IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 413

A Secure PLAN access to basic services; these services should naturally include some

“activeness.” This goal implies that some functionality, like packet de-

Michael Hicks, Angelos D. Keromytis, and Jonathan M. Smith |ivery in the current Internet, should not mandate authorization. There
is a pragmatic reason to make the same choice: the converse assump-

))) tion, in whichall packetsrequire proper authorization before they can
Abstract—Active networks, being programmable, promise greater flex- 1o ayacyted, can be extremely costly. This is because authorization
ibility than current networks. Programmability, however, may introduce . T) . .
safety and security risks. regw'resauthe_mlcatlom i.e., each pack_et must b(_e associated with a
This correspondence describes the design and implementation of a secu-principal that is relevant to the authorization policy. Packet-level au-
rity architecture for the active network PLANet [1]. Security is obtained thentication uses cryptography to ensure that a packet’s identity is not
with a two-level architecture that combines a functionally restricted packet spoofed and its contents have not been tampered with, and crypto-

language, PLAN [2], with an environment of general-purpose service rou- ; : ; i ; ; _
tines governed by trust management [3]. In particular, a technique is used graphic operations, particularly public-key operations, can be quite ex

which expands or contracts a packet’s service environment based on its pensive relative to normal packet. processing. For example, adding a
level of privilege, termednamespace-based security 30% overhead to packet processing (based on measurements of soft-
The design and implementation of an active-network firewall and virtual ~ ware-based cryptography that we report at the end of the paper) on

private network is used as an application of the security architecture. Mea- each node would severely degrade the performance of the network.
surements of the system show that the addition of the firewall imposes an PLANet was designed so that the programs at the packet level are
approximately 34% latency overhead and as little as a 6.7% space over-
head to incoming packets. the lowest common denominator with respect to security. That is, all
packet programs by themselves (without calls to service routines) are
safe by definition thanks to the formal properties of our packet lan-
guage, PLAN. This is the same model as in the IP Internet—all IP
packets are acceptable by default and need not be authorized inside
l. INTRODUCTION the network. Security, therefore, boils down to the services. In partic-
Act ks 141 offer the abili h K ular, a packet remains safe as long as it only makes calls to service
ctive networks [4] offer the ability to program the networ 9N Goutines that are themselves safe. Therefore, we must ask the ques-
per-router, per-user, oreven per-packgt basis. Unfortunately, th's_adHSH “which services can be considered safe?” While for some services
pr'ogrammablllty thrfeatens the security O_f the system by aIIowmgtﬁe answer is clear (for example, determining the address of the cur-
wider range of possible attacks. Any feasible active network archltq,%-m node should be safe), service safety is ultimately a matter of local

ture therefore requires strong security g.uarant.ees. We woulq .Ii.ke th ﬁ‘ﬁcy. For example, a router in the center of the network may allow
guarantees to come at the lowest possible price to the flexibility, p sry few service routines, while an end-host might provide a more lib-

for;\naﬂce, a_nd ursabiLitg of theI sys_tem. o developed _eral execution environment. Moreover, a service's safety in general is
tthe University of Pennsylvania, we have developed an active 'ﬁ'Rer not absolute: using it might be acceptable for some packets but

ternetwork called PLANet [1]. PLANet’s node architecture consists ?1fot for others. For example, a properly authorized network manage-

two levels: thepz_ackgt levebnd theservice levelAll programs at the ment packet should be allowed to update a node’s routing table, while
packet level reside in the messages, or packets, that are sent bet\/}gl Elhtrusted packet should not

the nodes of the system. These programs are written in the packet Ianrhis paper presents the design and implementation of the security

guage for active netw?rks (,,PLAN)’ [2] Pagket programs are S|_mple B¥chitecture in PLANet. We focus on the task of building a secure ser-
nature, e_lnd serve to “glue” together service Ieyel programs, JUSt 8% infrastructure based on the foundation of a safe packetlanguage, in
shell-scrlp_t glues together calls to_more c_omphcaj[ed utilities. In COthis case PLAN. While our architecture was developed specifically for
trast, service level programs (service routmg)s reside at eaph nodg PLANet, we believe it is more broadly applicable. In particular, it will
and are invoked by PLAN programs eva]uatmg there. Service routi ly to any active network infrastructure that manages general-pur-
are general-purpose and may be dynamically loaded across the ne , node-resident services in combination with safe (whether active

[5]. This g€ ntlarg! arc:ll\tlt_arcstuge |ssshgr£g\§y9ma|1;2/’\?oi%alled dactlr\]/e pac Fbassive) packets. Our approach to service security is also relevant to
systems, including [6]-(8], [, [10], and others. extensible systems, like some web servers and operating systems.

_ A central goal ofPLANetisto prc_)_/i.delnternet-like service asabase-We begin by presenting a description of our architecture, after de-
IlneH augmenLed by acFlve carr])abllltles. TtI:e .Interngt aIIolws ggy usset,rribing the attacks it protects against. We then follow up with a de-
wit 'a networ cqnnectlon .to ave some Dasic Services. in ac ItIOr]st(?ription of the implementation of this architecture in PLANet. After
basic packet delivery provided by IP, basic information services I|kae

.) _adiscussion of PLAN and its relevant characteristics, we present pos-
DNS, and protocols Ilke_ HTTP, FTP, and SMTP are provided. Simi,, o\ ~thods of security management and the ones we have chosen
larly, a goal of PLANet is to allow any user of the network to hav?O implement armamespace-based securitith policy-based param-

eterization We describe how we enable authentication, and manage
relevant security information, such as which service routines are avail-

Manuscript received July 1,2002; revised March 24,2003 and June 28, 208§|e to which pnnC'palS’ us|ng query certificate manager (QCM [11])

A shorter version of this paper was published in the International Working Cowe then demonstrate how we have used our system to implement two
ference on Active Networks [68], and an extended version of that paper was

published in the DARPA Active Networks Conference and Exposition [69]. ThPPlications: a simple active firewall, and a virtual private network for
work was supported by DARPA under Contract N66001-96-C-852, NSF und¢tive packets. Finally, we present some related work and conclude.
Grant ANI 98-13875, with additional support from the Intel Corporation. This
paper was recommended by Guest Editors W. Pedrycz and A. Vasilakos.
M. Hicks is with the University of Maryland, College Park 20742, USA Il. OVERVIEW OF SECURE PLAN
(e-mail: mwh@cs.umd.edu).
(eAn-] &Ei)l-_ gﬁé%?;ﬁ%éi \::V(I)tlTl ﬁgi':”:}g:?) University, New York, NY 10027, USA 1q evaluate the effectiveness of any security system, we must con-
J. M. Smith is with the University of Pennsylvania, Philadelphia, PA 1910‘§|der the threats it defends agamStj Therefore, we begin by des_cnbmg
USA (e-mail: jms@cis.upenn.edu). the behaviors that threaten an active network, and then describe our

Digital Object Identifier 10.1109/TSMCC.2003.817347 two-level security architecture designed to secure against them.

Index Terms—Active firewall, active networks, active packets, PLAN,
programming languages, security.

1094-6977/03$17.00 © 2003 IEEE

414 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

A. Threat Model

The two major threats to any active networking system are to the 5
protocol B

public resource®f the system: the CPU, memory, and network; and to
thecontentsof the system: the packets themselves and the information Dopeeeeeseeeii e

stored on routers. These threats imply two forms of attack. [network management]
1) Denial-of-Service Because of the greater expressibility of ac- P ST ,
tive network programs (compared to traditional passive packet

: routin,;

headers), there is greater potential for the misuse of the system’s R otocol A ;

public resources, thus denying service to other programs. For N P :

general programs, the public resources should be fairly appor- P :
|

tioned, while those with more privilege could gain additional
PLAN packet

latitude. We address only active node-specific denial-of-service
(DoS) considerations; the much harder network DoS problem is
better addressed through other means (e.g., [12], [13]).

2) Protection. Programs should be protected from interference by
other programs. In particular, one program should not be able to
read or write data private to another program without authoriza-
tion, either while the packet program is in transit or when it is
running (i.e., no packet or program snooping). This property ingig. 1. pLANet's security architecture. The contents of the dashed box are
plies program isolation. available to all incoming packets, while the dotted boxes encapsulate service

In responding to these attacks with a security system, there mayrgekages available only to select users. Services may be further restricted by

attacks on the security system itself. As mentioned, we would like Y412t parameters they can be called with.
allot greater privilege to some packets, such as those associated with

a node’s administrator. Therefore, it is important that these paCk%%ltines and policies that are allowed at its level of privilege. The poli-

be Er%perly a.ubtlhegt.lcglltecli, ar?d th?]t no 'mPerSOfc‘ja“O’;]P°Pf'”Qa“ cies are enforced and the routines are made available after the user has
tacks be possible. Similarly, the authentication and authorization megfic, , o ccessfully authorized. This architecture is illustrated in Fig. 1.

anisms should also be robust aganegiayattacks, in which valid, but This scheme provides access control for system services. However,

old messages are replayed in an attempt to gain illegal access. _once access to these resources is obtained, finer-grained management
Passive networks are vulnerable to these same attacks; active H%y be required. For example, more than just say that a packet may or
works simply expand the vo_cabulary _Of an attacker. For examplﬁ\ay not have access to a service, we might say that a service is acces-
an attacker can mount a denial-of-service attack over the InternetémIe but only when called with certain parameters. We flesh out the
attempting to overload a web server with a constant flow of HTTEetails of this architecture in Sections Ill and IV. We describe PLAN’s

G,ET requests. “” the ?ttacke_r has enough resources (such as a CQé)éumy properties in the Section IV, and then present our service man-
dinated fleet of “drone” machines to make requests), it can overwhe ement methodology.

the ability of the server to perform useful work. An active network can
make such attacks easier (particularly when, like PLANet, it provides
active packets) because it increases the maximum amount of resources
required to process a single packet, and thus the attacker needs fewp. AN [2] is a small functional language resembling ML [16],
resources to overwhelm its target. The goal of PLANet's security git7]. It differs most importantly from other functional languages in
chitecture is to reduce the effect and increase the difficulty of mountimgat it provides language-level support, using the primitivBemote
attacks, particularly denial-of-service attacks, while still preserving tgnong others, for evaluating an expression at a remote node. Invoking
utility of the network’s active capabilities. At this point, auditing techonRemote results in a newly spawned packet that is sent to and evalu-
nigues can be used to discover the source of an attacker, such agtéfd at the remote location. PLAN was designed as the foundation of
traceback [14], [15] and pushback [12]. Moreover, such techniques @eANet’s security, with the intention that all PLAN programs can be
more easily implemented and deployed in an active setting. considered safe. In this section we introduce PLAN and describe the
language’s security properties.

