
A Secure Plan

Michael Hicks and Angelos D. Keromytis?

Distributed Systems Lab
CIS Department, University of Pennsylvania
200 S. 33rd Str., Philadelphia, PA 19104, USA

fmwh,angelosg@dsl.cis.upenn.edu

Abstract. Active Networks promise greater
exibility than current net-
works, but threaten safety and security by virtue of their programma-
bility. In this paper, we describe the design and implementation of a
security architecture for the active network PLANet [HMA+99]. Secu-
rity is obtained with a two-level architecture that combines a func-
tionally restricted packet language, PLAN [HKM+98], with an envi-
ronment of general-purpose service routines governed by trust manage-

ment [BFL96]. In particular, we employ a technique which expands or
contracts a packet's service environment based on its level of privilege,
termed namespace-based security. As an application of our security archi-
tecture, we outline the design and implementation of an active-network
�rewall. We �nd that the addition of the �rewall imposes an approxi-
mately 34% latency overhead and as little as a 6.7% space overhead to
incoming packets.

1 Introduction

Active Networks o�er the ability to program the network on a per-router, per-
user, or even per-packet basis. Unfortunately, this added programmability com-
promises the security of the system by allowing a wider range of potential attacks.
Any feasible Active Network architecture therefore requires strong security guar-
antees. We would like these guarantees to come at the lowest possible price to
the
exibility, performance, and usability of the system.

This paper presents the design and implementation of a security architec-
ture for PLANet [HMA+99], an active internetwork based on PLAN, the Packet
Language for Active Networks [HKM+98]. Our approach is to partition the prob-
lem into two levels: language-based security for PLAN programs, complemented
by namespace-based security for more general router services, governed by trust
management. We brie
y discuss PLAN and its role in this architecture, but focus
more attention on service security. We present both architecture and implemen-
tation, and conclude with some applications of our approach, including a simple
�rewall that `�lters' active packets. [HK99], an extended version of this paper,
contains more detailed motivation and performance analysis.

? This work was supported by DARPA under Contract #N66001-96-C-852, with ad-
ditional support from the Intel Corporation.

PLAN packet

core services

protocol A routing

network management

service installation

resource
allocation

protocol B

Fig. 1. PLANet's security architecture.

2 Architecture

Our security architecture is illustrated in Figure 1. The solid boxes de�ne the
two levels of the architecture: the contents of the central box de�ne the PLAN

level which is usable without need of credentials, while the remaining area forms
the service level. This architecture falls along functional boundaries: all PLAN
programs, by their nature, are safe (as de�ned below) and so may run unauthen-
ticated, while, in general, service routines are unsafe, and must be partitioned
by level of trust, visualized by the dotted boxes. We augment the PLAN level
with a �xed set of `core services' which are known to be functionally safe.

This architecture is designed to guard against the standard threats to compu-
tational resources and their contents [AAKS99]. In particular, we defend against
attacks that would deny service, seek to obtain unauthorized content, and mis-
represent (spoof) identity. We explain PLAN's role in defending against these
attacks below.

2.1 PLAN

PLAN [HKM+98] is a small functional language with syntax similar to ML [Ler,
MTH90]. To express remote computation, it includes a primitive OnRemote

(among others) that evaluates an expression at a remote node. Invoking OnRemote
will result in a newly spawned packet.

By design, the language has properties that prevent some attacks. PLAN is
resource- and expression-limited, thus preventing CPU and memory denial-of-
service attacks. For example, all PLAN programs are guaranteed to terminate1,
since PLAN does not provide a means to express non-�xed-length iteration or re-
cursion. Additionally, PLAN programs are isolated from one another since there
is no means of direct communication among them, and because the language's

1 PLAN programs terminate as long as the services called also terminate.

strong typing and garbage collection prevent indirect means, such as through
pointer swizzling or bu�er over
ows. Finally, a network resource bound counter,
similar to IP's \Time to Live" (TTL) �eld, is used to bound network resources.

3 Service Security via Trust Management

Because of their general-purpose nature, service routines may perform actions
which, if exploited, could be used to mount an attack. A radical approach to
this problem would be to prevent any service routine from being installed that
could potentially harm the node. However, this would preclude the addition
of service routines|for example, network management operations|that should
be available to trusted users. We thus employ security mechanisms which allow
authorized programs to access potentially unsafe service routines.

3.1 Trust Management

In determining the form of these security mechanisms, we arrived at some ba-
sic requirements. First, the mechanisms should be simple to understand and
employ. Second, security policies should be modi�able as needed, while the sys-
tem is operating. Furthermore, policy mechanisms should be
exible enough to
anticipate future application needs. Finally, security mechanisms must scale to
support increasing numbers of principals and their trust relations. To meet these
requirements, our service security relies on trust management [BFL96, BFIK99].

