Efficient, DoS-Resistant, Secure Key Exchange
for Internet Protocols

William Aiello', Steven M. Bellovin', Matt Blaze!, Ran CanettiZ,
John Toannidis!, Angelos D. Keromytis?, and Omer Reingold!

! AT&T Labs — Research, {aicllo,smb,mab,ji,omer} @research.att.com
2 IBM T.J. Watson Research Center, canettiQuatson.ibm.com
3 Columbia University in the City of New York, angelos@cs.columbia.edu

1 Introduction

Many public-key-based key setup and key agreement protocols already exist and
have been implemented for a variety of applications and environments. Several
have been proposed for the IPsec protocol, and one, IKE[1], is the current stan-
dard. IKE has a number of deficiencies, the three most important being that the
number of rounds is high, that it is vulnerable to denial-of-service attacks, and
the complexity of its specification. (This complexity has led to interoperability
problems, so much so that, several years after its initial adoption by the IETF,
there are still completely non-interoperating implementations.)

While it may be possible to “patch” the protocol to fix some of these prob-
lems, we would prefer to replace IKE with something better. With that in mind,
we set out to engineer a new key exchange protocol specifically for Internet se-
curity applications. With a view toward its possible role as a successor to IKE,
we call our new protocol “JFK,” which stands for “Just Fast Keying.”

1.1 Design Goals
We seek a protocol with the following characteristics:

Security: No one other than the participants may have access to the generated
key.

Simplicity: It must be as simple as possible.

Memory-DoS: Tt must resist memory exhaustion attacks on the responder.

Computation-DoS: It must resist CPU exhaustion attacks on the responder.

Privacy: It must preserve the privacy of the initiator.

Efficiency: It must be efficient with respect to computation, bandwidth, and
number of rounds.

Non-Negotiated: It must avoid complex negotiations over capabilities.

PFS: Tt must approach perfect forward secrecy.

The Security property is obvious enough; the rest, however, require some
discussion.



The Simplicity property is motivated by several factors. Efficiency is one;
increased likelihood of correctness is another. But our motivation is especially
colored by our experience with IKE[1]. Even if the protocol is defined correctly,
it must be implemented correctly; if a protocol definition is too complex, imple-
mentors will get it wrong. This hinders both security and interoperability.

The Memory-DoS and Computation-DoS properties have become more im-
portant in the context of recent Internet denial-of-service attacks. Photuris [2]
was the first published key management protocol for which DoS-resistance was a
design consideration; we suggest that these properties are at least as important
today.

The Privacy property means that the protocol must not reveal the initiator’s
identity to any unauthorized party, including an active attacker that attempts
to act as the responder. Protecting the responder’s privacy does not appear to
be of much value, except perhaps in peer-to-peer communication: in many cases,
the responder is a server with a fixed address or characteristics (e.g., well-known
web server). A third approach is to allow for a protocol that allows the two
parties to negotiate who needs identity protection. In JFK, we decided against
this approach: it is unclear what, if any, metric can be used to determine which
party should receive identity protection; furthermore, this negotiation could act
as a loophole to make initiators reveal their identity first.

The Efficiency property is worth discussing. In many protocols, key setup
is must be performed frequently enough that it can become a bottleneck to
communication. The key exchange protocol must minimize both computation as
well total bandwidth and round trips. Round trips can be an especially important
factor over unreliable media.

The Non-Negotiated property is necessary for several reasons. The first, of
course, is as a corollary to Simplicty and Efficiency. Negotiations create complex-
ity and round trips, and hence should be avoided. Denial of service resistance
is also relevant here; a partially-negotiated security association is consuming
resources.

The PFS property is perhaps the most controversial. Rather than assert
that “we must have perfect forward secrecy at all costs”, we treat the amount
of forward secrecy as an engineering parameter that can be traded off against
other necessary functions, such as resistance to denial-of-service attacks. In fact,
this corresponds quite nicely to the reality of today’s Internet systems, where a
compromise during the existence of a security association will reveal the plaintext
of any ongoing transmissions. Our scheme has the concept of a “forward secrecy
interval”; associations are protected against compromises that occur outside of
that interval.

Protocol design is, to some extent, an engineering activity, and we need to
provide for trade-offs between different types of security. There are trade-offs that
we made during the protocol design, and others, such as the trade-off between
forward secrecy and computational effort, that are left to the implementation
and to the user, e.g., selected as parameters during configuration and session
negotiation.