IIl. PACKET SECURITY VIA PLAN

B. Architecture

As already described in Section I, we partition the problem of dé- PLAN: The Packet Language for Active Networks
fending against these attacks into the packet level and the service leveRL AN supports standard programming features, such as functions
using different mechanisms at each level. At the packet level, securitwisd arithmetic, and features common to functional programming, like
obtained vidunctional restrictionthe limited nature of the PLAN lan- |ists and the list iteratdiold (intuitively, fold executes a given function
guage prevents attacks from being formulated, particularly denial-gffor each element of a given list, accumulating a result as it goes). Two
service and protection attacks. We justify this claim in Section Ill. notable restrictions are that functions may not be recursive and itera-
At the service level, we make use of an authorization system fien must be bounded. PLAN programs call service routines present on
govern access to services. While some services may be consideredisexecuting node using normal function call syntax. These services
able by all (we call these the “core” services), many services that af& implemented in a full programming language such as C, Java [18],
necessary for the operation of the active node should not be made ax@jlclone [19], ML [16], or any other language.
able to all packets; an example would be network management funcPLAN’s 0nRemote primitive is used to direct a computation to take
tions. Our architecture associates with each printipadet of service place on a different node, and has the effect of creating a new packet

L i that is sent to that node to initiate the computation. The computation is
1A principal may be a network node or a user. Each principal holds a

public/private key pair, and is identified (at least for security purposes) by iﬁpecified as a function call to perform remotely, lalong with 0 or more
public key. arguments that are evaluated locally. The following example executes

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 415

the function f at the nodeostwith the argument 4; the arithmefict 3
is performed by the invoking node.

OnRemote(|f|(1 + 3),host...).

fun reply(payload) =
print("Success")

fun ping(payload) =

OnRemote (|reply| (payload) ,
getSource(), getRB(),

OnRemote takes two additional arguments (the. in the above defaultRoute)

example).

1) A resource boundount, which is greater than 0. Each packetig. 2. Pingin PLAN. Service invocations are in italics.
has associated with it a resource bound that is decremented on
each hop, as with the IP “Time To Live” (TTL) counter. When
a new packet is created witinRemote, its resource bound is
initialized by subtracting the specified amount from the parent
packet program.

2) Arouting function This is the name of the service that is to pro-
vide hop-by-hop lookups to route the packet to its final desti-
nation. A variant obnRemote, called OnNeighbor, does not re-
quire a routing function, but restricts spawned packets to execute
only on immediately adjacent nodes. These packets are therefor:
responsible for their own routing.

Remote evaluation withnRemote is best-effort and asynchronous: the
OnRemote call returns immediately and does not wait for any result
from the spawned packet.

PLAN provides the ability to mampzulate progr’:elms as data, via a is limited by the initial value of this counter, thus preventing
construct known as ahu_nk(short_ for .C.Ode hunk’). A chunk may denial-of-service attacks on the network infrastructure.
be thought of as a function that is waiting to be executed. In PLAN

hunk first-cl th b d ts to functi ' The first mechanism is widely understood in both the active net-
chunks are first-class—inhey can be passed as arguments 1o TUncippg, community and the extensible operating systems and mobile
and stored in variables—and consist internally of some PLAN code

functi d a list of val b d ts duri tBde communities [6], [9], [20]-[24]. It has the nice benefit that ca-
unction name, and a fist ot values 1o be USed as arguments during [Bg%ility-style protection can be enforced by the language, dramatically
application. A chunk is typically used as an argumertitBemote to

. det luat telv. Th 4) in the ab reducing protection costs. The latter two mechanisms have come into
specify some code to evaluate remotely. The sy(figt) in the above %mmon usage in packet-based active network schemes [6], [9], and

CPU and memory denial-of-service attacks. In particular, all
PLAN programs are guaranteed to termingtesince PLAN
does not provide a means to express nonfixed-length iteration
or recursion. In addition, PLAN does not provide means for its
programs to directly communicate, meaning that one program
cannot directly access or affect another (communication is
possible indirectly through services).

) Packet Counting While PLAN’s language restrictions can
bound CPU and memory resource usage on a single node, they
are not sufficient in restricting use nétworkresources. For this
purpose, PLAN packets haveesource boundounter which is
decremented each time a packet is sent. Therefore, the number
of hops that a PLAN program and any of its progeny may take

terfa;nplet_ls ufsec_i”t(t)) define e;cgunlt(hllttke]ral; when trt"z c:ur;]k |skevalualt], but the first technique of the two is less appreciated. Most active
b N unlc lctmd W elclaxgcu edwi itt eﬂ:;glumen_ ’ hc' En calm ASPetwork systems of which we are aware assume that a general-pur-
€ evaluated manua’ly by passing It to service, which reso Ves(%ose, type-safe language combined with resource counters is sufficient;

the function name with the current environment, performs the applica- . : . ;
. ! . iIsbehaving threads are simply killed when they exceed their resource
tion, and returns the result. The codel (|f|(4)) is thus equivalent to i g 4 y

simply invokingf(4). Chunks play an important role in service secu-

rlt)'/;_as;/vehdlscuss |ntSect|on V'. in PLAN. Thi . quite costly [26]. In particular, without careful engineering, abruptly
tl?j.b s ovxlis ow _to_ ptrograrplrllgtln d .d' IS _E)rtogram IS e>;e- terminating a packet may leave the system in an inconsistent state,

cuted by packaging It Info a packet and sending 1t o our ping .arggfnce packets may be manipulating shared resources when they are

indicating it should evaluate the function ping upon arrival. This r%illed. This problem led Sun to deprecate thigread kill routine

sults in the chunkreply|(payload) being created and sent back 0y o cant in early versions of Java. Systems using language-based pro-

the source t.Of thfhongllr: al ?c?{;kmt’ as de”terfrpr:ned V'agt“ Eo;(lrt?e tection typically restrict sharing, at some performance cost, to support
service routine. The call ige returns atl o the currént packet s re- ;g termination, [22], [27]. Operating systems have traditionally

source boun_d,whlch is here donated tp the new packet. The new pa%lé egated processes into distinct address spaces, at a significant
is routed using thdefaulwoute. rogtlng Service. Wh?n the ret:Jrn performance penalty to interprocess communication, so that they can
packet evaluates at the source, it prints the message “success. be killed abruptly without worry of shared resources. In PLANet we
require neither mechanism because we are guaranteed that packet
programs will terminate on their own.

PLAN was designed so that all PLAN programs by their nature are _
impervious to the attacks we described above. That s, PLAN prografas Resource Bounding

(which do not call service routines, or only call “safe” ones) should not \yhile guaranteed termination is an important property, to adequately
be able to mount denial-of-service attacks nor should they be ablej&fend against denial-of-service attacks we must strengthen it to bound
interfere with other packets or node-resident code and/or data. Thig{g resources consumed prior to termination. The following property

achieved in three ways. applies to IP packets, and could well be considered for active packets.

1) Strong Typing. In weakly-typed languages, like C, security re- The amounts of bandwidth, memory, and CPU cycles that a
strictions can be overcome by, for example, using unsafe casts t@ingle packet can cause to be consumed shoulihearly related

change integers into pointers, or by exploiting unchecked arraytg the initial size of the packet and to some resource bound(s) ini-
accesses to force buffer overflows. PLAN prevents such protec-tja|ly present in the packet.

tion attacks by enforcing strong typing,
like Java, ML, and Modula-3.

2) Limited expressibility. PLAN is not a general-purpose lan-
guage, but is resource- and expression-limited in order to preventPLAN programs terminate as long as the services called also terminate.

mits.
However, abrupt termination is both potentially unsound, and

B. PLAN's Security Properties

as is done in languages,ch 4 property is useful for active networks because it directly re-
lates a router’s resource usage to the number and size of the packets it

416 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

processes. For example, it can know the maximum amount of memdyy Trust Management
needed to execute the packet, based on its size. If a router is experi- .)
encing overload, it can decide to drop packets based solely on theip_"’en our loose goal of allowing only trusted programs to use po-

maximum possible resource usage (based on their size), without haVfiigially unsafe services, it follows we must define a policy that relates
to partially evaluate them or examine their contents. trusted programs to unsafe service routines and a means to enforce this

Of course, even a linear relationship is unhelpful if the constant BPI'CV' We can expand on this observation to arrive at the following re-

proportionality is large. As we discussed earlier, the constant of prop&glrements for our setting.

tionality for routing IP packets is very small, which requires an attacker 1) Security policies
to amass substantial resources to mount a denial-of-service attack by~ Policies should benodifiableas needed, by the proper ad-

flooding. We would prefer at the least to retain this state of the affairs ministrative entities, while the system is operating. This is
for an active network. particularly important for active networks, as both new users
To satisfy a linearity property in PLAN, we must rule out programs and new services that should be governed by the security
like the following one, which executes in time exponential in its length. policy will appear over time.
— Policy abstractions should fflexibleso as to address current
fun £1() =() as well as future application needs. Again, this requirement

derives from the inherent dynamicism of an active network,
fun £2() =(f10); f10)) both in terms of its users and services.
fun £3() =(£2(); £2()) 2) Enforcement mechanisms
fun f4() =(£3(); £3()) — To minimize the size of ourusted computing basenforce-
. AN Al ment mechanisms should be simple to understand and em-
fun exponential() =(f4(); f4()). ploy [29]. That is, in general, trustworthiness decreases with
complexity, since the likelihood of both implementation and
user error is higher.

— It should be possible to implement enforcement mechanisms
without relying on the existence of a widely-available infra-
structure. That s, each node should be ableatie decisions
locally, based on its own policy and/or credentials that a user
program might present.

This program defines five functions (that do nothing), but requires a
total of 31 function calls to completely evaluateponential (or2" —

1 calls, wherer is the number of function definitions). We prevent such
programs by requiring that for any PLAN functignwhich calls some
number of other PLAN functiong; ... g., the sum total of PLAN
functions called by . .. g, isatmost 1. Moreover, we place a constant
bound: on the length of lists to be iterated over with fold ; each multiple __ Security mechanisms mustaleto support increasing num-

of ¢ decrements one resource bound from the packet. bers of different applications, users, administrative entities,
More recently, a follow-on to PLAN called SNAP [9] has been pro- and their trust relations. Note that the previous requirement

posed, which is an assembly-like language for packet programming. for decentralization should improve scalability.