Trust management assigns some level of privilege (or trust) to a user, or
principal, of the system. In particular, if a running PLAN program wishes to
invoke a privileged service routine or alter a service parameter, the principal as-
sociated with the packet must be authenticated, and then the operation must be
authorized. If either step fails, the operation is denied. We consider the question
of policy and mechanism for authorization below; details about our particular
implementation of authentication and authorization are presented in the next
section.

3.2 Policy and Mechanism

Before applying trust management, we must consider what sorts of policies we
would like to express, and what particular mechanisms we shall use to enforce
these policies. For our system, we want our policies to express what services,
above the core services, are available to certain users. We also �nd it convenient
to indicate which services should be unavailable for a particular user; this will
be motivated in Section 5. For purposes of simplicity and scalability, we choose
to map sets of principals to sets of services. We also need to manage delegation
policies with regard to these mappings. For example, we might specify that the
services in set s may be accessed not only by principal p, but also by those
principals authorized by p. In keeping with our requirements, this policy should
scale to include many nodes, principals, services; and be alterable on-the-
y.

Furthermore, we want to specify not only whether a service routine may be
invoked, but how it may be used. For example, a resident state service which
allows packets to leave state on the routers might apportion di�erent amounts
of space to di�erent users. We should also be able to specify general resource
usage parameters, such as CPU and memory use.

To enforce security policy we require strong principal authentication, and use
a policy manager on every node; more details are given in the next section. In
our system, packets must authenticate themselves at some point before accessing
privileged services; at this time, the appropriate services are added to (or sub-
tracted from) the packet's current service symbol table. We call this approach
namespace-based security. Since PLAN is strongly typed and looks up services
on an as-needed basis, programs are incapable of invoking code outside of this
updated table.

Additionally, we allow those services which may require policy-based param-
eterization to query the policy manager as necessary during their execution. For
example, the resident state service mentioned above would query the local policy
to determine how much memory the current principal was allowed to occupy.

We feel there are some compelling advantages to this approach. First, name-
space-based policies are simple to formulate and easy to change. Second, because
namespace-based security is centrally-administered, individual service routines
may be written without concern for security, and policies may change dynam-
ically without worry of inconsistency. Furthermore, unauthenticated programs
may access the core services without additional performance penalty. Finally,
because namespace-based security is not by itself su�cient, we allow services to
formulate their own usage policies.

There is still some work to be done in our current system. Namespace-based
security only applies to PLAN service routine calls, not calls between service rou-
tines. This is slightly more di�cult, but entirely possible, since Caml, our service
implementation language, provides a mechanism which may be used to imple-
ment namespace-based security: module thinning. The use of module thinning
has been explored for active networks in [Ale98] and for mobile agent systems
in [LOW98]. Also, while we have experimented with mechanisms for enforcing
resource usage, we have yet to arrive at ones that are su�ciently lightweight.
Relevant details may be found in [Hic98].

4 Implementation

4.1 Authentication

Before a PLAN program may invoke a trusted service, its associated principal
must be determined; this is the process of authentication. Authentication is
typically done in a public-key setting by verifying a digital signature in the
context of some communication (e.g., a packet). In PLAN, one obvious link
between communication and authentication is the chunk.

A chunk (or code hunk) may be thought of as a function that is waiting
to be applied. In PLAN, chunks are �rst-class|they may be manipulated as

data|and consist internally of some PLAN code, a function name, and a list of
values to be used as arguments during the application. A chunk is typically used
as an argument to OnRemote to specify some code to evaluate remotely. A chunk
may also be evaluated locally by passing it to the eval service, which resolves
the function name with the current environment, performs the application, and
returns the result.

We have added a service called authEval which takes as arguments a chunk,
a digital signature, and a public key. authEval veri�es the signature against the
binary representation of the chunk, and if successful, the chunk is evaluated.

There are two key advantages to this approach. One is that a principal signs
exactly the piece of code he wants to execute, and may only have extra privilege
while executing that piece of code. Second, only those programs which require
authorization will have the extra time and space overheads. However, there is
no protection against replay attacks, and public key operations are notoriously
slow. Furthermore, authentication is only unidirectional (principal to node), thus
providing less con�dence to the caller. We mitigate these problems by using a
variant of the mutual authentication protocol described in [AAKS98].

4.2 Authorization

As our policy manager, we have chosen to use the Query Certi�cate Man-
ager (QCM) [GJ98], which provides comprehensive security credential loca-
tion and retrieval services, employing a distributed ACL. While in this paper
we are making use of QCM, our architecture is designed so that other policy
managers be used instead. In particular, we are also experimenting with the
KeyNote [BFIK99] trust-management system.