2 Protocol Definition

2.1 Notation

First, some notation:

{M}4, Encryption of message M with symmetric key k.

Hi(M) Keyed hash (e.g., HMAC [3]) of message M using key k.

S[M] Digital signature of message M with the private key belong-
ing to principal z (Initiator or Responder). It is assumed to
be a non-message-recovering signature.

The message components used in JFK are:

g* Diffie-Hellman exponentials; also identifying the group-ID.
g’ Initiator’s current exponential.

g" Responder’s current exponential.

Ny Initiator nonce, a random bit-string.

Ng Responder nonce, a random bit-string.

sa defines cryptographic and service properties of the security

association (SA) that the Initiator wants to establish. It con-
tains a Domain-of-Interpretation which JFK understands,
and an application-specific bitstring.

sa’ SA information the Responder may need to give to the Ini-
tiator (e.g., the Responder’s SPI in IPsec).

HK, A transient hash key private to the Responder.

K. shared key derived from ¢'", N7, and N used for protecting
the application (e.g., IPsec SA).

K. shared key derived from ¢*", Ny, and Ng used to protect
messages 3 and 4 of the protocol.

ID; Initiator’s certificates or public-key identifying information.

IDg Responder’s certificates or public-key identifying information.

grpinfop all groups supported by the Responder, the symmetric al-
gorithm used to protect messaged 3 and 4, and the hash
function used for key generation.

Both parties must pick a fresh nonce at each invocation of the JFK protocol.
The nonces are used in the session key computation in order to provide key
independence when one or both prties reuse their Diffie-Hellman exponential; the
session key will be different different between independent runs of the protocol,
as long as one of the nonces or exponentials changes.

HKpg is a global parameter for the Responder — it stays the same between
protocol runs, but it can change periodically. The Responder must bick a new
g" every time HK g changes.

2.2 The Protocol

The basic JFK protocol consists of four messages, for a total of two round trips.



I = R:Nig" (mod p) (1)
R — I: Ni,Ng,g', grpinfor, IDg, Srlg"], Hyg (N1, Nr,g',9") (2)
I = R:Ni,Nr,g',9", HyK (N1, Nr, 9", 9"), {ID1,s2, Si[N1,Nr, ', 9", IDr,sa]} . (3)

R — I:{Sgr[Nr,Ngr,g' g",1IDr,sa,sa’],sa' } . (4)

The key used to protect Messages (3) and (4), K, is computed as Hi» (N1, Ng, 1).
The session key used by IPsec (or any other application), K, is Hyi» (N1, Ng,0).

Message (1) is straightforward; note that it assumes that the Initiator already
knows a group and generator that is acceptable to the Responder. The Initiator
can reuse a ¢ value in multiple instances of the protocol with the Responder,
or other responders that accept the same group, for as long as she wishes her
forward secrecy interval to be. We discuss how the Initiator can discover what
groups to use later.

Message (2) is more complex. Assuming that the Responder accepts the
Diffie-Hellman group in the Initiator’s message (rejections are discussed in Sec-
tion 2.4), he replies with a signed copy of his own exponential (in the same group,
also (mod p)), information on what secret key algorithms are acceptable for the
next message, a random nonce, his identity (certificates or a string identifying his
public key), and an authenticator calculated from a secret, HK g, known to the
Responder; the authenticator is computed over the two exponentials and nonces.
The authenticator key is changed at least as often as g", thus preventing replays
of stale data. The Responder’s exponential may also be reused; again, it is re-
generated according to the Responder’s forward secrecy interval. The signature
on the exponential needs to be calculated at the same rate as the Responder’s
forward secrecy interval (when the exponential itself changes). Finally, note that
the Responder does not need to generate any state at this point, and the only
expensive operation is a MAC calculation.