SNAP programs meet the linear resource usage property with a small

constant of proportionality. For example, SNAP instructions can al general, many of these requirements can be met by emplogmngta
cate at most three words per instruction. We have developed a Comprﬁ@rna_\gement syste[&]. In a trust management _system, each user, or
to compile PLAN programs into SNAP programs, which essentialR/”nC'pal’ is assigned some level of trust (or privilege). Based on this

imposes the restrictions we have described above [28]. Indeed, thellest level, the principal is permitted to perform certain actions, and

curity architecture that we propose here will work just as well with'2Y potentially delegate those actions to other principals. The novelty

SNAP or with any other packet language that prevents the attacks tﬂfa he approach is that trust relationships are managed independently
we have described above of the particular actions that an application might perform. Instead, the

.relationships between principals and the actions they may perform are

However, while we feel that language-based support for achievmaecified in a separate policy. expressed in a special policy language
resource bounds is a promising approach, more work is needed to better P pOlICy, EXp P policy language.

understand the tradeoff between resource security and flexibility each action that requires aUthO”.Z at|_on, the program can_mvoke the
. trust management system to determine if the action is authorized for the
unauthorized packets.

As we have described it, the safety of a packet program is predicaPeQ?C'pal |nhquest|(.)trk1]. If so, th; dﬁ.rograllm can |r1voke thelgo(;rvks)spt(r)]ndtlng ¢
on the safety of the servicesiit calls. If a service allows a program to, ftion. perhaps with some additional parameters provided by the trus
gnagement system in response to the query.

example, perform unbounded iteration, then denial-of-service attacr]z_r ical i ¢ dating local
can be more easily launched. For this reason, it is critical that a ser- YP!c& trust_mgnagement_ S_yStemS provide means for updating oca
ies, for distributing policies across the network, and for using

vice management system be in place. We discuss our approach, al Kg

others, of using trust management to manage namespaces in Sectiofi tographically-sealed credentials to assert trust relationships. In
particular, cryptography is used to authenticate the principal associated

with a message before the local policy is checked for that principal.
Applying a trust management system to PLANet is straightforward.
IV. SERVICE SECURITY VIA TRUST MANAGEMENT Each PLANet node uses a policy manager from the trust management
system to manage its local policy. When a running PLAN program
Because of their general-purpose nature, service routines may peishes to invoke a protected service routine, the principal associated
form actions which, if exploited, could be used to mount an attack. with the packet is authenticated, and the operation is checked against
radical solution to this problem would be to prevamy service rou- the appropriate policy by the policy manager. If either step fails, the op-
tine from being installed that could potentially harm the node in theration is denied. The interesting questions are how to choose policies
ways described in Section II-A. However, this solution would rule odhat admit useful services to the widest number of principals, and how
many useful service routines. Instead, we wish to allow the inclusiom ensure scalability and good performance through the choice of en-
of potentially harmful service routines—for example, network managésrcement mechanisms. We consider the question of policy and mech-
ment operations—that should only be made available to cettagied anism for authorization below; details about our particular implemen-
users. tation of authentication and authorization are presented in Section V.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 417

B. Policy is made to see if the “current principal” is allowed to access the
service. If this is the first such check, then the principal must be
authenticated. If either the authentication or authorization check
fails, the action fails and an exception is raised. In effect, this is
a variation of the Unix system-call mechanism.

The benefit of this approach is its flexibility. In particular,
policies can take advantage of dynamic information, such as the
values of arguments to the service functions. The drawback is
thatall service calls are subject to a runtime chatleach in-
vocation This is because the set of services subject to policy,
and the policies themselves, might change over time. Therefore,
service routines in general need a “hook” for checking the most
recent policy. We can mitigate some of this cost by limiting the
routines that might be subject to policy. This might be applicable

To start, we must consider what kind of policies we would like to
express. As mentioned, we essentially want to encode our policy as
a mapping between principals and services. Conceptually, each prin-
cipal has associated with it a list of services that it can access, i.e., a
per-principal access control list (ACL). Furthermore, we want to re-
fine this mapping to specify not onlwhethera service routine may
be invoked, buhowit may be used. For example saft stateservice
which allows packets to store state on routers temporarily might ap-
portion different amounts of space to different principals. We call such
per-principal differences in service usgoaicy-based parameteriza-
tion. In general, because different services will have different usage
policies, we permit services to define service-specific policies based
on generic service parameters; we present more detail on policy-based . ;
parameterization in Section VI. Finally, we would like to manage del- to Fhe SEt_ of standard, core SEervices, or to services that do not re-
egation policies with regard to these mappings. For example, we might quire policy-based parameterization.
specify that the services in setnay be accessed not only by principal 2) Perform all checks once-and-for-all, before the packet executes.
», but also by those principals authorized;hy That is, all service calls in the packet are authorized before the

Encoded naively, a per-principal ACL would not scale as the number packet is aIIoweq to execute. The advantgge of this approach N
of services and principals grows large. To improve scalability, we that once authorized, the packet can run W|thou_t dy”a“.“'.c checks.
change our specification of the ACL in two ways. First, we assume a On_the othe_r hand, t_here are two drawba_cks. First, policies based
set of core services on the node. The ACL then indicates what services, on information that is not known at the time of the early check

above the core services, are available to certain principals. We also are p_recluded, re_ducmg flex!blllty. Second, the static check must
find it convenient to indicate which services should sagbtracted consider all possible execution paths, even ones that may not be

from the default environment for a particular principal; this will executed. As aresult, one static check could be more costly than

be motivated in Section VII-A. Second, rather than map individual a series of dyqamlc ones. .
principals to lists of services, we define sets of principals and sets of'V¢ €mploy the middle ground of these two approaches, using two
services, and indicate mappings between them. This idea is similaf#§cnanisms. First, before it wishes to access a privileged service, a

the use of group permissions in the Unix filesystem: rather than stdt@cket authenticates itself with the node. At this time, the policy is
a list of user ids with each i-node, a single group id is stored insteaﬁﬁ‘,e‘:ked' and those services that the packet is authorized (unauthorized)
which indirectly refers to a set of user id's. to invoke are added to (subtracted from) the packet’s current service

By using a suitably expressive trust management infrastructure, WENPO! table (which at the outset of execution contains just the core
should be able to encode this set-based policy, and then rely on the tﬁ?ﬁ"ces_)' From then_ on, if a packt_et att(_empts to _mvoke a service for
management infrastructure to provide delegation, admit the possibilf{ich it is not authorized, that service will not be in the symbol table
of updating the policy, and to administer it in a distributed, decentrsi'd thus access will be denied. Since PLAN is strongly typed and its
ized manner. We describe the trust management system we use inlgﬁrpreter I_ooks _up services o_n an as-_needed basis, programs are_ In-
implementation, the QCM, and the way that we formulate our polici(??pable of invoking code out3|de.of this updated table. We call this
in Section VI. approacmamespace-based security

Beyond this service-based policy, we might like to specify more gen- Seécond, we allow those services which may require policy-based pa-
eral resource usage constraints, such as bounding CPU and menfi@fyeterization to query the policy manager as necessary during their
use. While we do not consider such constraints in this paper, they h&gcution. For example, the soft state service mentioned above would
been considered in work we have done elsewhere. In particular, @€y the local policy on each attempt to store new soft state, thereby
have found that resource-based policies can be achieved with assist&§¢8mining whether the current principal was allowed to allocate ad-
from lower-level system software, as in the SQoSH [30] and RCAN@tional storage.

[31] systems, which share a software base used to implement manyhere are a number of advantages to this approach. First, only those
PLAN services. SQOoSH uses trust management techniques to corid@fkets that use privileged (noncore) services must pay for authentica-
a virtual-clock based bandwidth allocation system, and RCANE usé@n and authorization; unauthenticated programs may run without any
trust management techniques to control a more general resource rigiformance penalty. This mimics the model of the Internet, which al-
tiplexing scheme. The scheme was implemented both by changedouss normal packets to flow without authentication, while specialized
language runtimes (unnecessary with appropriate use of our scheRgkets, like router control protocol messages and network manage-
and by use of a node operating system, Nemesis [32], to provide feent messages, need to be authenticated. Second, privileged services
source guarantees. that only appear in the policy as access/deny (i.e., they are not sub-
ject to policy-based parameterization), do not require a per-invocation
check. Finally, services whose usage depends on dynamic information
(i.e., the arguments of the invocation, or some other system state) can

While the policy manager will handle the issues relating to policypecify their own policies and invoke the policy manager as needed.
and trust management, we must still decide how to use it most effecas we have described them, policies only apply to PLAN service
tively. In particular, we must decide when authentication and authorizgytine calls, not calls between service routines. However, this func-
tion will take place, so as to maximize flexibility and performance. tionality can be added, as we demonstrated in work on a related system

There is a space of possible decisions, bounded roughly by the @3] puilt on top of ALIEN [34]. Here we used Objective Caml [16]
lowing two approaches. as our service language, and extended its support for namespace-based

1) Perform policy checks at each service-routine invocatieach security (referred to amodule thinnindy Rouaix [35]) to support our

time a service routine is called from a PLAN program, a chegholicies.