QCM is used to specify the services to be added to or subtracted from the de-
fault service-environment by associating certain thicken and thin sets of services
with a principal or set of principals. Once a principal has been authenticated,
these sets are used to modify the default environment. The resulting service
environment is then used during subsequent chunk evaluation. As an optimiza-
tion, we can cache this environment for future reference, thus avoiding repeated
invocations of QCM and reconstructions of the environment.

A key advantage of using QCM is that it can be used for more than just
specifying sets of principals on a per-node basis. In particular, sets described
in a distributed manner impose no additional query complexity. For example, a
node A may de�ne a set which partially resides at another node B:

l = f p1, p2, ::: , pn g union B$m

If the authorization service on Amakes a membership test on set l, QCM will
automatically queryB if necessary. QCMmay also make use of certi�cates, which
are signed assertions about set relationships, to short-circuit remote queries.
These may be passed as additional arguments to authEval, or may be obtained
during node-node authentication. This allows QCM to implement both push-
and pull-based information-retrieval.

5 A Simple Active Firewall

As an application of our architecture, we implemented a simple active �rewall.
Typically, �rewalls �lter certain types of packets, such as all TCP connection
requests on certain port numbers. Usually such packets are easily identi�ed by
their protocol headers. However, in PLANet, and indeed in any active-packet
system, there is no quick way to assess a packet's functionality.

Our approach is that rather than �lter packets at the �rewall, we associate
with them a thinned service environment in which any potentially harmful ser-
vices are removed. The packets may then be evaluated inside the trusted network
using only those services. While this may seem to contradict our premise stated
in Section 2 that the default environment should consist only of `safe' services,
in the context of a trusted Intranet, we would expect that the default privilege
allowed to local packets exceeds that of foreign packets. Furthermore, we would
not want to impose the overhead of authentication and authorization on local
packets in the general case.

To thin the environment of foreign packets, our �rewall associates them with
a guest identity that has the appropriate policy. To do this, the �rewall encap-
sulates each packet with a small wrapper which calls authEval with the original
chunk, using the guest identity. In general, this would require the �rewall to
sign all incoming packets. However, because the guest environment will provide
less privilege than the default environment, we should be able to conceivably
avoid the cryptographic cost: any authenticating principal whose environment is
thinned and not thickened can be `taken at his word.'

In the base PLANet implementation, a two-hop ping takes 2.13 ms for a
minimally-sized packet (80 bytes) and 3.06 ms for a maximally-sized one (1500
bytes). Changing the middle node to the `signing �rewall' adds 37% and 32% to
the round-trip times, respectively, raising them to 2.91 and 4.03 ms. Between 1=3
and 1=2 of this overhead is attributable to signing and veri�cation, depending on
the packet size. For the �rewall, the remaining overhead is due to encapsulation
costs (which requires extra marshalling and copying), while for the end-host it is
due to decapsulation and additional interpretation costs. Parallelism and special-
purpose hardware can further reduce cryptographic costs and improve latency
and throughput. If we eliminate the cryptographic operations, we reduce the
end-to-end ping times to 2.55 and 3.41 ms for minimal and maximal payload,
respectively. This reduces the �rewall-induced overhead to 20% and 11%. A
smarter PLAN interpreter would also considerably improve overall performance.

The �rewall also imposes a �xed 101-byte space overhead due to the extra
code and signature that is attached to the incoming packets. This translates
to 126% and 6.8% space overhead for the minimal and maximal payload pack-
ets respectively. One way of mitigating this overhead is for PLAN to support
code caching and language-level remote-references. Since all PLAN values are
immutable, the contents of a remote reference may be safely cached without the
need for a coherence protocol.

6 Related Work

Research in the area of security for active networks is in its early stages. The
SANE [AAKS98] architecture is part of the SwitchWare Project [AAH+98] at
the University of Pennsylvania. SANE is currently used in conjunction with the
ALIEN architecture [Ale98]. Security is achieved in ALIEN through a combina-
tion of module thinning and type safety. Similar approaches have been taken
in [LR99, BSP+95, vE99]. Other language-based protection schemes can be
found in [BSP+95, CLFL94, HCC98, LOW98, Moo98]. The main di�erence be-
tween this work and SANE lies in that we can depend on a provably safe language
(PLAN) for those packets that do not require special privileges. Furthermore,
programming constructs available in PLAN (e.g., chunks), considerably ease the
task of implementing security abstractions.

A working group within the Active Networks project has been de�ning a
common security meta-architecture [Mur98]. However, this architecture has not
become concrete enough for implementation.