Message (3) echoes back the data sent by the Responder, including the au-
thenticator. The authenticator is used by the Responder to verify the authen-
ticity of the returned data. The message also includes the Initiator’s identity
and service request, and a signature computed over the nonces, the Responder’s
identity, and the two exponentials. This latter information is all encrypted under
a key derived from the Diffie-Hellman computation and the nonces N; and Ng.
The encryption and authentication use algorithms specified in grpinfor. The Re-
sponder keeps a copy of recently-received Message (3)s, and their corresponding
Message (4). Receiving a duplicate (or replayed) Message (3) causes the Respon-
der to simply retransmit the corresponding Message (4), without creating new
state or invoking IPsec. This cache of messages can be reset as soon as g" or
HKpg are changed. The Responder’s exponential (¢") is re-sent by the Initiator
because the Responder may be generating a new g" for every new JFK protocol
run (e.g., if the arrival rate of requests is below some threshold). It is important



that the responder deal with repeated Message (3)s as described above. Respon-
ders that create new state for a repeated Message (3) open the door to attacks
against the protocol.

Note that the signature is protected by the encryption. This is necessary,
since everything signed is public except the sa, and that is often guessable. An
attacker could verify guesses at identities if the signature were not encrypted.

Message (4) contains application-specific information (such as the Respon-
der’s IPsec SPI), and a signature on both nonces, both exponentials, and the
Initiator’s identity. Everything is encrypted by a K, which is derived from Ny,
Ng, and ¢'". The encryption algorithm is specified in grpinfop,.

2.3 Discussion

The design follows from our requirements. With respect to communication ef-
ficiency, observe that the protocol requires only two round trips. The protocol
is optimized to protect the Responder against denial of service attacks on state
or computation. The Initiator bears the initial computational burden and must
establish round-trip communication with the Responder before the latter is re-
quired to perform expensive operations. At the same time, the protocol is de-
signed to limit the private information revealed by the Initiator; she does not
reveal her identity until she is sure that only the Responder can retrieve it. (An
active attacker can replay an old Message (2) as a response to the Initiator’s
initial message, but he cannot retrieve the Initiator’s identity from Message (3)
because he cannot complete the Diffie-Hellman computation).

The Initiator’s initial message, Message (1), is a straightforward Diffie-Hellman
exponential. Note that this is assumed to be encoded in a self-identifying man-
ner, i.e., it contains a tag indicating which modulus and base was used. The
nonce Nj serves two purposes: first, to allow the Initiator to reuse the same ex-
ponential across different sessions (with the same or different Responders, within
the Initiator’s forward secrecy interval) while ensuring that the resulting session
key will be different. Secondly, it can be used to differentiate between different
parallel sessions.

Message (2) must require only minimal work for the Responder, since at
that point he has no idea whether the Initiator is a legitimate correspondent or,
e.g., a forged message from an denial of service attack; no round trip has yet
occurred with the Initiator. Therefore, it is important that the Responder not
be required at this point to perform expensive calculations or create state. Here,
the Responder’s cost will be a single authentication operation, the cost of which
(for HMAC) is dominated by two invocations of a cryptographic hash function,
plus generation of a random nonce Ng.

The Responder may compute a new exponential g® (mod p) for each in-
teraction. This is an expensive option, however, and at times of high load (or
attack) it would be inadvisable. The nonce prevents two successive session keys
from being the same, even if both the Initiator and the Responder are reusing
exponentials.



If the Responder is willing to accept the group identified in the Initiator’s
message, his exponential must be in the same group. Otherwise, he may respond
with an exponential from any group of his own choosing. The field grpinfop
lists what groups the Responder finds acceptable, if the Initiator should wish
to restart the protocol. This provides a simple mechanism for the Initiator to
discover the groups currently allowed by the Responder. That field also lists what
encryption algorithm is acceptable for the next message. This is not negotiated;
the Responder has the right to decide what strength encryption is necessary to
use his services.

Note that the Responder creates no state when sending this message. If it is
fraudulent — that is, if the Initiator is non-existent or intent on perpetrating a
denial-of-service attack — the Responder will not have committed any storage
resources.

In Message (3), the Initiator echoes content from the Responder’s message,
including the authenticator. The authenticator allows the Responder to verify
that he is in round-trip communication with a legitimate potential correspon-
dent. The Initiator also uses the key derived from the two exponentials and the
two nonces to encrypt her identity and service request. (The Initiator’s nonce
is used to ensure that this session key is unique, even if both the Initiator and
the Responder are reusing their exponentials and the Responder has “forgotten”
to change nonces.) The key used to protect Messages (3) and (4) is computed
as Hgir (N1, Ng, 1). The session key used by IPsec (or any other application) is
Hgi- (N1, Ng,0).