C. Mechanism

418 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

In Sections V and VI, we describe the mechanisms used by PLAdbus service will change the associated principal after the authentica-

programs for authentication and authorization. tion phase.
There are two advantages to this approach. One is that a principal
V. IMPLEMENTING AUTHENTICATION signs exactly the piece of code it wants to execute, and may only have

) o _ extra privilege while executing that piece of code. Second, only those
Before a PLAN program may invoke a trusted service, its associatgghgrams that require authorization must pay the extra time and space

principal must be determined,; this is the process of authentication. Alerheads.

thentication in open networks is typically done in a public-key setting gt the approach has three problems. The first is that the authentica-
by verifying a digital signature in the context of some communicatiog,, performed here isne-way authenticatioWhile the node authen-
(e.9., a packet). In PLAN, one obvious link between communicatiqRates the principal, the principal never authenticates the node. This
and authentication is the chunk. Before we describe chunk autheliyiq be a problem if a program is diverted from its intended destina-
cation, we give an overview of the basic principles behind public kg and invoked on a different node. The second problem is that there is

cryptography and digital signatures. nothing guarding against replay attacks. Finally, public key operations
are notoriously slow. We address these problems by using an additional
A. Public Key Cryptography and Authentication authentication protocol developed as part of work on secure active net-

A cryptographic algorithm is “symmetric” if the same key is usedvork envirpnment .(SANE) [31]., [40]. We brieflyl describe SANE next,
to encrypt and decrypt (e.g., DES [36]). Public key systems use +@pd describe how its protocol is implemented in PLANet.
different keys: a private ke, i vq ., and a public keyl(. pi:c, where
Dk privare (Bic, ;. (M)) = M. That is, a message is encrypted by>- SANE
principal’s public key and then decrypted by its private key. Examples A key goal of SANE is to enable a sphere of trust among various
of public key cryptographic systems are RSA [37] and DSA [38]. nodes and/or applications across a distributed, potentially untrusted in-
Public key cryptographic systems have a significant advantage o¥istructure. To achieve this, SANE defines a novel cryptographic au-
symmetric systems in that two principals can exchange a messagethehtication protocol, which allows a principal and a node to authenti-
verify the validity of a digital object, provided they have acquired theate each other and generashared secreand an identifier for that se-
peer’s public key in some trusted manner, without need to engageciet, named SPL” Once the protocol is completed, parties can use the
some real-time exchange. In contrast to symmetric key systems, whefiired secret to authenticate via HMAC-SHA1 [41] digital signatures,
the principals must exchange keys in a confidential manner, public keysa way similar to that used in the IPsec [42] protocols. To prevent
do not need to be confidential. replay, each principal associates a monotonically increasing counter
Digital signatures use a public key system to bind an object towith the shared secret, also included in every transmitted message. To
public/private key pair. To sign the object, the signer computes a fungeal with out-of-order delivery, we use a sliding-window scheme, again
tion of the object and the private kéyThe result of this function is similar to the scheme used in IPsec. The additional state required is
verifiable by anyone knowing the corresponding public key. A valighinimal, e.g., an integer keeps track of the largest sequence number
signature assures the verifier that, modulo bad key management prageived, and a 64-bit mask shows which of the previous 64 packets
tices on the part of the signer or some break-through in forgery, thave been received. (The window size is configurable. Our choice of
signed object was indeed signed by the signer’s private key and thag4t as the default value was based on IPsec). We reflect the use of
has not been modified since that time. HMAC-SHAL in PLAN by altering the signature of authEval to take
Public key certificates (e.g., X.509 [39]) are statements made byaahunk and a tuple consisting of the SPI, the counter, and the HMAC
principal (as identified by a public key) about another principal (alssignature over all of the previously mentioned items.
identified by a public key). Public key certificates are cryptographically The SANE protocol is essentially a variation of the station-to-sta-
signed, such that anyone can verify their integrity, i.e., the fact thgdn protocol (StS) [43], which builds on top of the Diffie-Hellman key
they have not been modified since the signature was created. Theyaygement protocol (DH) [44]; these protocols permit two parties to es-
typically used to bind a public key to some form of identity, such as agablish a shared secret over an untrusted communication medium. We

IP address, a DNS name, an email address, etc. describe these protocols briefly below, and then describe the SANE au-
thentication protocol and how it is implemented in PLANet.
B. Authenticating Chunks The DH algorithm is based on the difficulty of calculating discrete

As described in Section llI-A, a chunk encapsulates some PLAlﬁgarlthms ina f'_mte _fle_lc_i. Each participant agrees to two primes,
) . andp, such thay is primitive mod p. These values do not need to be
code, and can be executed remotely uginBemote or locally using

eval . We have added a service calladbhEval which takes as argu- protected in order to ensure the strength of the system, and therefore can

ments a chunk, a digital signature, and a public key. Here, the signatB?epUbl'C values. Each participant then generates a secret large random

is the result of signing the binary representation of the provided chu'rrﬂgeQeri Bo%getrrl]eratesa(sjgstla;g\qlg ran:l(_)m |nteger:and cor;:pu‘fe&
using the private key that pairs with the provided public keyhEval g~ moc p. He Men sen 0 Allce. Allce generaley as nher farge

: . -
verifies the signature, and if successful, the chunk is evaluated; ot ¢ rr_ldom integer and computEs= g* mod p. She then sends to Bob.

wise, an exception is raised. The authenticated principal is associ Aé)c? and Alice can now each compute a shared sy computing

— VT — Y ; T 3 4
with its chunk during evaluation. Because our PLAN interpreter eval- _nid m(r)]d ﬁ snor'r]: a X bIII?O(vivﬁh re?[I)ectlv?Iy. Thﬁtvaluek g
uates each packet in its own thread, this can be done by associatinggﬂ%nfg rt(i;af(lel ethea DeiffFi)(leJ-Hgllmar?ual Oosr?tr?msfgusuzlce tible to a
principal with that thread’s identifier. Services can determine the chr_an-in-the-migc’ile attack. The attack cg:’an be defeated phowever b
rent principal,” perhaps to query a service-specific policy, by CheCkir{%mbinin Diffie-Hellman with a public key algorithm, such as DSA g
this mapping. Because a caller’s thread identifier cannot be forged, & r(k 9 P y alg '

S B . . SA, as proposed in the station to station protocol.
because the authentication service is itself a separate service, this r?r-] its simplest form. shown in Eig. 3. StS consists of a Diffie-Hellman
vides a safe way to track a principal without worry that some mali- P ' g-2,

exchange, followed by a public key signature authentication step, typ-

3ysually a “summary” of the object is signed, computed through a cryptécally using the RSA algorithm in conjunction with some public-key
graphic one-way hash function. certificate scheme such as X.509 [39]. In most implementations, the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 419

initiator

responder

initiator

Initiator Dj

ffie-Hellman Ppublic vajue

Responder Diffie-Hellman public value

Initiator RS,

A signature anq certiﬁcate(s)

ure and certificate(s)

Responder RSA signat

Fig. 3. Four-message station to station key agreement protocol.

Initiator Diffie~Hellman public vajye

. man publ ic value
Responder Difﬁe;::f:: and certificate(s)

Responder RSA Sig

Initiator

responder

Fig. 4. Three-message station to station key agreement protocol.

2

3

)

~

second message is used to piggy-back the responder’s authentication

information, resulting in a three-message protocol, shown in Fig. 4.
Other forms of authentication may be used instead of public key sig-

natures (e.g., Kerberos [45] tickets, or preshared secrets), but these are

typically applicable in more constrained environments. The short ver-
sion of the protocol has been proven to be the most efficient [46] in

terms of messages and computation.

D. SANE Authentication Protocol in Planet
The SANE authentication protocol is a variation of the StS pro- 4)

tocol. Here we describe the protocol in terms of its implementation in
PLANet, assuming that an application wishes to mutually authenticate

plies the level of synchronization between the two nodes’ clocks.
The remaining fields of the first certificate are:

— sender'sexchange igd

— receiver's address;

— sender’s address.

The exchange id is generated at the sender, and is used to iden-
tify this particular protocol exchange. At the completion of the
protocol it will be used to establish t1&P|, described later. For
a node, the address is represented as a Phéd{ while an ap-
plication’s address is of typgost X port.

When the node receives the message, it verifies the signature on
the certificate with the certificate signer’s key. It then makes sure
the certificate is active and has not expired, and that the receiver’'s
address is the current node.

If the current node wishes to negotiate with the sender, it cre-
ates a bit of state to keep track of the exchange. It stores the
sender’s exchange id, calculates its own exchange id, and addi-
tionally stores the sender’s address and public key. It also cal-
culates its local portion of the shared secret and the “public”
value of this secret. The response certificate includes both ex-
change id’s, the public value, the application’s public key, and
both addresses.

Since the response message is being sent to an application,
rather than a node, it is packaged as a tuple, labeled by a string
“DHmessageTwo,” to be delivered to the application. This tuple
also contains the certificate and its signature.

Application verifies the signature, looks up the exchange id to
find the information stored about this exchange, and verifies that
it is all correct. It then calculates its secret and corresponding
public value, then combines it with the value in the message to
produce the shared secret. The SPI identifying the secret is then
calculated based on the two exchange id’s. This SPI is used to
identify the secret in later messages which have been signed
using the secret. The application’s public value is included
in a message back to the node which is essentially a mirror
of the message just received. As described earlier, this third
message is actually a PLAN program that invokes the PLAN
serviceDHmessageThree with two arguments: the certificate
containing the described information, and a signature of that
certificate using the user’s public/private key pair.

The node receives the final message and repeats the actions taken
by the application for the previous message. No response is sent;
the protocol is complete.

with an active node. Analysis and further details can be found in theEach principal in the exchange now has a secret known only to the

SANE papers [31], [40], and the PLAN documentation [47].

other principal to be used for signing future communications. In our

1) To start, the user application requests authentication with a igplementation, the secret is stored in two tables; one table indexed
mote PLAN node. The application sends a PLAN program toy the peer's address (which includes other information about the pro-
the node with which it wants to authenticate. This program irfocol), and another indexed by SPI. The former table may be used by
vokes the PLAN servic®lmessageOne with two arguments: the application when it wants to send a message to the peer, the latter
acertificate and a signature of that certificate using the usertble is used to look up the SPI found in a signed chunk so that the
public/private key pair. In the current implementation, we usgignature can be verified.

DSA [38] keys for authentication. All certificates used during Note that this authentication exchange is not limited to an application
the exchange are PLAN tupfesrhich begin with the following contacting a node—nodes may contact other nodes and applications

four fields:
— signer’s public key;
— random number (aookig);

— time at which certificate is valid;
— time at which certificate expires.

The latter three of the above fields are are essentially used to
prevent replay attacks. Note that the duration of time fields im-

may contact other applications. The latter is in common practice in the
Internet today, and the former may be used, for example, to establish
trust relations between administrative domains.

VI. IMPLEMENTING AUTHORIZATION

As our policy manager, we have chosen to use the QCM [11], which
provides comprehensive security credential location and retrieval ser-

4A tuple is simply an aggregate data structure, like a struct in C . A tuple thaices for set-based policies. While in this paper we are making use of
contains something of typat and something of typfoat would have type QCM, our architecture is designed so that other policy managers can be

int x float.

