One Class Support Vector Machines for Detecting Anomalous Windows Registry
Accesses

Katherine A. Heller KrystaM. Svore

Angelos D. Keromytis Salvatore J. Stolfo

Dept. of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10025
{heller,kmsvore,angel os,sal } @cs.columbia.edu

Abstract

We present a new Host-based Intrusion Detection Sys-
tem (IDS) that monitors accesses to the Microsoft Windows
Registry using Registry Anomaly Detection (RAD). Our sys-
tem uses a one class Support Vector Machine (OCSVM) to
detect anomalous registry behavior by training on a dataset
of normal registry accesses. It then uses this model to de-
tect outliers in new (unclassified) data generated from the
same system. Given the success of OCSVMs in other ap-
plications, we apply them to the Windows Registry anomaly
detection problem. We compare our system to the RAD sys-
tem using the Probabilistic Anomaly Detection (PAD) algo-
rithm on the same dataset. Surprisingly, we find that PAD
outperforms our OCSVM system due to properties of the hi-
erarchical prior incorporated in the PAD algorithm. In the
future, these properties may be used to develop an improved
kernel and increase the performance of the OCSVM system.

1. Introduction

One of the most popular and most often attacked oper-
ating systems is Microsoft Windows. Malicious software
is often run on the host machine to inflict attacks on the
system. Several methods can be used to combat malicious
attacks, such as virus scanners and security patches. How-
ever, these methods are not able to combat unknown at-
tacks, so frequent updates of the virus signatures and se-
curity patches must be made.

An alternative to these methods is a Host-based Intru-
sion Detection System (IDS). Host-based IDS systems de-
tect intrusions on a host system by monitoring system ac-
cesses. Most IDS systems utilize signature based algo-
rithms that rely on knowing the attacks and their signatures,

which limits their ability to detect unknown attack meth-
ods. Alternatively, “behavior-blocking” technology aims to
detect and stop malicious activities using a set of signature-
based descriptions of good behavior, i.e. what is expected
of program or system execution. To improve performance,
data mining techniques have recently been applied to IDS
systems [20, 22] to automatically learn models of “good
behavior” and “bad behavior” by observing a system un-
der normal operation. In this paper, we describe a new
approach based on anomaly detection, utilizing a method
that trains on normal data and looks for anomalous behav-
ior that deviates from the normal model [11, 12, 13]. This
method can better identify unknown attacks. Previous work
using IDS systems has been done using system call anal-
ysis [14, 15, 17, 19, 24] and network intrusion detection
[13, 18, 21].

We use the Registry Anomaly Detection (RAD) system
to monitor Windows registry queries [9]. During normal
computer activity, a certain set of registry keys are typi-
cally accessed by Windows programs. Users tend to use
certain programs regularly, so registry activity is fairly reg-
ular and thus provides a good platform to detect anomalous
behavior. We apply an OCSVM algorithm to the RAD sys-
tem to detect anomalous activity in the windows registry.
Although OCSVMs have previously been applied success-
fully to other anomaly detection problems, they have never
before been used to detect anomalous accesses to the Win-
dows registry. The OCSVM builds a model from training
on normal data and then classifies test data as either normal
or attack based on its geometrical deviation from the nor-
mal training data [23]. We present our results of the RAD
system using the OCSVM algorithm and demonstrate its
abilities to detect anomalous behavior with several different
kernels. We also compare our system with work done on
the RAD system using the Probabilistic Anomaly Detection
(PAD) algorithm [14, 9]. PAD outperforms the OCSVM

system due to the use of the estimator developed by Fried-
man and Singer [16]. This estimator uses a Dirichlet-based
hierarchical prior to smooth the distribution and account for
the likelihoods of unobserved elements in sparse data sets
by adjusting their probability mass based on the number of
values seen during training. An understanding of the dif-
ferences between these two models and the reasons for dif-
ferences in detection performance may help to construct a
more discriminative kernel, and is critical to the develop-
ment of effective anomaly detection systems in the future.