Because the Initiator can validate the Responder’s identity before sending
her own and because her identifying information (ignoring her public key sig-
nature) is sent encrypted, her privacy is protected from both passive and active
attackers. (An active attacker can replay an old Message (2) as a response to the
Initiator’s initial message, but he cannot retrieve the Initiator’s identity from
Message (3) because he cannot complete the Diffie-Hellman computation.) The
service request is encrypted, too, since disclosure of it might identify the re-
quester. The Responder may wish to require a certain strength of cryptographic
algorithm for certain services.

Upon successful receipt and verification of this message, the Responder has a
shared key with a party known to be the Initiator. The Responder further knows
what service the Initiator is requesting. At this point, he may accept or reject
the request.

The Responder’s processing on receipt of Message (3) requires verifying an
authenticator and, if that is successful, performing several public key operations
to verify the Initiator’s signature and certificate chain. The authenticator (again
requiring two hash operations) is sufficient defense against forgery; replays, how-
ever, could cause considerable computation. The defense against this is to cache
the corresponding Message (4); if a duplicate Message (3) is seen, the cached re-
sponse is retransmitted; the Responder does not create any new state or notify
the application (e.g., IPsec).



Caching Message (3) and refraining from creating new state for replayed
instances of Message (3) serves also another security purpose. If the Responder
were to create a new state and send a new Message (4), and a new sa’ for a
replayed Message (3), then an attacker that compromised the Initiator could
replay a recent session with the Responder. That is, by replaying Message (3)
from a recent exchange between the Initiator and the Responder, the attacker
could establish a session with the Responder where the session-key is identical
to the key of the previous session (which took place when the Initiator was not
yet compromised). This could compromise the Forward Security of the Initiator.

There is a risk, however, in keeping this message cached for too long: if
the Responder’s machine is compromised during this period, perfect forward
secrecy is compromised. We can tune this by changing the MAC key HKr more
frequently. The cache can be reset when a new g" or HK g is chosen.

In Message (4), the Responder sends to the Initiator any Responder-specific
application data (e.g., the Responder’s IPsec SPI), along with a signature on
both nonces, both exponentials, and the Initiator’s identity. All the information is
encrypted using a key derived the two nonces, Ny and Ng, and the Diffie-Hellman
result. The Initiator can verify that the Responder is present and participating
in the session, by decrypting the message and verifying the enclosed signature.

2.4 Rejection Messages

Instead of sending messages (2) or (4), the Responder can send a rejection in-
stead. For Message (2), this rejection can only be on the grounds that he does
not accept the group that the Initiator has used for her exponential. Accordingly,
the reply should indicate what groups are acceptable. (For efficiency’s sake, this
information could also be in the Responder’s long-lived certificate, which the
Initiator may already have.)

Message (4) can be a rejection for several reasons, including lack of autho-
rization for the service requested. But it could also be caused by the Initiator
requesting cryptographic algorithms that the Responder regards as inappropri-
ate, given the requester (Initiator), the service requested, and possibly other
information available to the Responder, such as the time of day or the Initia-
tor’s location as indicated by the network. In these cases, the Responder’s reply
should list acceptable cryptographic algorithms, if any. The Initiator would then
send a new Message (3), which the Responder would accept anew; again, the
Responder does not create any state until after a successful Message (3) receipt.

3 What JFK Avoids

By intent, JFK does not do certain things. It is worth enumerating them, if only
to forestall later attempts to add them in. The “missing” items were omitted by
design, in the interests of simplicity.

The most obvious “omission” is any form of authentication other than certifi-
cate chain trusted by the each party. We make no provisions for shared secrets,



token-based authentication, certificate discovery, or explicit cross-certification of
PKIs. In our view, these are best accomplished by outboard protocols. Initiators
that wish to rely on any form of legacy authentication can use the protocols
being defined by the IPSRA [4] or SACRED |[5, 6] working groups. While these
mechanisms do add extra round trips, the expense can be amortized across many
JFK negotiations. Similarly, certificate chain discovery (beyond the minimal ca-
pabilities implicit in ID; and IDg) should be accomplished by protocols defined
for that purpose. By excluding the protocols for JFK, we can exclude them from
our security analysis; the only interface between the two is a certificate chain,
which by definition is a stand-alone secure object.