420 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

used instead. In particular, we have used the KeyNote [48] trust-mahat K$PKD contains at least the pair of Alice with her public key
agement system in related work [33]. We begin by briefly describin@nd is signed by).

QCM, and then explain how we encode our security policies as QCM . oAt .
policies. K sayg”Alice”, K alice) € PKD.

Such a certificate could be provided before making a query, and would
A. QCM potentially prevent messages from being sent to remote sites. Servers
According to the QCM website may wish to operate in a mode in which no remote queries are sent
A QCM is a server used for the authenticated distribution of automatically, but instead relevant certificates must be provided up
sensitive information over an insecure network. A QCM server front. While more onerous for the user/application, this may prevent
acts like a secure, distributed database: it queries remote QCMi€nial-of-service attacks on the certificate retrieval system.
servers to answer local queries about distributed data, and ensures 1he version of QCM that we use is implemented as a service in
the authenticity of the data by cryptographic means. Moreover, PLAN, and makes use of PLAN packets to perform its communica-
QCM can acceptligitally-signed certificatesssued by remote 1OnS. These packets query the QCM service on remote nodes on be-
servers. When such certificates are submitted along with the local@!f of the QCM service of the querying node. Interestingly, the QCM
query, queries to the remote servers are short-circuited. The manService can itself be privileged (and thus subject to policy) as long
agement of queries and certificates is completely automatic and®S there are no cycles in the policy specification. Certificates may be
transparent to the user. Applications such as directory servicesP@ssed as additional argumentsiohEval, or may be obtained during
public key distribution, and distributed access control lists are di- N°de-node authentication.
rectly programmable in QCM, and QCM has a formal semantics
and correctness guarantees.
QCM manages data organized in sets, which can be built up fromWe use QCM sets to define both nhamespace-based security poli-
constants, like strings, integers, and keys, and from other sets, usirgs and per-service parameterizations. Using QCMs location-specific
set union. For example, a QCM server could define the set PKD ttd#finitions and certificates should allow such policies to scale as the

B. Implementing Service Policies in QCM

associates a user’'s name with his or her public key as follows: number of users, services, and nodes in the network grows.
) o)) Namespace Control PoliciesEollowing our general policy require-
PKD = {(“Alice”, Kalice), (“Bob”, K bob) } ments discussed in Section IV-B, our QCM namespace control policy

Set b ied by b . i hensi F | s'%ecifies an ACL in terms of the services to be added to or subtracted
€l can be queried Dy Dy UsIng Set COMPreNEensIons. =or EXample ¢'lig, e gefault service-environment (i.e., the core services) by asso-

following query resolves AliceKeys to the set that contains all of th(‘talating certairthickenandthin sets of services with a principal or set

keys associated with Alice in PKD. of principals; the former defines services that should be added to the
AliceKeys= {k| (“ Alice”, k) € PKD}. service symbol table and the latter defines services that should be sub-
: tracted. Once a principal has been authenticated, QCM is queried and

Simple set membership can be performed creating a singleton set if #tlsymbol table is modified as directed; the modified symbol table is

only if membership conditions hold, as in used for the duration of the authenticated chunk’s evaluation. As an
_ _ optimization, we cache the modified table for future reference, thus
{“yes'| Kalice € AliceKeys} avoiding repeated invocations of QCM and reconstructions of the table

. .) L as long as the policy has not changed.
This query will resolve to the singleton set containing “yes” if the vari- 4 following is an example QCM ACL that considers two princi-
able AliceKeys contains the given key; it will resolve to the empty S%Tals P andps:

otherwise.
QCM set definitions are location-specific. That is, local namespaces pl =(pl’s public key);
are made global by prepending them with location/owner of the names-
pace:K $z is the global name of the local namen K's namespace,
and is pronounced X' s x.” Here, K refers to the public key of a prin-

plsves ={“print”};
p2 =(p2's public hboxkey);

cipal that holds data at its home server. Global names can be referred p2.sves ={“thisHost” }
to from any location. For example, Alice may define D by ad- acl ={(pl,plsves, {}),
ditionally incorporating Carl'®?KXD, which is defined by his remote

QCM server: (p2, union(p2_sves, pl_sves), {})}.
In addition to identifying the keys gf: andp2, we define two sets,
pl_sves andp2_svces, which specify the respective thicken sets of those

. . . ___principals in the ACL. The ACL itself is defined by the variahld,
Partof the novelty of QCM. Is that querying a set_W|th r_emotely-deflne hich is a set of three-tuples. The first tuple indicatg's environment
components can automatically result in a queries being sent to remcl%e . . S I .

sites. For example, if the authorization service l§nalice makes a should be thickened following authentication py.sves, while the
membership test on SBIKD, QCM will automatically quenyk carl second says that s environment should be thickened by bpthsves

. . o .. andp2_sves. In both cases, the thin sets are empty, specified |
if necessary. However, QCM is optimized to reduce communicatiqn pa-sves PY, sp dpy

head by bei tive: . b ved b ote that in this case, the first element of the three-tuple is an indi-
overnead by being Conservalive: Some queries can be resolved by Ugig,,, principal; more generally, it can be a set of principals.
partial, local information only. For example, the membership test for Policy-Based Parameterizationtn addition to specifying names-
Alice’s key, above, would not require a remote query to Carl's site. pace-based policies, we can specify per-service policies to be used by

QCM also supports th_e use aertificates which are S|g_ned the services themselves, allowing policy-based service parameteriza-
assertions about set relationships, and can be used to avoid re ofe

; N o . Such policies are specified as a set identified by the service’s
queries. For example, the following illustrates a certificate that asserts .
name, whose elements are two-tuples that contain:

Shttp:/iwww.cis.upenn.~edu/ gcm/. 1) principal or set of principals (as in the ACL);

PKD = {(“Alice” K alice), (“Bob”", K'bob)} union K carl$ PKD

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 421

2) labeled record of length 1, with the label corresponding to a ser- : K\j
vice-dependent parameter name (where multiple parameters per :
service are reflected as multiple records).
As an example, consider the PLANsident State package which
provides user-defined soft state. The resident state policy specifies how
much state particular principals are allowed to keep. For example:

def =(default user's key);
resident ={(def, (amount = 100)), Trusted Network

(pl, (amount = 1000))}

1
1
1
1
1
1
1
1
:
' Untrusted Network

Fig. 5. Trusted network behind a firewall.

This policy indicates that unauthenticated users (which are automat-
ically given thedef key) are allowed to have at most 100 words ofially harmful services are removed. The packets may then be evaluated
information stored on the node at any given tifmahile principalp, inside the trusted network using only those services. While this may
may store up to 1000 words of information. This policy is enforced iseem to contradict our premise, stated in Section II-B, that the default
the resident state implementation itself by calling QCM on each stogevironment should consist only of “safe” services, in the context of a
attempt. trusted intranet we would expect that the default privilege allowed to
Scaling Policies: An interesting question is how this infrastructurdocal packets exceeds that of foreign packets. Furthermore, we would
should be used to deploy services and update policies over a lapgéwant to impose the overhead of authentication and authorization on
administrative domain. In our prototype implementation, new servid¢ecal packets in the general case.
routines can be installed using the service routimetallServices, To thin the environment of foreign packets, our firewall associates
which dynamically loads some provided code into the router. This séhem with aguestidentity that has the appropriate policy. To do this,
vice should obviously be privileged, requiring authorization to use. Oitlee firewall F wraps the packet’s chunkas follows:
benefit of the PLANet architecture is that interesting protocols or mech-
anisms (such as soft-state, unreliable packet delivery with fragmenta-
tion/reassembly, etc.) can be encoded using a few general services, witfhis wrapper first exhausts the packet’s resource bound by calling
the majority of the logic being coded as PLAN [1]. As such, we expetite servicezeroRB, thus preventing it from sending any additional
that services will be added relatively infrequently, which implies thagackets. It then evaluates the packet’'s chunking the guest identity,
security policies will not change often (since the number of privilegess indicated by the signature, for the duration of the evaluation. This
users for a given domain is likely to be relatively static). Given thisneans that if attempts to call any services that have been thinned, the
one way to update the QCM policy for each node would be to alloeall will fail.
local policies to refer to a single global policy that resides on anotherThis scheme implies that the firewall signs each packet, using the
node in the local administrative domain. Thus, when this node’s poligyest’s identity, and provides the signatureatghEval. In order to
changes, those changes are reflected in all of the policies that refenake this process as fast as possible, the firewall would authenticate
it. For more fine-grained changes, we can augment local policy wittith hostsA, andB ahead of time using the guest key.

fun wrapper(c,sign) = (zeroRB();authEval(c, sign)).

certificates provided by authenticated programs. However, because the guest environment will provide less priv-
ilege than the default environment, we should be able to avoid the
VII. A PPLICATIONS cryptographic cost: any authenticating principal whose environment is

) . _thinned and not thickened can be “taken at its word” [29]. We could
As a proof-of-concept of our security architecture, we have des'gnggtend our framework to allowuthEval to take a public key rather

a_nd 'mp"?me”ted aactive fw_ewallu_smg PLANet,_as well as am?“"? than a signature, accepting the identity of the key if and only if the
virtual private networkIn this section, we describe both appl'cat'on?)rincipal whose key it is has at most a thin set in the node policy (as
and present some performance measurements. is the case for the guest). In Section VII-C we present results for the
more naive case (which approximates the performance of the VPN we
describe next), and can derive the performance for the more optimized
In today’s Internet, firewalls are used to prevent the entry of potenase.
tially harmful packets arriving from an outside, untrusted network. This How we choose to specify the guest’s thinned environment may be
is visualized in Fig. 5. When packets can be active, this simple approagtomplished in a number of ways. The simplest way would be specify
can be too limiting. the thinned environment statically, at each hdsind B. However, a
Firewalls typically filter certain types of packets, for example TCknore uniform and manageable approach would be that the guest iden-
connection requests on certain port numbers. Usually such packetstiayds known locally, but its environment is defined at the firewall. The
easily identified by their protocol headers. In PLANet, and indeed Bualient part of our host QCM program is shown in Fig. 6.
any active-packet system, there is no quick way to determine a packet'he thin set is defined by the variablguest_thinned_serviceat
functionality without delving into its contents, which would be a sigprincipal firewall. Notice that thethickenset is empty. To short-cir-
nificant performance bottleneck. Therefore, unless we wish to filter octiit remote queries, the firewall provides certificates during node-node
all active packets (which could be the case when under a denial-of-smuthentication that indicate the contents ofgitest_thinned_services
vice attack) we need an alternate way of stopping those packets whiahiable. Should the firewall policy be updated after initial authentica-
may be potentially harmful. tion, the firewall would push certificates to the end host to reflect this
Our approach is that rather than filter packets at the firewall, we ashange.
sociate with them ghinnedservice environment in which any poten-
B. Active Virtual Private Network

A. Simple Active Firewall

SNote that because all unauthenticated principals sharel¢hekey, this i . . .
means that those principals can do litle damage to the node, but can den* Virtual private network (VPN) is essentially two or more trusted
service to other unauthenticated principals. networks connected by secure “tunnels” across untrusted links. These

422 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

firewall = <firewall’s key> packet sent signed verified received
guest = <guest’s key> L L
acl = {

({ guest }, {},

firewall$guest_thinned_services)

Fig. 6. Host QCM program.