2. The Windows Registry and the RAD system

The Windows registry is a database that stores config-
uration settings for programs, security information, user
profiles, and many other system parameters. The registry
consists of entries, which are called registry keys, and their
associated values. Programs query the registry for infor-
mation by accessing a specific registry key. Each registry
query has five components: the name of the process, the
type of query, an associated key, the result, and the success
status of the query. The process may be an attack or normal
process. Each record in both our test dataset and training
dataset contains all five of these entries. A sample record
entry appears as:

Process: EXPLORER. EXE

Query: OpenKey

Key: HKCR\ CLSI D\ B41DB860- 8EE4- 11D2- 9906
- EA9FADCL173CA\ shel | ex\ MayChange

Def aul t Menu

Response: SUCCESS

ResultValue: NOTFOUND

The Registry Anomaly Detection (RAD) system has
three parts: an audit sensor, a model generator, and an
anomaly detector. Each registry access is either stored as
a record in the training set or sent to the detector for anal-
ysis by the audit sensor. The model generator develops a
model of normal behavior from the training dataset, and the
anomaly detector uses this model to classify new registry
accesses as normal or anomalous.

The Registry Anomaly Detection (RAD) system utilizes
the five raw features given above, such that the algorithm
used for anomaly detection classifies each entry as either
normal or attack according to these feature values. The pro-
cess is the name of the process querying the registry. The
query is the type of access being sent to the registry. The
key is the key currently being accessed. The response is the
outcome of the query. The value of the accessed key is the
result value. For more detailed information on RAD and the
Windows registry, refer to [9].

3. The PAD Algorithm

The Probabilistic Anomaly Detection (PAD) algorithm,
developed by Eskin [14, 9], trains a model over normal data
features. It is essentially density estimation, where the esti-
mation of a density function p(z) over normal data allows
the definition of anomalies as data elements that occur with
low probability. The detection of low probability data (or
events) are represented as consistency checks over the nor-
mal data, where a record is labeled anomalous if it fails any
one of these tests.

First and second order consistency checks are applied.
First order consistency checks verify that a value is consis-
tent with observed values of that feature in the normal data
set. It computes the likelihood of an observation of a given
feature, P(X;), where X; are the feature variables. Second
order consistency checks determine the conditional proba-
bility of a feature value given another feature value, denoted
by P(X;|X;), where X; and X; are the feature variables.

One way to compute these probabilities would be to esti-
mate a multinomial that computes the ratio of the counts of
a given element to the total counts. However, this results in
a biased estimator when there is a sparse data set. Instead,
the estimator given by Friedman and Singer is used to de-
termine these probability distributions [16]. Let N be the
total number of observations, N; be the number of obser-
vations of symbol ¢, a be the “pseudo count” that is added
to the count of each observed symbol, k° be the number of
observed symbols, and L be the total number of possible
symbols. Then the probability for an observed element i is
given by:

. N; +«a
P(X =i) = 55—~ 1)
and the probability for an unobserved element i is:
P(X =i) = ——5(1-0) @
“UT L

where C, the scaling factor, accounts for the likelihood of
observing a previously observed element versus an unob-
served element. In [16], they compute C as:

Ka+ N _
C = (Sipo mmk)(Ekaomk) ! (3)

where m; = P(S = k)%% and P(S = k) is
a prior probability associated with the size of the subset of
elements in the alphabet that have non-zero probability.

In PAD, however, the above computation of C' is too

costly, so a heuristic method is used, where C' is given by:

N

C=NTI_%

(4)

They normalize the consistency check to account for the
number of possible outcomes of L by considering if P is
the probability estimated from the consistency check, then
they report log(P/(1/L)) = log(P) + log(L).