We also eliminate negotiation, in favor of ukases issued by the Responder.
The responder is providing a service; it is entitled to set its own requirements
for that service. Any cryptographic primitive mentioned by the Responder is
acceptable; the Initiator can choose any it wishes. We thus eliminate complex
rules for selecting the “best” choice from two different sets. We also eliminate
state to be kept by the Responer; the Iniator can either accept the Responder’s
desires or restart the protocol.

Finally, we reject the notion of two different phases. As noted, the practical
benefits of quick mode are limited. Furthermore, we do not agree that frequent
rekeying is necessary. If the underlying block cipher is sufficiently limited as to
bar long-term use of any one key, the proper solution is to replace that cipher. For
example, 3DES is inadequate for protection of very high speed transmissions,
because the probability of collision in CBC mode becomes too high after less
than encryption of 232 plaintext blocks. Using AES instead of 3DES solves that
problem without complication the key exchange.

4 Related Work

4.1 Internet Key Exchange (IKE)

The Internet Key Exchange protocol (IKE) [1] is the current IETF standard for
key establishment and SA parameter negotiation. IKE is based on the ISAKMP [7]
framework, which provides encoding and processing rules for a set of payloads
commonly used by security protocols, and the Oakley protocol, which describes
an adaptation of the StS protocol for use with IPsec.

IKE is a two-phase protocol: during the first phase, a secure channel between
the two key management daemons is established. Parameters such as an authen-
tication method, encryption/hash algorithms, and a Diffie-Hellman group are
negotiated at this point. This set of parameters is called a “Phase 1 SA.” Using
this information, the peers authenticate each other and compute key material
using the Diffie-Hellman algorithm. Authentication can be based on public key
signatures, public key encryption, or preshared passphrases. There are efforts
to extend this to support Kerberos tickets [8] and handheld authenticators. It



should also be noted that IKE can support other key establishment mechanisms
(besides Diffie-Hellman), although none has been proposed yet'.

Furthermore, there are two variations of the Phase 1 message exchange, called
“main mode” and “aggressive mode.” Main mode provides identity protection,
by transmitting the identities of the peers encrypted, at the cost of three mes-
sage round-trips . Aggressive mode provides somewhat weaker guarantees, but
requires only three messages .

As a result, aggressive mode is very susceptible to untraceable? denial of ser-
vice (DoS) attacks against both computational and memory resources [9]. Main
mode is also susceptible to untraceable memory exhaustion DoS attacks, which
must be compensated for in the implementation using heuristics for detection
and avoidance. In particular:

— The Responder has to create state upon receiving the first message from the
Initiator, since the Phase 1 SA information is exchanged at that point. This
allows for a DoS attack on the Responder’s memory, using random source
IP addresses to send a flood of requests. To counter this, the Responder
could employ mechanisms similar to those employed in countering TCP SYN
attacks[10-12]. JFK avoids maintaining state at all as a result of receiving
the first message.

— An Initiator who is willing to go through the first message round-trip (and
thus identify her address) can cause the Responder to do a Diffie-Hellman
exponential generation as well as the secret key computation on reception
of the third message of the protocol. The Initiator could do the same with
the fifth message of the protocol, by including a large number of bogus
certificates, if the Responder blindly verifies all signatures. JFK mitigates
the effects of this attack by reusing the same exponential across different
sessions.

The second phase of the IKE protocol is commonly called “quick mode” and
results in IPsec SAs established between the two negotiating parties, through
a three-message exchange. Parameters such as the IP security protocol to use
(ESP/AH), security algorithms, the type of traffic that will be protected, etc.
are negotiated at this stage. Since the two parties have authenticated each other
and established a shared key during Phase 1, quick mode messages are encrypted
and authenticated using that information. Furthermore, it is possible to derive
the IPsec SA keying material from the shared key established during the Phase
1 Diffie-Hellman exchange. To the extent that multiple IPsec SAs between the
same two hosts are needed, this two-phase approach results in faster and more
lightweight negotiations (since the same authentication information and keying
material is reused).