Untrusted Network Trusted Network I1

tunnels are made secure by encryption, such that when a packet lea\ Trusted Network I
one trusted network and enters the tunnel it is encrypted, and then is
decrypted upon exiting the tunnel and reentering a trusted network Fig- 7- VPN consisting of two trusted networks connected by a secure tunnel.
the Internet, IPSec [42] may be used to implement VPNSs.

This idea is depicted in Fig. 7. Here we have two trusted network:
consisting of noded, B, andP’1 for network |, and”, D, andPP2 for 3
network I, connected by a secure tunnel across an untrusted netwa § 3'
A packet originating imetwork Idestined fometwork Ilis encrypted
at its firewall P1, sent across the untrusted network, decrypted at thr& 25
peer firewall P2, and then finally delivered to its ultimate destination
in network IL

We can implement this idea in PLANet as follows. The VPN would
be set up by having nod€3l and P2 mutually authenticate, resulting 03 004
in a shared secret. Say that notisends a packet to node. As it exits overall firewall host
network | the firewall P1 intercepts, encapsulates, signs, and forward
the packet to the other netwofkin particular, P1 first extracts the Fig-8. Ping elapsed time with and without the firewall. The left bar of each

- , . air is with a 0-byte payload, and the right bar is for maximally-sized (1500
representation of the packet’s chunk (call it c) and creates a tunnel s) packets.
chunk|fwd|(c, D), sign, whereD is the original destination address

within the remote network, and fwd refers to the following PLAN code)])))
added to the packet: experimental setup, we daisy-chain connect three machines with 100

Mbit Ethernet, configuring the middle machine as the active firewall.
fun fwd(c : chunk, dest : host) = Each machine is a 300 MHz Pentium Il with 250 MB of memory run-
OnRemote(c, dest, getRB(), defaultRoute) NiNG Linux2.0.30. PLANet runs directly on top of Ethernet.
Time Overhead:As described in Section VII-A, the addition of the
Next, it signs the tunneling chunk using the secret it shares wifinewall affects the packet processing time on the router and on the host
P2, and replaces the packet’s original chunk c with the churikitiating the “ping.” While a router would normally just forward any
|authEval|(|fwd|(c, D), sign) where sign is the newly created packet it receives, the firewall has to additionally sign and encapsulate
signature. Finally, it alters the destination of the packet t&’Beather packets destined for the trusted network. On the initiating host, normal
the D, and sends it onward. interpretation of the “reply” packet is further burdened by the need to
When the packet arrives at the peer firew2dl, it will perform the decapsulate, verify the firewall’s signature, and thin the environment.
authEval. This will grant the packet the full privileges of the remote Fig. 8 illustrates the elapsed time of ping with and without the fire-
network, with which it sends the original chunk c to the originally inwall. The left figure is the end-to-end time, in which the black bar is
tended destinatio®. SinceP2 is acting as a firewall described above the unmodified ping and the white bar is the overhead imposed by the
had the packet not authenticated in this way it would have had fieewall. The right figure similarly illustrates salient component costs
privileges reduced upon entering the remote network. This illustraties the end host and the firewall with the additional overhead. For the
nicely how our authentication and authorization framework can foremd host, the time consists of evaluating ping’s “reply” packet, while

4+
E [0 +Overhead
[J+Firewall 4| +Crypto

B Ping

me

14

Elapsed

the common ground of the dual notions of firewall and VPN. for the firewall, this is the cost of forwarding the packet. The portion
of the overhead which may be attributed to signing (at the firewall)
C. Performance Analysis and verifying (at the end host) is singled out. In both figures, times are

We analyze the performance of our active firewall by comparing@ven for 0-byte payloads and maximally-sized payloads. Notice that
filtered and nonfiltered ping. In both cases, the initiating host lies € overhead added to the component costs, which are the white and
the trusted network and is pinging a node in the untrusted netwof@y bars in the figure on the right, add up to the difference in elapsed
We do not present performance measurements for our VPN applicatflme for the overall cost, which are the white bars in the figure on the
because its results are essentially the same as the firewall. left. o)

The PLAN code for ping is illustrated in Fig. 2. Our analysis ex- 1he base ping times for 0-byte and maximal payloads are 2.13 and

amines the additional cost to elapsed time and packe® k. our 3.06 ms, respectively; the firewall adds 37% and 32% of respective
overhead to these times (raising them to 2.91 and 4.03 ms). By exam-

"Normally, a VPN would encrypt, rather than sign, outgoing packets. Thining the component costs, we can see that of this overhead, between
can be done as well in our framework given an encryption service that requifg® and 1/2 is attributable to signing and verification, based on the

authorization before it may be used. However, we elide this detail to keep th .) . .
presentation simple. pgcket size. For the firewall, the remaining overhead is due to encap-

8The reader may note that the numbers reported here are slightly diﬁergmat'on costs (which requires extra marshalling and copying), while

from those reported in [1]; this is due to changes made to the PLANet impk&' the end-host itis due to decapsulation and the additional interpreta-
mentation. tion cost of the wrapper code. The time to thin the environment at the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003 423

No payload Maximum payload pointers to remote objects. Since all PLAN values (including chunks)
— Pac;‘g‘;‘ze °V‘:Z“d I{Zl(‘)’“g °V":2fad areimmutablethe contents of a remote reference may be safely cached
Plffg;mfaﬂ 181 B 126% 1319B | 68% without the need for a coherence protocol. In the case of our firewall,

the wrapper function code could reside at the firewall, while being
Fig. 9. Ping reply packet overhead with and without the firewall. IIIustrate_%aChed at the various hOStSf in the trusted net‘_"/orl_(- thus reduc!ng the
the additional cost of encapsulation and signing of foreign packets. Note that tRepacket space costs. The issue of code caching is discussed in more

signature itself is 12 bytes long, thus the maximum payload intfiércwall
case is slightly smaller.

end host is negligible because we cache the thinned environment. If we
eliminate the cryptographic operations, by the means described earlier,

detail in [8].

VIII. RELATED WORK

we reduce the end-to-end ping times to 2.58 and 3.41 ms for 0-byte an@€curing active networks [50] has demanded three major research
maximal payload, respectively. This reduces the firewall-induced ovdRrusts.

head to 20% and 11%. Note that the cryptographic operations cannotl)
be removed in the case of the VPN.

Notice that the graph depicts verification (which in the figure is the
cryptographic component cost for the host) as twice as expensive as
signing (which is the cryptographic cost for the firewall). This is due
to two related points: we unmarshal PLAN prograeagerly and in
order to verify a PLAN value (that is, the original packet’s chunk) using
authEval, that value must first be marshalled into a binary format.
These two points combine to mean that we unmarshal the encapsulated
chunk when the packet arrives, only to remarshal it when performing
the signature verification. A smarter implementation would unmarshal
chunkslazily, thus avoiding this extra re-marshalling cost and thereby
equalizing signing and verification time.

There is room for further improvement. The cost of the cryptographic
operations (for cases when they are actually needed) could be reduced
through parallelism (to improve throughput) and special-purpose hard-
ware (to improve both throughput and latency). Furthermore, the cost of
PLAN interpretation is fairly high; a smarter interpreter would improve
both the cost of the basic ping as well as the encapsulated version. In
fact, we have recently been developing a compiler from PLAN to the
low-level packet language SNAP, resulting in significantly improved
performance [9], [28].

Space OverheadThe firewall also imposes a space cost due to the
extra code and signature that is attached to the incoming packets Fig. 9
illustrates the basic space overheads, with and without the firewall.

The no-payload reply packetis 80 bytes (consisting of code and fixed
fields), while the encapsulated version is 181 bytes, for an overhead
of 126%. Of the 101 bytes of overhead, 12 bytes are due to the signa-
ture. Since the overhead is fixed, its impact is reduced with packet size.
Looking at the maximally-sized packet, we see that this 101 bytes only
adds 6.8% of overhead above the 5.3% already imposed by the ping
program.

A particular concern is that by adding code to the packet as it passes
through the firewall we might exceed the link layer MTU and be forced
to fragment the packet. In the pathological (though probably not un-
common) case, each packet received by the firewall will be just smaller
than the MTU and thus have to be fragmented after addition of the
wrapper code. This problem also appears in the IPsec context, where iB)
remains open to further research. One advantage that we have over IP is
that in PLANet we may easily send PLAN programs to customize the
host processing (i.e., as a more expressive ICMP). It would be worth
examining how to best express in PLAN a mechanism similar to “Path
MTU Discovery” [49]. Another possible approach would be to com-
press the incoming packet, adding a wrapper to perform the decom-
pression upon arrival at the end-host.

A concern about the approach of PLANet in general is the space
cost of carrying the code in the packet. To mitigate this overhead, we
have considered ways in which the participants in a protocol may cache
code rather than always transmitting it with the packet. One approach
is to add language-levedmote-referenceshich may be thought of as

2)

Firstis the use of programming environments to offer safety and
security guarantees, for example the careful design of PLAN and
SNAP for safety, the use of module-thinning in ALIEN, and the
capability-like namespace isolation scheme ANTS achieves with
its MD5 hashes of active packets.

Second is the extension of the local guarantees achievable within
a programming environment to the collection of nodes com-
prising a network. While PLAN or SNAP, as examples of do-
main-specific languages, provide such guarantees irrespective of
location, they cannot make such guarantees when remote ser-
vices are invoked. Cryptographic techniques can extend local
safety properties by providing capability-like authorizations for
services, as was done in extending ALIEN’s protection to remote
systems in SANE, and similarly in SANTS [51].