Since there are five feature values for each record in the
RAD system, there are 5 first order consistency checks and
20 second order consistency checks. A record is labeled
anomalous if any of the 25 consistency checks is below
a given threshold. This method labels every record in the
dataset as normal or anomalous. To improve the detection
rate, pairs of features are examined since a record may have
a set of feature values that are inconsistent even though all
single feature values are consistent for that record. Most
attacks effect a large number of records.

The PAD algorithm takes time O(v?R2), where v is the
number of unique record values for each record component
and R is the number of record components. The space re-
quired to run the algorithm is O(vR?).

4. One Class Support Vector Machine

(OCSVM)

Instead of using PAD for model generation and anomaly
detection, we apply an algorithm based on the one class
SVM algorithm given in [23]. Previously, OCSVMs have
not been used in Host-based anomaly detection systems.
The OCSVM code was developed by [10] and has been
modified to compute kernel entries dynamically due to
memory limitations. The OCSVM algorithm maps input
data into a high dimensional feature space (via a kernel) and
iteratively finds the maximal margin hyperplane which best
separates the training data from the origin. The OCSVM
may be viewed as a regular two-class SVM where all the
training data lies in the first class, and the origin is taken as
the only member of the second class. Thus, the hyperplane
(or linear decision boundary) corresponds to the classifica-
tion rule:

fx) = (w,x) +b ()

where w is the normal vector and b is a bias term. The
OCSVM solves an optimization problem to find the rule f
with maximal geometric margin. We can use this classifica-
tion rule to assign a label to a test example x. If f(x) < 0
we label x as an anomaly, otherwise it is labeled normal.
In practice there is a trade-off between maximizing the dis-
tance of the hyperplane from the origin and the number of
training data points contained in the region separated from
the origin by the hyperplane.

4.1. Kernels

Solving the OCSVM optimization problem is equivalent
to solving the dual quadratic programming problem:

1
mén 5 ZaiajK(a:i,:cj) (6)
ij
subject to the constraints

0<ao; <= (7)

and
Z Q; = 1 (8)

where «; is a lagrange multiplier (or “weight” on exam-
ple 7 such that vectors associated with non-zero weights are
called “support vectors” and solely determine the optimal
hyperplane), v is a parameter that controls the trade-off be-
tween maximizing the distance of the hyperplane from the
origin and the number of data points contained by the hyper-
plane, [is the number of points in the training dataset, and
K (z;,z;) is the kernel function. By using the kernel func-
tion to project input vectors into a feature space, we allow
for nonlinear decision boundaries. Given a feature map:

$: X > RN 9)

where ¢ maps training vectors from input space X to a high-
dimensional feature space, we can define the kernel function
as:

K(z,y) = (¢(z), () (10)

Feature vectors need not be computed explicitly, and in
fact it greatly improves computational efficiency to directly
compute kernel values K (x,y). We used three common
kernels in our experiments:

Linear kernel: K(z,y) = (z - y)

Polynomial kernel: K(z,y) = (x -y + 1)?, where d is the
degree of the polynomial

Gaussian kernel: K (z,y) = e llz=vI/(27*) where 52 is
the variance

Our OCSVM algorithm uses sequential minimal opti-
mization to solve the quadratic programming problem, and
therefore takes time O(dL?), where d is the number of di-
mensions and L is the number of records in the training
dataset. Typically, since we are mapping into a high dimen-
sional feature space d exceeds R? from the PAD complex-
ity. Also for large training sets L? will significantly exceed
v2, thereby causing the OCSVM algorithm to be a much

more computationally expensive algorithm than PAD. An
open question remains as to how we can make the OCSVM
system in high bandwidth real time environments work well
and efficiently. All feature values for every example must
be read into memory, so the required space is O(d(L + T)),
where T' is the number of records in the test dataset. Al-
though this is more space efficient than PAD, we compute
our kernel values dynamically in order to conserve mem-
ory, resulting in the added d term to our time complexity.
If we did not do this the memory needed to run this algo-
rithm would would be O(d(L + T')%) which is far too large
to fit in memory on a standard computer for large training
sets (which are inherent to the windows anomaly detection
problem).