Unfortunately, two hosts typically establish SAs protecting all the traffic
between them, limiting the benefits of the two-phase protocol to lightweight

! There is ongoing work (still in its early stages) in the IETF to use IKE as a transport
mechanism for Kerberos tickets, for use in protecting IPsec traffic.
2 The attacker can use a forged address when sending the first message in the exchange.



initiator responder

Initiator Cookie, proposed phasel sA

ookie, accepted Phasel SA

Initiator Diffie-Hellman value & Nonce

Responder Diffie-Hellman value & Nonce

Initiator signature, certs & identity

Responder signature, certs & identity

Fig. 1. IKE Main Mode exchange with certificates.

re-keying. If “Perfect Forward Secrecy” (PFS) is desired, this benefit is further
diluted. (PFS is an attribute of encrypted communications allowing for a long-
term key to be compromised without affecting the security of past session keys.)

Another problem of the two-phase nature of IKE manifests itself when IPsec
is used for fine-grained access control to network services. In such a mode, creden-
tials exchanged in the IKE protocol are used to authorize users when connecting
to specific services. Here, a complete Phase 1 & 2 exchange will have to be
done for each connection (or, more generally, traffic class) to be protected, since
credentials, such as public key certificates, are only exchanged during Phase 1.

IKE protects the identities of the Initiator and Responder from eavesdrop-
pers®. The “identities” include public keys, certificates, and other information
that would allow an eavesdropper to determine which principals are trying to
communicate. These identities can be independent of the IP addresses of the IKE
daemons that are negotiating (e.g., temporary addresses acquired via DHCP,
public workstations with smartcard dongles, etc.). However, since the Initiator
reveals her identity first (in message 5 of Main Mode), an attacker can pose as
the Responder until that point in the protocol. The attacker cannot complete the
protocol (since they do not possess the Responder’s private key), but they can
determine the Initiator’s identity. This attack is not possible on the Responder,

% Identity protection is provided only in Main Mode (also known as Identity Protection
Mode); Aggressive Mode does not provide Identity Protection for the Initiator.



since she can verify the identity of the Initiator before revealing her identity (in
message 6 of Main Mode). However, since most Responders would correspond
to servers (firewalls, web servers, etc.), the identity protection provided to them
seems not as useful as protecting the Initiator’s identity*. Fixing the protocol
to provide identity protection for the Initiator would involve reducing it to 5
messages and having the Responder send the contents of message 6 in message
4, with the positive side-effect of reducing the number of messages, but breaking
the message symmetry and protocol modularity.

Finally, thanks to the desire to support multiple authentication mechanisms
and different modes of operation (Aggressive vs. Main mode, Phase 1 / 2 distinc-
tion), both the protocol specification and the implementations tend to be bulky
and fairly complicated. These are undesirable properties for a critical component
of the IPsec architecture.

[13] points out many deficiencies in the IKE protocol, specification, and im-
plementation. It suggests removing several features of the protocol (e.g., aggres-
sive mode, public key encryption mode, etc.), restore the idea of stateless cookies,
and protect the Initiator’s (instead of the Responder’s) identity from an active
attacker. It also suggests some other features, such as one-way authentication
(similar to what is common practice when using SSL[14,15] on the web). These
major modifications would bring the IKE protocol closer to JFK, although they
would not completely address the DoS issues.

A measure of the complexity of IKE can be found in the analyses done in [16,
17]. No less than 13 different sub-protocols are identified in IKE, making under-
standing, implementation, and analysis of IKE challenging. While the analysis
did not reveal any attacks that would compromise the security of the protocol,
it did identify various potential attacks (DoS and otherwise) that are possible
under some walid interpretations of the specification and implementation deci-
sions.

4.2 Other Protocols

The predecessor to IKE, Photuris[2], first introduced the concept of cookies
to counter “blind” denial of service attacks. The protocol itself is n 6-message
variation of the Station to Station protocol. It is similar to IKE in the message
layout and purpose, except that the SA information has been moved to the third
message. For re-keying, a two-message exchange can be used to request a uni-
directional SPI (thus, to completely re-key, 4 messages are needed). Photuris is
vulnerable to the same computation-based DoS attack as IKE, mentioned above.

SKEME][18] shares many of the requirements for JFK, and many aspects of
its design were adopted in IKE. It serves more as a set of protocol building blocks,
rather than a specific protocol instance. Depending on the specific requirements
for the key management protocol, these blocks could be combined in several
ways. As a result of this modularization, both the number of round-trips and

* One case where protecting the Responder’s identity can be more useful is in peer-
to-peer scenarios.



the optional payloads and exchanges is quite high. The latter has a direct impact
on the implementation complexity (as seen in IKE itself). Another interesting
aspect of SKEME is its avoidance of digital signatures; public key encryption is
used instead, to provide authentication assurances. The reason behind this was
to allow both parties of the protocol to be able to repudiate the exchange.

