy, pages 164–173. IEEE Computer Society
Press, Los Alamitos, 1996.

[12] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. La-
zowska. Sharing and protection in a single-address-space
operating system. InACM Transactions on Computer sys-
tems, November 1994.

[13] K. Crary and S. Weirich. Resource bound certification.
In Symposium on Principles of Programming Languages,
pages 184–198, 2000.

[14] W. Diffie, P. van Oorschot, and M. Wiener. Authentication
and authenticated key exchanges.Designs, Codes and Cryp-
tography, 2:107–125, 1992.

[15] C. Fournet and A. Gordon. Stack inspection: Theory and
variants. InProceedings of the ACM Symposium on Princi-
ples of Programming Languages, January 2002.

[16] J. Gosling, B. Joy, and G. Steele.The Java Language Spec-
ification. Addison Wesley, Reading, 1996.

[17] C. A. Gunter and T. Jim. Policy-directed certificate re-
trieval. Software - Practice and Experience, 30(15):1609–
1640, 2000.

[18] C. Hawblitzel, C. Chang, and G. Czajkowski. Implement-
ing Multiple Protection Domains in Java. InProceedings
of the 1998 USENIX Annual Technical Conference, pages
259–270, June 1998.

[19] M. Hicks. PLAN system security. Technical Report MS-
CIS-98-25, Department of Computer and Information Sci-
ence, University of Pennsylvania, April 1998.

[20] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Net-
tles. PLAN: A packet language for active networks. InPro-
ceedings of the Third ACM SIGPLAN International Confer-
ence on Functional Programming Languages, pages 86–93.
ACM, 1998.

[21] M. Hicks and A. D. Keromytis. A secure PLAN. In S. Co-
vaci, editor,Proceedings of the First International Workshop
on Active Networks, volume 1653 ofLecture Notes in Com-
puter Science, pages 307–314. Springer-Verlag, June 1999.

[22] M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and
S. Nettles. PLANet: An active internetwork. InProceedings
of the Eighteenth IEEE Computer and Communication Soci-
ety INFOCOM Conference, pages 1124–1133. IEEE, 1999.

[23] M. Hicks, J. T. Moore, and S. Nettles. Compiling PLAN to
SNAP. In I. W. Marshall, S. Nettles, and N. Wakamiya, ed-
itors, Proceedings of the Third International Working Con-
ference on Active Networks, volume 2207 ofLecture Notes
in Computer Science, pages 134–151. Springer-Verlag, Oc-
tober 2001.

[24] M. Hicks, J. T. Moore, D. Wetherall, and S. Nettles. Experi-
ences with capsule-based active networking. InProceedings
of the DARPA Active Networks Conference and Exposition
(DANCE). IEEE, May 2002. This volume.

[25] M. W. Hicks. PLAN security guide, 2001.
Part of PLAN 3.2 documentation. Available at
http://www.cis.upenn.edu/˜switchware/
PLAN/docs-ocaml/security.ps .

[26] S. Kent and R. Atkinson. Security architecture for the inter-
net protocol. Technical Report RFC 2401, IETF, Nov. 1998.

[27] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
hashing for message authentication. Technical report, IETF
RFC 2104, February 1997.

[28] X. Leroy. The Objective Caml System, Release 3.00. Insti-
tut National de Recherche en Informatique et Automatique
(INRIA), 2000. Available athttp://caml.inria.fr .

[29] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and im-
plementation of an operating system to support distributed

multimedia applications.IEEE Journal on Selected Areas
in Communications (JSAC), 14(7):1280–1297, September
1996.

[30] J. Y. Levy, J. K. Ousterhout, and B. B. Welch. The Safe-Tcl
security model. InProceedings of the 1998 USENIX Annual
Technical Conference, pages 271–282, June 1998.

[31] P. Menage. RCANE: A resource controlled framework for
active network services. In S. Covaci, editor,Proceedings of
the First International Workshop on Active Networks, vol-
ume 1653 ofLecture Notes in Computer Science. Springer-
Verlag, June 1999.

[32] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Def-
inition of Standard ML (Revised). The MIT Press, Cam-
bridge, Massachusetts, 1997.

[33] J. Mogul and S. Deering. Path MTU Discovery. Internet
RFC 1191, November 1990.

[34] A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Pe-
terson, T. A. Proebsting, and J. H. Hartman. Scout: A
communications-oriented operating system. Technical re-
port, Department of Computer Science, University of Ari-
zona, June 1994.

[35] J. Moore. Mobile Code Security Techniques. Technical Re-
port MS-CIS-98-28, University of Pennsylvania, May 1998.

[36] J. T. Moore, M. Hicks, and S. Nettles. Practical pro-
grammable packets. InProceedings of the Twentieth IEEE
Computer and Communication Society INFOCOM Confer-
ence, pages 41–50. IEEE, April 2001.

[37] Security architecture for active nets, June 1998. Draft
available at http://www.ittc.ukans.edu/
˜ansecure/0079.html .

[38] S. Murphy, E. Lewis, R. Watson, and R. Yee. Strong security
for active networks. InProceedings of the IEEE Conference
on Open Architectures and Network Programming. IEEE,
April 2001.

[39] G. C. Necula. Proof-carrying code. InProceedings of the
24th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 106–119. ACM
Press, New York, January 1997.

[40] G. C. Necula and P. Lee. Safe kernel extensions without
run-time checking. InSecond Symposium on Operating Sys-
tem Design and Implementation, pages 229–243. USENIX,
1996.

[41] E. L. Nygren. The design and implementation of a high-
performance active network node. Master’s thesis, Mas-
sachusetts Institute of Technology, February 1998.

[42] L. Peterson, Y. Gottlieb, M. Hibler, P. Tullman, J. Lepreau,
S. Schwab, H. Dandekar, A. Purtell, and J. Hartman. An OS
interface for active routers.IEEE Journal on Selected Areas
in Communications (JSAC), 19(3):473–487, March 2001.

[43] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden. A survey of active network
research. IEEE Communications Magazine, pages 80–86,
January 1997.

[44] P. Tullmann, M. Hibler, and J. Lepreau. Janos: a Java-
oriented OS for active network nodes.IEEE Journal on
Selected Areas in Communications (JSAC), 19(3), March
2001.

[45] D. S. Wallach and E. W. Felten. Understanding Java stack
inspection. InProceedings of the IEEE Symposium on Se-
curity and Privacy, pages 52–63, May 1998.

[46] D. Wetherall. Active network vision and reality: lessons
from a capsule-based system. In17th Symp. on Operating
Systems Principles (SOSP’99), pages 64–79, Kiawah Island,
SC, December 1999. ACM.

[47] D. J. Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS:
A toolkit for building and dynamically deploying network
protocols. InIEEE OpenArch Proceedings. IEEE Computer
Society Press, Los Alamitos, April 1998.