5. Experiments and Results

The one class SVM system we develop detects abnormal
accesses to the Windows registry. The training and testing
datasets were developed from real usage of the Windows
system, and each experiment took one to two weeks to run
on a 1.5GHZ Pentium IV dual processor. The training data
we used was collected on Windows NT 4.0 and consists of
approximately 500,000 attack-free records. These attack-
free records are labeled normal and consist of operating sys-
tem programs and typical Windows programs. The test data
consists of approximately 300,000 records of which approx-
imately 2,000 are labeled attacks. Possible attacks include
aimrecover, browslist, setuptrojan, and other publicly avail-
able attacks [1, 2, 3, 4, 5, 6, 7, 8].

We obtained kernels from binary feature vectors by map-
ping each record into a feature space such that there is one
dimension for every unique entry for each of the five given
record values. This means that a particular record has the
value 1 in the dimensions which correspond to each of its
five specific record entries, and the value 0 for every other
dimension in feature space. We then computed linear ker-
nels, second order polynomial kernels, and gaussian kernels
using these feature vectors for each record.

We also computed kernels from frequency-based feature
vectors such that for any given record, each feature cor-
responds to the number of occurences of the correspond-
ing record component in the training set. For example, if
the second component of a record occurs three times in the
training set, the second feature value for that record is three.
We then used these frequency-based feature vectors to com-
pute linear and polynomial kernels.

To evaluate the system’s accuracy, two statistics have
been computed: detection rate and false positive rate. The
detection rate is the percentage of attack records that have
been correctly identified. The false positive rate is the per-
centage of normal records that have been mislabeled as
anomalous. The threshold is the value that determines if

[Threshold [FalsePositive Rate (%) | Detection Rate (%) |

-1.08307 0.790142 0.373533
-1.08233 0.828005 0.480256
-1.07139 1.54441 0.533618
-0.968913 1.65734 1.17396
-0.798767 3.58736 3.89541
-0.79858 3.63784 5.60299
-0.798347 3.68999 6.77695
-0.767411 3.72054 6.83031
-0.746663 4.35691 7.47065
-0.746616 4.63025 8.00427
-0.71255 8.34283 20.9712
-0.712503 8.75201 22.0918

Table 1. The effects of varying the threshold
on the false positive rate and the detection
rate.

a record is normal or attack. Table 1 includes a sample of
the varying thresholds and their effects on the detection rate
and false positive rate.

100

90
b [
701
60
50

40

30

Percentage of True Anomalies Correctly Identified

20

— PAD
— - Binary Gaussian
— - Binary Polynomial (degree 2)
Binary Linear
T T

10

olZ I I I I I I T ,
0 10 20 30 40 50 60 70 80 920 100
Percentage of Normal Data Labeled Anomalies

Figure 1. ROC curve for the kernels using bi-
nary feature vectors (false positives versus
true positives).

We can measure the performance of the one class SVM
on our test data by plotting its Receiver Operator Charac-
teristic (ROC) curve. The ROC curve plots the percentage
of false positives (normal records labeled as attacks) versus
the percentage of true positives. As the discriminant thresh-
old increases, more records are labeled as attacks. Ran-
dom classification results in 50% of the area lying under
the curve, while perfect classification results in 100% of the
area lying under the curve. Results from our one class SVM
system are shown with the results of the PAD system on the
same dataset in Figures 1 and 2. Figure 1 is the ROC curve
for the linear and polynomial kernels using binary feature

Percentage of True Anomalies Correctly Identified

— PAD
Frequency Linear
I — - Frequency Polynomial (degree 2)
- I I I I I T T T T

,
0 10 20 30 40 50 60 70 80 90 100
Percentage of Normal Data Labeled Anomalies

Figure 2. ROC curve for the kernels using
frequency-based feature vectors (false pos-
itives versus true positives).

vectors. We have used a sigma value of 0.84 for our gaus-
sian function. The binary linear kernel most accurately clas-
sifies the records. Figure 2 is the ROC curve for the linear
and polynomial kernels using frequency-based feature vec-
tors. The frequency-based linear and frequency-based poly-
nomial kernels demonstrate similar classification abilities.
Overall, in our experiments, the linear kernel using binary
feature vectors results in the most accurate classification.