SKIP[19] was an early proposal for an IPsec key management mechanism. It
uses long-term Diffie-Hellman public keys to derive long-term shared keys be-
tween parties, which is used to distribute session keys between the two parties.
The distribution of the session key occurs in-band, i.e., the session key is en-
crypted with the long-term key and is injected in the encrypted packet header.
While this scheme has good synchronization properties in terms of re-keying, it
lacks any provision for PFS. Furthermore, there is no identity protection pro-
vided, since the certificates used to verify the Diffie-Hellman public keys are
(by design) publicly available, and the source/destination master identities are
contained in each packet (so a receiver can retrieve the sender’s Diffie-Hellman
certificate). The latter can be used to mount a DoS attack on a receiver, by forc-
ing them to retrieve and verify a Diffie-Hellman certificate, and then compute
the Diffie-Hellman shared secret.

References

1. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE). Request for Comments
(Proposed Standard) 2409, Internet Engineering Task Force (1998)

2. Karn, P., Simpson, W.: Photuris: Session-key management protocol. Request for
Comments 2522, Internet Engineering Task Force (1999)

3. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: keyed-hashing for message au-
thentication. Request for Comments 2104, Internet Engineering Task Force (1997)

4. Sheffer, Y., Krawczyk, H., Aboba, B.: PIC, a pre-IKE credential provisioning
protocol. Internet Draft, Internet Engineering Task Force (2001) Work in progress.

5. Arsenault, A., Farrell, S.: Securely available credentials - requirements. Request
for Comments 3157, Internet Engineering Task Force (2001)

6. Gustafson, D., Just, M., Nystrom, M.: Securely available credentials - credential
server framework. Internet Draft, Internet Engineering Task Force (2001) Work in
progress.

7. Maughan, D., Schertler, M., Schneider, M., Turner, J.: Internet security associa-
tion and key management protocol (ISAKMP). Request for Comments (Proposed
Standard) 2408, Internet Engineering Task Force (1998)

8. Miller, S.P., Neuman, B.C., Schiller, J.I., Saltzer, J.H.: Kerberos Authentication
and Authorization System. Technical report, MIT (1987)

9. Simpson, W.A.: IKE/ISAKMP Considered Harmful. USENIX ;login: (1999)

10. Heberlein, L., Bishop, M.: Attack Class: Address Spoofing. In: Proceedings of the
19th National Information Systems Security Conference. (1996) 371-377

11. CERT: Advisory CA-96.21: TCP SYN Flooding.
ftp://info.cert.org/pub/cert_advisories/CA-96.21.tcp_syn_flooding (1996)

12. Schuba, C., Krsul, I., Kuhn, M., Spafford, E., Sundaram, A., Zamboni, D.: Analysis
of a denial of service attack on tcp. In: IEEE Security and Privacy Conference.
(1997) 208223



13.

14.

15.

16.

17.

18.

19.

Kaufman, C., et al.: Code-preserving Simplifications and Improvements to IKE.
Internet Draft Internet Engineering Task Force (2001) Work in progress.
Hickman, K. Secure Socket Library (SSL).
http:/ /home netscape.com/security/techbriefs/ssl.html (1995)

Dierks, T., Allen, C.: The TLS protocol version 1.0. Request for Comments
(Proposed Standard) 2246, Internet Engineering Task Force (1999)

Meadows, C.: Analysis of the Internet Key Exchange protocol using the NRL
protocol analyzer. In: Proc. of the 1999 IEEE Symposium on Security and Privacy.
(1999) 216231

Meadows, C.: Open issues in formal methods for cryptographic protocol anal-
ysis. In: Proc. of DARPA Information Survivability Conference and Exposition
(DISCEX 2000), IEEE Computer Society Press (2000) 237-250

Krawczyk, H.: SKEME: A Versatile Secure Key Exchange Mechanism for Internet.
In: Proc. of Network and Distributed System Security Symposium (NDSS). (1996)
Aziz, A., Patterson, M.: Simple Key Management for Internet Protocols (SKIP.
In: Proc. of the 1995 INET conference. (1995)