The SANE [40] architecture is part of the SwitchWare Project
[5] at the University of Pennsylvania. SANE provides the ability
to securely bootstrap [52] an active node, and authentication and
naming services for code that is loaded. The main differences
between this work and SANE are that 1) we can depend on a
provably safe language (PLAN) for those packets that do not re-
quire special privileges, and 2) we have scalably built a means
for controlling service usage via trust management. Furthermore,
programming constructs available in PLAN (e.g., chunks) con-
siderably ease the task of implementing security abstractions.
SANE was developed in conjunction with the ALIEN architec-
ture [34], which (like us) employs namespace-based security and
strong typing. Taken together, these techniques prevent active
code from calling functions or accessing data even in a shared
address space. Similar approaches have been taken in [20], [53],
[54]. Other language-based protection schemes can be found in
[20]-[24].

SANTS, which uses an authorization scheme similar to ours,
further considers how to handle changes made to the contents of
cryptographically signed packets as they traverse the network.
However, as Alexander showed in his Caml-based architecture
[31], the performance penalty of frequent cryptographic opera-
tions can be substantial.

Third is support for multithreaded operation of active networking
systems in ways that provide resource protection. This work has
been centered around the lowest levels of the DARPA active net-
work architecture, the so-called “Node Operating System” [55],
examples of which include RCANE [56], JanOS [57], AMP [55],
and Scout [58]. These systems manage resources which may be
used by a safe programming environment in service invocations,
including management of resources used concurrently by mul-
tiple programming environments.

For example, the extensions of SANE described in the paper
by Alexandeet al.[31] to manage soft real-time streams showed
that a SANE-based front-end could provide access control for
services and resources with associated time bounds. This was

424 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

implemented with a low level scheduler in the supporting opedelivery, require no potentially unsafe services, and therefore, should
ating system, and would enable, for example, supporting “qualibot require authentication. The second advantage, which follows from
of service”-like features such as priorities and construction dfie first, is that security analysis, perhaps including validation and
differentiated-service network architectures. A particularly inteserification, can be focused on a small set of service routines rather
esting coupling with the work reported here would be bandwidttnan all possible active programs. That said, it is an important avenue
control at the active firewall authorized by credentials. of future work to find ways to automatically certify services as safe,
Our use ohuthEval resembles Java stack inspection (JSI) [59], [60Fo that they do not need to be protected by a trust-based policy. Recent
In our case, code is afforded the privilege of the principal that signswiork by Moore [64] characterizes what constitutes a safe service in
for the duration that it runs. JSI refines this idea by examining the céifjht of the model discussed in Section IlI-C. proof-carrying code
stack and giving the code the privilege of the least privileged principg5], [66] is one way to certify safety in low-level code, so we would
found on the stack, except when more trusted code explicitly widens thepe its techniques could ensure safety as Moore defines it. A related
privilege of its callers by invokingnablePrivilege. It would be inter- certification technique uses dependent types to prove that services
esting to apply the same approach to nestiediEval calls to provide consume a bounded amount of time and/or space [67].
the same sort of security. While our system uses both programming environment-based safety
The SPIN [20] Project investigated the construction of extensibénd cryptography-based techniques to support use of services in net-
operating system kernels, with the idea that type-safe Modula-3 caderks (and is compatible with any NodeOS approach), the novel archi-
could be loaded into an operating system for reasons of performancésatural contribution is the combination of enforcement mechanisms to
access to resources. SPIN’s dynamic binding infrastructure [61] prdlow policy-writers to balance flexibility with performance. In partic-
vides mechanisms with which one could implement our approachutar, we support both namespace-based security to add to or subtract
service security. In particular, loaded modules can be linked againdt@m a packet's default service namespace, and policy-based parame-
restricted interface, and calls to sensitive functions can be interposedzation to allow services to formulate their own per-principal usage
with “guards,” which could perform policy-based parameterizatiompolicies. Namespace-based security can be enforced cheaply at authen-
Grimm and Bershad [62] focus on separation of policy and enforcéeation-time, while policy-based parameterization requires per-invo-
ment, and control abstractions crossing protection domains with redation checks. We have sought to enable scalability by carefully en-
rections of procedure or method invocations. SPIN’s extensibility &bding the namespace-based policy, and by using a decentralized trust
targeted at a workstation environment rather than the network servinanagement system [3].
enhancement environment of PLAN, and is thus less concerned withiThe active firewall and active VPN are novel applications resulting
scalable, distributed policigdhan Secure PLAN. SPIN and other apfrom our approach. The firewall uses PLAN packets’ activeness to
proaches to language-based security, like the J-Kernel [22] and Kpfetect a trusted environment from untrusted computations. We have
feOS [27], are quite concerned with resource control of untrusted codemonstrated that our architecture addresses possible threats while
The resource-limited nature of PLAN allows us to avoid the thorny istill preserving the flexibility and usability of the system, agtively
sues that arise here. modifying the packet behavior, under control of a trust management
Perhaps the most closely related architecture, albeit one instantigteticy, rather than simply making a permit/deny decision as in a
with traditional operating systems mechanisms such as tagged objectditional firewall architecture. Our experimental implementation has
(where the tags are associated with permissions) is the “Sub-Operatiegnonstrated such an approach can have acceptable performance.
System” (SubOS) approach of loannidé,al. [63]. In that system, Our applications also make a novel use of active networking
there is fine-grained access control of arriving code under control fchnology. The system exploits the ability of PLAN to manipulate
a nonremovable identifier attached to objects (such as code and d&tanks” to build a far more flexible security gateway for network
that arrive over a network. Three key distinctions in our system, igervices. In particular, the combination of trust management policy
cluding the active firewall, relative to SubOS are 1) the active fireend namespace security allows extremely fine-grained control of
wall actively rewrites code to reflect restrictions on it, rather than apermitted operations for remote users. One might view the active
taching tags which must be further resolved against a privilege setfizgwall as providing a selectable continuum of access to services
the rewrites are performed for any and all trusted hosts, ensuring thatather than merely simple actions suchpass, drop or log. Itis
improperly configured element cannot mistakenly execute active codleis in the spirit of active networking: flexibility and security, with
considered dangerous; and 3) privilege can be increasddcreased high performance.
in our system, unlike the SubOS, where privilege is always decreased
relative to the executing user, the main goal being the control of locally
executed active content. ACKNOWLEDGMENT

The authors would like to thank S. Nettles, J. Moore, and T. Jim for
IX. CONCLUSIONS helpful discussions concerning this work, and the anonymous referees

The Secure PLAN architecture couples limited but safe actif@r Providing useful feedback. We would also like to thank T. Jim for
packets with general-purpose, but potentially unsafe service routin@&Vviding the PLAN-based implementation of QCM.
The architecture has two major advantages. First, packets that do not
require the computational cost of authentication and authorization
do not pay it. This is because all potentially unsafe computation is
relegated to the service level, which can be governed by trust-man{1] M. Hicks, J. T. Moore, D. S. Alexander, C. A. Gunter, and S. Nettles,
agement techniques. Our experience is that the majority of active “PLANet: An active internetwork,” irProc. 18th IEEE Computer Com-

- : . 3 munication Societ INFOCOM Confl999, pp. 1124-1133.
packet programs, from diagnostics suchpasg to best-effort data [2] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles, “PLAN:

A packet language for active networks,” froc. 3rd ACM SIGPLAN
9In fact, our results include almost all of the future work suggested in the Int. Conf. Functional Programming Language$998, pp. 86-93.
Grimm and Bershad paper, who foresaw the need for policy specification lan-[3] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
guages, distributed authentication, and high performance for access control op- ment,” inProc. 17th Symp. Security Privacios Alamitos, CA, 1996,
erations. pp. 164-173.

REFERENCES

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

[4]

(5]

(6]

(71

(8]

[9]

(20]

[11]

(12]

[13]

(14]

[15]

[16]

[17]
(18]

[19]

(20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. |. Wetherall, and[29]

G. J. Minden, “A survey of active network researctFEE Commun.

Mag. pp. 80-86, Jan. 1997.

D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. D. Keromytis,

J. T. Moore, C. A. Gunter, S. M. Nettles, and I. M. Smith, “The switch-

ware active network architecturelEEE Network Mag.vol. 12, pp.

29-36, 1998.

D. |. Wetherall, J. Guttag, and D. L. Tennenhouse, “ANTS: A toolkit for

building and dynamically deploying network protocols,” in Proc. IEEE [32]

Conf. Open Architectures Network Programming, Los Alamitos, CA,

Apr. 1998.

D. Wetherall, “Active network vision and reality: Lessons from a cap-

sule-based system,” iroc. 17th Symp. Operating Systems Principles [33]

Kiawah Island, SC, Dec. 1999, pp. 64—79.

M. Hicks, J. T. Moore, D. Wetherall, and S. Nettles, “Experiences with

capsule-based active networking,” in DARPA Active Networks Conf.

Exposition, May 2002.

J. T. Moore, M. Hicks, and S. Nettles, “Practical programmable

packets,” in Proc. 20th IEEE Computer Communication Society

INFOCOM Conf, Apr. 2001, pp. 41-50.

E. L. Nygren, “The Design and Implementation of a High-Perfonnance

Active Network Node,” M.A. thesis, Mass. Inst. Technol., Cambridge,

MA, 1998.

C. A. Gunter and T. Jim, “Policy-directed certificate retrieva@gdftw.-

Pract. Exp, vol. 30, no. 15, pp. 1609-1640, 2000. [37]

J. loannidis and S. M. Bellovin, “Implementing pushback: Router-based

defense against DDoS attacks,” in Proc. Network Distributed Systen{38]

Security Symp. (NDSS), Feb. 2002.

A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure overlay[39]

services,” inProc. ACM SIGCOMM ConfAugust 2002, pp. 61-72.

S. Savage, D. Wetherall, A. Karlia, and T. Anderson, “Practical network[40]

support for IP traceback,” iRroc. ACM SIGCOMM ConfAug. 2000,

pp. 295-306.