In Tables 2 and 3, information on the records and their
discriminants are listed for the linear and polynomial ker-
nels using binary feature vectors. From Table 2, it is
seen that if the threshold is set at —1.423272, then the
bo2kcfg.exe would be labeled as attack, as would msinit.exe
and ononce.exe. False labels would be given to WINLO-
GON.exe, systray.exe and other normal records.

The results of the OCSVM system produce less accu-
rate results than the PAD system demonstrated in [9, 14].
The PAD system is able to more accurately discriminate
between normal and anomalous records. The OCSVM sys-
tem labels records with fair accuracy, but could be improved
with a stronger kernel, where more significant information
is captured in the data representation.

The ability of the OCSVM to detect anomalies is highly
dependent on the information captured in the kernel (the
data representation). Our results show that kernels com-
puted from binary feature vectors or frequency-based fea-
ture vectors alone do not capture enough information to de-
tect anomalies as well as the PAD algorithm. With other
choices of kernels, similar results will occur unless a novel
technique which incorporates more discriminative informa-
tion is used to compute the kernel. A simple example of

this is if we have a dataset in which good discrimination
depends upon pairs of features, then we will not be able to
discriminate well with a linear decision boundary regardless
of how we tweak its parameters. However, if we use a poly-
nomial kernel we can account for pairs of features and will
discriminate well. In this manner, having a well defined ker-
nel which accounts for highly discriminative information is
extremely important. For the purpose of this research, we
believe our kernel choices are sufficient to reliably compare
the OCSVM system with PAD.

The advantage of the PAD algorithm over the OCSVM
system lies in the use of a hierarchical prior to estimate
probabilities. A scaling factor (see equation (4)) is com-
puted and applied to a Dirichlet prediction which assumes
that all possible elements have been seen, giving varying
probability mass to outcomes unseen in the training set. In
general, knowing the likelihood of encountering a previ-
ously unencountered feature value is extremely important
for anomaly detection, and it would be valuable to be able
to incorporate this information into a kernel for use with
our OCSVM system, perhaps by adding weighted “pseudo-
counts” to the features in our frequency-based feature vec-
tors.

6. Conclusions

By monitoring the Windows registry activity on a host
system, we were able to use our OCSVM algorithm to la-
bel all records in the given experiments as either normal
or attack with moderate accuracy and a low false positive
rate. We have shown that since registry activity is regular, it
can be used as a reliable anomaly detection platform. Note
that it would also be informative to study detection rates for
specific attack processes as a function of the discriminant
threshold.

In the comparitive evaluation of our OCSVM system and
the PAD system, we have shown that PAD is more reliable.
However, understanding the reasons for this will lead to an
improvement of the OCSVM system and will expedite the
future development of anomaly detectors. Since there is
currently no effective way to learn a “most optimal” kernel
for a given dataset, we must rely on our domain knowledge
in order to develop a kernel that leads to a highly accurate
anomaly detection system. By analyzing algorithms (such
as PAD) which currently discriminate well, we can iden-
tify information which is important to capture in our data
representation and is crucial for the development of a more
optimal kernel.

In the future, we plan on testing the system on file system
accesses and on the Unix platform. We also plan to create a
system to update the model as new data is labeled. This will
help counter the effects of concept drift over time. Finding
an efficient means of remodeling the data over time within

the OCSVM framework could improve the accuracy of the
system.