Secure PLAN is currently being extended to support validation and veri�ca-
tion [NL96, Nec97] for active extensions.

We have demonstrated that our architecture addresses possible threats while
still preserving the
exibility and usability of the system. This architecture is
based on language safety, authentication, and trust management. We discussed
the practicality and acceptable performance of our approach experimentally, in
the context of an active �rewall.

References

[AAH+98] D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. D. Keromytis,
J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith. The Switch-
Ware Active Network Architecture. IEEE Network Magazine, special issue

on Active and Programmable Networks, 12(3):29{36, 1998.
[AAKS98] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith. A

Secure Active Network Environment Architecture: Realization in SwitchWare.
IEEE Network Magazine, special issue on Active and Programmable Networks,
12(3):37{45, 1998.

[AAKS99] D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith. Se-
curity in Active Networks. In Secure Internet Programming [VJ99].

[Ale98] D. S. Alexander. ALIEN: A Generalized Computing Model of Active Networks.
PhD thesis, University of Pennsylvania, September 1998.

[BFIK99] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The Role of Trust
Management in Distributed Systems Security. In Secure Internet Program-

ming [VJ99].
[BFL96] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In

Proceedings of the 17th Symposium on Security and Privacy, pages 164{173.
IEEE Computer Society Press, Los Alamitos, 1996.

[BSP+95] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker,
S. Eggers, and C. Chambers. Extensibility, Safety and Performance in the
SPIN Operating System. In Proceedings of 15th Symposium on Operating

Systems Principles, pages 267{284, December 1995.

[CLFL94] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and Pro-
tection in a Single-Address-Space Operating System. In ACM Transactions

on Computer systems, November 1994.
[GJ98] Carl A. Gunter and Trevor Jim. Policy-Directed Certi�cate Retrieval. http:

//www.cis.upenn.edu/~qcm, 1998.
[HCC98] C. Hawblitzel, C. Chang, and G. Czajkowski. Implementing Multiple Protec-

tion Domains in Java. In Proceedings of the 1998 USENIX Annual Technical

Conference, pages 259{270, June 1998.
[Hic98] Michael Hicks. PLAN System Security. Technical Report MS-CIS-98-25, De-

partment of Computer and Information Science, University of Pennsylvania,
April 1998.

[HK99] Michael Hicks and Angelos D. Keromytis. A Secure PLAN. Technical Report
MS-CIS-99-14, Department of Computer and Information Science, University
of Pennsylvania, May 1999.

[HKM+98] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter, and
Scott Nettles. PLAN: A Packet Language for Active Networks. In Proceed-

ings of the Third ACM SIGPLAN International Conference on Functional

Programming Languages, pages 86{93. ACM, 1998.
[HMA+99] Michael Hicks, Jonathan T. Moore, D. Scott Alexander, Carl A. Gunter,

and Scott Nettles. PLANet: An Active Internetwork. In Proceedings of the

Eighteenth IEEE Computer and Communication Society INFOCOM Confer-

ence, pages 1124{1133. IEEE, 1999.
[Ler] Xavier Leroy. The Caml Special Light System (Release 1.10). http:

//pauillac.inria.fr/ocaml.
[LOW98] J. Y. Levy, J. K. Ousterhout, and B. B. Welch. The Safe-Tcl Security Model.

In Proceedings of the 1998 USENIX Annual Technical Conference, pages 271{
282, June 1998.

[LR99] X. Leroy and F. Rouaix. Security properties of typed applets. In Secure

Internet Programming [VJ99].
[Moo98] J. Moore. Mobile Code Security Techniques. Technical Report MS-CIS-98-28,

University of Pennsylvania, May 1998.
[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The De�nition of Standard

ML. The MIT Press, 1990.
[Mur98] Security Architecture for Active Nets, June 1998. Draft available at http:

//www.ittc.ukans.edu/~ansecure/0079.html.
[Nec97] George C. Necula. Proof-Carrying Code. In Proceedings of the 24th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 106{119. ACM Press, New York, January 1997.
[NL96] George C. Necula and Peter Lee. Safe Kernel Extensions Without Run-Time

Checking. In Second Symposium on Operating System Design and Implemen-

tation, pages 229{243. Usenix, Seattle, 1996.
[vE99] T. von Eicken. J-Kernel a capability based operating system for Java. In

Secure Internet Programming [VJ99].
[VJ99] Jan Vitek and Christian Jensen. Secure Internet Programming: Security Is-

sues for Mobile and Distributed Objects. Lecture Notes in Computer Science.
Springer-Verlag Inc., New York, NY, USA, 1999.