D. Dean, M. Franklin, and A. Stubblefield, “An algebraic approach to IP [41]

ttaeeback,” ifProc. Network Dsitributed System Security Symp. (NDSS)

Feb. 2001, pp. 3-12. [42]
[43]

[30]

(31]

(34]

(35]

[36]

X. Leroy. (2002) The Objective Caml System, Release 3.05. Instinit
Nat. Rec. Informntiqgue Automatique (INRIA). [Online]. Available:
http://caml.inria.fr

R. Milner, M. Tofte, R. Harper, and D. MacQue€eFhe Definition of
Standard ML (Revised) Cambridge, MA: MIT Press, 1997.

J. Gosling, B. Joy, and G. Steel@he Java Language Specifica-
tion. Reading, MA: Addison-Wesley, 1996.

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang,
“Cyclone: A safe dialect of C,” ifProc. USENIX Annu. Technical Conf.
Monterey, CA, June 2002, pp. 275-288. [46]
B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Pitsczynski, D. lietket,

S. Eggers, and C. Chambers, “Extensibility, safety and performance in
the spin operating system,” Proc. 15th Symp. Operating Sytems Prin- [47]
ciples Dec. 1995, pp. 267-284.

J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, “Sharing[48]
and protection in a single-address-space operating syst@h'Trans.
Comput. Systvol. 12, no. 4, pp. 271-307, Nov. 1994.

C. Hawblitzel, C. Chang, and G. Czajkowski, “Implementing multiple [49]
protection domains in java,” ifProc. 1998 USENIX Annu. Technical
Conf, June 1998, pp. 259-270.

J. Y. Levy, J. K. Ousterhout, and B. B. Welch, “The Safe-Tcl security
model,” in Proc. 1998 USENIX Annu. Technical Corifune 1998, pp.
271-282.

J. Moore. (1998) Mobile Code Security Techniques. Univ. Pennsylvania,
Philadelphia. [Online]. Available: http://www.cis.upenn.edu/~jonm/pa- [52]
pers/cis700.ps

B. Schwartz, W. Zhou, A. W. Jackson, W. T. Strayer, D. Rockwell, and
C. Partridge, “Smart packets for active networks,Piroc. IEEE Conf.
Open Architectures Network Programmjri99, pp. 90-97.

M. Hicks. (1998) PLAN System Security. Dept. Comput. Infornm. [54]
Sci., Univ. Pennsylvania, Philadelphia. [Online]. Available: http:
Iliwww.cis.upenn.edu/~switchware/papers/plan _security.ps

G. Back, W. C. Hsieh, and J. Lepreau, “Processes in kaffeOS: Isolation55]
resource management, and sharing in java,” in 4th USENIX Symp. Op-
erating Systems Design Implementation, San Diego, CA, Oct. 2000.

M. Hicks, J. T. Moore, and S. Nettles, “Compiling PLAN to SNAP,” in
Proc. 3rd Int. Working Conf. Active Networksl. 2207, I. W. Marshall, [56]
S. Nettles, and N. Wakamiya, Eds., Oct. 2001, Lecture notes in Com-
puter Science, pp. 134-151.

(44]

[45]

[50]

[51]

(53]

425

J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systemsProc. IEEE vol. 63, pp. 1278-1308, Sept. 1975.

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, S. Muir, and J. M.
Smith, “Secure quality of service handling (SQoSHEEE Commun.

vol. 38, pp. 106-112, Apr. 2000.

D. S. Alexander, P. B. Menage, A. D. Keromytis, W. A. Arbaugh, K.
G. Anagnostakis, and J. M. Smith, “The price of safety in an active net-
work,” J. Commun.vol. 3, no. 1, pp. 4-18, Mar. 2001.

I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers,
R. Fairbairns, and E. Hyden, “The design and implementation of an op-
erating system to support distributed multimedia applicatiof<EE J.
Selected Areas Commupwiol. 14, no. 7, pp. 1280-1297, Sept. 1996.

K. G. Anagnostakis, M. W. Hicks, S. loannidis, A. D. Keromytis, and J.
M. Smith, “Scalable resource control in active networks,Pioc. 2nd

Int. Working Conference Active Network®l. 1942, H. Yashuda, Ed.,
Oct. 2000, pp. 343-358.

D. S. Alexander, “ALIEN: A Generalized Computing Model of Ac-
tive Networks,” Ph.D. dissertation, Univ. Pennsylvania, Philadelphia,
1998.

F. Rouaix, “A web navigator with applets in caml,” Proc. 5th Int.
World Wide Web Conf. Compater Networks Telecommunications Net-
working, vol. 28, May 1996, pp. 1365-1371.

“Data Encryption Standard,” U.S. Dept. Commerce, Tech. Rep.
FIPS-46, 1977.

“PKCS #1: RSA Encryption Standard,” R. Laboratories, version 1.5 ed.,
1993.

“Digital Signature Standard,” U.S. Department of Commerce, Tech.
Rep. FIPS-186, 1994.

“X.509: The Directory Authentication Framework,” Int. Telecommun.
Union, Geneva, Switzerland, CCITT, 1989.

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith, “A
secure active network environment architecture: Realization in switch-
ware,” IEEE Network Mag.vol. 12, pp. 37-45, 1998.

H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” IETF, Tech. Rep. RFC 2104, 1997.

S. Kent and R. Atkinson, “Security Architecture for the Internet Pro-
tocol,”, IETF Tech. Rep. RFC 2401., 1998.

W. Diffie, P. van Oorschot, and M. Wiener, “Authentication and authen-
ticated key exchangesDesigns, Codes Cryptageol. 2, pp. 107-125,
1992.

W. Diffie and M. Hellman, “New directions in cryptographylEEE
Trans. Inform. Theoryol. IT-22, pp. 644—-654, Nov 1976.

S. P. Miller, B. C. Neuman, J. |. Schiller, and J. H. Saltzer, “Kerberos
authentication and authorization system,” in Project Athena Technical
Plan, Dec. 1987, Section E.2.I.

L. Gong, “Efficient network authentication protocols: Lower bounds and
optimal implementations Distrib. Comput, vol. 9, no. 3, pp. 131-145,
1995.

M. W. Hicks. (2001) PLAN Security Guide. [Online]. Available:
http://www.cis.upenn.edu/~switchware/PLAN/ docs-ocaml/security.ps
M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromytis, “The role of
trust management in distributed systems security,Sécure internet
Programming New York: Springer-Verlag, 1999, vol. 1603.

J. Mogul and S. Deering, “Path MTU Discovery,” IETF, Tech. Rep. EEC
1191, 1990.

(1998) Security Architecture for Active Nets. [Online]. Available: http:
Ilwww.ittc.uksns.edu/ansecure/0079.html

S. Murphy, E. Lewis, R. Watson, and R. Yee, “Strong security for active
networks,” inProc. IEEE Conf. Open Architectures Network Program-
ming, Apr. 2001, pp. 63-70.

W. A. Arbaugh, A. D. Keromytis, D. J. Farber, and J. M. Smith, “Au-
tomated recovery in a secure bootstrap proces$tac. Network Dis-
tributed System Security Symblar. 1998, pp. 155-167.

X. Leroy and F. Rouaix, “Security properties of typed appletsSéture
internet Programming New York: Springer-Verlag, 1999, vol. 1603.

T. von Eicken, “J-Kernel a capability bated operating system for java,”
in Secure Internet Programming New York: Springer-Verlag, 1999,
vol. 1603.

L. Peterson, V. Gottlieb, M. Hibler, P. Tullman, J. Lepreau, S. Schwab,
H. Dandekar, A. Purtell, and J. Hartman, “An OS interface for active
routers,” |EEE J. Selct. Areas Commuyrvol. 19, pp. 473-487, Mar.
2001.

P. Menage, “RCANE: A resource controlled framework for active net-
work services,” inProc. 1st Int. Workshop Active Network®|. 1653,

S. Covaci, Ed., Springer-Verlag, June 1999.

426 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 33, NO. 3, AUGUST 2003

[57] P. Tullmann, M. Hibler, and J. Lepreau, “Janos: a Java-oriented OS fof64] J. T. Moore, “Practical Active Packets,” Ph.D. dissertation, Univ. Penn-

active network nodes[EEE J. Select. Areas Commupwol. 19, no. 3, sylvania, Philadelphia, 2002.
Mar. 2001. [65] G. C. Necula, “Proof-carrying code,” ifProc. 24th Annu. ACM
[58] A.B.Montz, D. Mosberger, S. W. O’'Malley, L. L. Peterson, T. A. Proeb- S1GPL4N-SIGACT Symp. Principles Programming Languadéswy

sting, and J. H. Hastman, “Scout: A Conmmunications-Oriented Oper- York, Jan. 1997, pp. 106-119.
ating System,” Depart. Comput. Sci., Univ. Arizona, Tucson, Tech. Rep[66] G. C. Necula and P. Lee, “Safe kernel extensions without run-time

1994. checking,” in Proc. USENIX Symp. Operating Systems Design and
[59] C. Fournetand A. Gordon, “Stack inspection: Theory and variants,” in Implementation1996, USENIX, pp. 229-243.

Proc. ACM Symp. Principles Programming Languagks. 2002. [67] K. Craryand S. Weirich, “Resource bound certification,Symp. Prin-
[60] D.S. Wallach and E. W. Felten, “Understanding java stack inspection,” ciples Programming Language®000, pp. 184-198.

in Proc. IEEE Symp. Security Privadylay 1998, pp. 52—-63. [68] M. Hicks and A. D. Keromytis, “A secure plan,” iAroc. 1st Int. Work-

[61] P. Pardyak and B. N. Bershad, “Dynamic binding for an extensible shop Active Networksol. 1653, S. Covnci, Ed., Springer-Verlag, June
system,” inProc. USENIX Symp. Operating Systems Design Implemen- 1999, pp. 307-314.

tation, 1996, pp. 201-212. [69] M. Hicks, A. D. Keromytis, and J. M. Smith, “A secure plan (extended
[62] R.Grimm and B. N. Bershad, “Providing policy-neutral and transparent version),” in Proc. DARPA Active Networks Conf. ExpositioMay
access control in extensible systems,” $ecure Internet Program- 2002, pp. 224-237.

ming New York: Springer-Verlag, 1999, vol. 1603, pp. 317-338. [70] J.Vitekand C. JenseBgcure Internet Programming: Security Issues for
[63] S. loannidis, S. M. Bellovin, and J. M. Smith, “Sub-operating systems: Mobile And Distributed Objects New York: Springer-Verlag, 1999,

A new approach to application security,” f0th ACM SIGOPS Eur. vol. 1603.

Workshop Sept. 2002.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