Finally, since most users accept the default installation
location when installing a program, the location of pro-
grams tends to be the same on all computers. Thus an attack
does not need to query the registry for program location in-
formation. By forcing a location declaration other than the
default location, a given program will not have the same
location on all Windows machines. Attacks will have to
query the registry to discover program locations, thus forc-
ing all attacks to be monitored by the anomaly detector. A
system such as this would improve the anomaly detection
capabilities of the RAD system since no malicious attacks
can bypass querying the registry. This would enhance the
protection of the system against malicious users.

7. Acknowledgements

We would like to thank Eleazar Eskin, Shlomo Her-
shkop, Andrew Howard, and Ke Wang for their helpful
comments. Katherine Heller was supported by an NSF
graduate research fellowship. Krysta Svore was supported
by an NPSC graduate fellowship.

References

[1] Aim recovery. URL: http://www.dark-e.com/
des/software/aim/index.shtml.

[2] Back orifice. URL: http://www.cultdeadcow.
com/tools/bo._html.

[3] Backdoor.xtcp. URL: http://www.ntsecurity.
new/Panda/ Index.cfm?FuseAction=Virus\
&ViruslID=659.

[4] Browselist. URL: http://edgle.org/Tiles/
nttools/,http://binaries.faq.net.pl/
security_tools.

[5] Happy99. URL: http://www.symantex.com/
qvcenter/venc/data/happy99.worm._html.

[6] lpcrack. URL: http://www.geocities.com/
Siliconvalley/Garage/3755/toolicq.
htmlhttp://home.swipenet.se/~w-65048/
hacks.htm.

[7] LOpht crack.
research/lc.

[8] Setup trojan. URL: http://www.nwinternet.com/
“pchelp/bo/setuptrojan.txt.

[9] F. Apap, A. Honig, S. Hershkop, E. Eskin, and S. Stolfo. De-
tecting malicious software by monitoring anomalous win-
dows registry accesses. Proceedings of the Fifth Interna-
tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID 2002), 2002.

[10] A. Arnold. Svm anomaly detection ¢ code. IDS Lab,
Columbia University, 2002.

[11] V. Bartnett and T. Lewis. Outliersin Satistical Data. John
Wiley and Sons, 1994.

URL: http://www.astack.com/

[12] M. DeGroot. Optimal Satistical Decisions. McGraw-Hill,
New York, NY, 1970.

[13] D. Denning. An intrusion detection model. IEEE Trans-
actions on Software Engineering, SE-13:222-232, February
1987.

[14] E. Eskin. Anomaly detection over noisy data using learned
probability distributions. Proceedings of the Seventeenth In-
ternational Conference on Machine Learning (ICML-2000),
2000.

[15] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A
sense of self for unix processes. Proceedings of the |IEEE
Symposium on Research in Security and Privacy, pages
120-128, 1996.

[16] N. Friedman and Y. Singer. Efficient bayesian parameter
estimation in large discrete domains. Advances in Neural
Information Processing Systems, 11, 1999.

[17] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detec-
tion using sequences of system calls. Journal of Computer
Security, 6:151-180, 1998.

[18] H. Javitz and A. Valdes. The nides statistical component:
Description and justification. Technical Report, SRl Inter-
national, Computer Science Laboratory, 1993.

[19] W. Lee, S. Stolfo, and P. Chan. Learning patterns from unix
processes execution traces for intrusion detection. AAAI
Workshop on Al Approaches to Fraud Detection and Risk
Management, pages 50-56, 1997.

[20] W. Lee, S. Stolfo, and K. Mok. A data mining framework
for building intrusion detection models. EEE Symposium
on Security and Privacy, pages 120-132, 1999.

[21] W. Lee, S. Stolfo, and K. Mok. Data mining in work flow
environments: Experiences in intrusion detection. Proceed-
ings of the 1999 Conference on Knowledge Discovery and
Data Mining (KDD-99), 1999.

[22] M. Mahoney and P. Chan. Detecting novel attacks by identi-
fying anomalous network packet headers. Technical Report
CS-2001-2, 2001.

[23] B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, and
R. Williamson. Estimating the support of a high-
dimensional distribution. Neural Computation, 13(7):1443—
1472, 2001.

[24] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting in-
trusions using system calls: Alternative data models. |EEE
Symposium on Security and Privacy, pages 133-145, 1999.

Program Name Label Number of Records | Min. Record Value | Max. Record Value
REGMON.EXE NORMAL 259 -0.794953 -0.280406
SPOOLSS.EXE NORMAL 2 -1.152717 -0.021361
CloseKey NORMAL 429 -1.082720 -0.374784
OpenKey NORMAL 502 -0.959895 -0.365539
QueryValue NORMAL 594 -1.082909 -0.374972
EnumerateValue NORMAL 28 -0.570206 -0.284935
DeleteValueKey NORMAL 3 -1.078758 -0.370822
AimRecover.exe NORMAL 61 -1.082720 -0.374784
aim.exe NORMAL 1702 -1.064796 -0.356860
ttssh.exe NORMAL 12 -0.969706 -0.375161
ttermpro.exe NORMAL 1639 -1.083098 -0.285123
NTVDM.EXE NORMAL 271 -0.798204 -0.410065
notepad.exe NORMAL 2673 -1.083098 -0.285123
CMD.EXE NORMAL 116 -1.139322 -0.375161
TASKMGR.EXE NORMAL 99 -0.570017 -0.284935
INS0432..MP NORMAL 443 -1.423272 -1.423272
WINLOGON.EXE | NORMAL 399 -1.423272 -1.423272
systray.exe NORMAL 17 -1.423272 -1.423272
em._exec.exe NORMAL 29 -1.423272 -1.423272
OSA9.EXE NORMAL 705 -1.083098 -0.375161
fi ndfast.exe NORMAL 176 -1.083098 -0.375161
WINWORD.EXE NORMAL 1541 -1.083098 -0.375161
winmine.exe NORMAL 21 -0.429351 -0.429351
POWERPNT.EXE NORMAL 617 -1.083098 -0.285123
PING.EXE NORMAL 50 -1.083098 -0.375161
QueryKey NORMAL 11 -0.712317 -0.375161
wscript.exe NORMAL 527 -1.083098 -0.375161
AcroRd32.exe NORMAL 1598 -1.083098 -0.375161
o’ NORMAL 404 -1.083098 -0.375161
WINZIP32.EXE NORMAL 3043 -1.083098 -0.375161
explore.exe NORMAL 108 -1.083098 -0.375161
EXCEL.EXE NORMAL 1782 -1.083098 -0.375161
bo2kss.exe[2] ATTACK 12 -0.712317 -0.375161
bo2k_1_0_intl.e[2] ATTACK 78 -1.083098 -0.375161
browselist.exe[4] ATTACK 32 -0.798770 -0.411763
bo2kcfg.exe[2] ATTACK 289 -1.423272 -1.423272
bo2k.exe[2] ATTACK 883 -1.423272 -1.091776
mstinit.exe[2] ATTACK 11 -1.423272 -1.423272
runonce.exel2] ATTACK 8 -1.423272 -1.423272
Patch.exe[2] ATTACK 174 -1.083098 -0.375161
install.exe[3] ATTACK 18 -1.083098 -0.375161
xtcp.exe[3] ATTACK 240 -1.083098 -0.285123
|0phtcrack.exe[7] ATTACK 100 -0.798581 -0.285123
LOADWC.EXE[2] ATTACK 1 -1.423272 -1.423272
happy99.exe[5] ATTACK 29 -0.570017 -0.411575

Table 2. Information about test records for the linear kernel in the binary setting. The maximum and
minimum discriminants are given for each process, as well as the assigned classification label. Listed
next to the attack processes is the attack source. [1] AIMCrack. [2] BackOrifice. [3] Backdoor.xtcp.
[4] Browse List. [5] Happy 99. [6] IPCrack. [7] LOpht Crack. [8] Setup Trojan.

Program Name Label Number of Records | Min. Record Value | Max. Record Value
REGMON.EXE NORMAL 259 -4.062785 -1.524777
SPOOLSS.EXE NORMAL 2 -5.422540 -0.272565
CloseKey NORMAL 429 -5.210662 -1.788163
OpenKey NORMAL 502 -4.828603 -1.758730
QueryValue NORMAL 594 -5.211228 -1.789106
EnumerateValue NORMAL 28 -3.311164 -1.542890
DeleteValueKey NORMAL 3 -5.1955757 -1.766465
AimRecover.exe NORMAL 61 -5.210285 -1.792879
aim.exe NORMAL 1702 -5.148589 -1.703827
ttssh.exe NORMAL 12 -4.860299 -1.794766
ttermpro.exe NORMAL 1639 -5.21179%4 -1.543456
NTVDM.EXE NORMAL 271 -4.234352 -1.794766
notepad.exe NORMAL 2673 -5.211794 -1.543456
CMD.EXE NORMAL 116 -5.388013 -1.794766
TASKMGR.EXE NORMAL 99 -3.309843 -1.543456
INS0432..MP NORMAL 443 -6.239865 -6.239865
WINLOGON.EXE | NORMAL 399 -6.239865 -6.239865
systray.exe NORMAL 17 -6.239865 -6.239865
em._exec.exe NORMAL 29 -6.239865 -6.239865
OSA9.EXE NORMAL 705 -5.211794 -1.789672
fi ndfast.exe NORMAL 176 -5.211794 -1.794766
WINWORD.EXE NORMAL 1541 -5.211794 -1.789672
winmine.exe NORMAL 21 -1.794766 -1.794766
POWERPNT.EXE NORMAL 617 -5.211794 -1.543456
PING.EXE NORMAL 50 -5.211794 -1.789672
QueryKey NORMAL 11 -4.022096 -1.789672
wscript.exe NORMAL 527 -5.21179%4 -1.789672
AcroRd32.exe NORMAL 1598 -5.211794 -1.794766
o’ NORMAL 404 -5.211794 -1.789672
WINZIP32.EXE NORMAL 3043 -5.211794 -1.789672
explore.exe NORMAL 108 -5.21179%4 -1.789672
EXCEL.EXE NORMAL 1782 -5.21179%4 -1.789672
bo2kss.exe[2] ATTACK 12 -4.022096 -1.789672
bo2k_1_0_intl.e[2] ATTACK 78 -5.211794 -1.789672
browselist.exe[4] ATTACK 32 -4.087124 -1.789672
bo2kcfg.exe[2] ATTACK 289 -6.239865 -6.239865
bo2k.exe[2] ATTACK 883 -6.239865 -5.245378
mstinit.exe[2] ATTACK 11 -6.239865 -6.239865
runonce.exel2] ATTACK 8 -6.239865 -6.239865
Patch.exe[2] ATTACK 174 -5.211794 -1.789672
install.exe[3] ATTACK 18 -5.211794 -1.794766
xtcp.exe[3] ATTACK 240 -5.211794 -1.543456
|0phtcrack.exe[7] ATTACK 100 -4.194165 -1.543456
LOADWC.EXE[2] ATTACK 1 -6.239865 -6.239865
happy99.exe[5] ATTACK 29 -3.309843 -1.794766

Table 3. Information about test records for the second order polynomial kernel in the binary set-
ting. The maximum and minimum discriminants are given, as well as the assigned classification
label. Listed next to the attack processes is the attack source. [1] AIMCrack. [2] BackOrifice. [3]
Backdoor.xtcp. [4] Browse List. [5] Happy 99. [6] IPCrack. [7] LOpht Crack. [8] Setup Trojan.

