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Abstract— The design principle of maximizing local autonomy
except when it conflicts with global robustness has led to a scal-
able Internet with enormous heterogeneity of both applications
and infrastructure. These properties have not been achieved in
the mechanisms for specifying and enforcing security policies.

The STRONGMAN (for Scalable TRust Of Next Generation
MANagement) system [9], [10] offers three new approaches to
scalability, applying the principle of local policy enforcement
complying with global security policies. First is the use of a
compliance checker to provide great local autonomy within the
constraints of a global security policy. Second is a mechanism
to compose policy rules into a coherent enforceable set, eg., at
the boundaries of two locally autonomous application domains.
Third is the “lazy instantiation” of policies to reduce the amount
of state that enforcement points need to maintain.

In this paper, we focus on the issues of scalability and
heterogeneity.

I. INTRODUCTION

Internet security is a rapidly growing challenge. Damage
of computing resources (e.g., hard drives erased) is only one
example of possible malice. Increases in both the number
and heterogeneity of systems attached to the net worsens the
problem, as techniques to manage this scale and complexity
have been slow to emerge. Many aspects of network design
and implementation have managed to scale well, mainly as a
byproduct of intelligent application of the end-to-end design
principle ([12], [4]), which states that properties that must
hold end-to-end are provided by mechanisms at the end points.
Application of this principle has kept the network simple and
allowed great autonomy in implementing these mechanisms.
Unfortunately, security has not benefited from this philosophy,
despite its end-to-end nature.

By the end-to-end argument, hosts should be responsible
for the perceived security of the network at large. However,
the prevalence end-to-end un-friendly components, such as
firewalls and Virtual Private Networks (VPNS), serves as proof
that other factors come into play. We argue that three such
factors, all related to an organization’s security posture (and
policies) have played an important role in forcing security
functionality inside the network infrastructure.

1) An organization’s policies must typically be specified
at the granularity of administrative domains (e.g., a
corporate network), and not only at the granularity of
individual hosts. This becomes difficult to implement as
the size of a typical organization (in terms of workstation
and other networked computing elements) increases.
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2) Some operating systems have been designed under the
assumption that network security is mostly handled by
third parties (firewalls), thus lacking enforcement mech-
anisms. While this is a second-order effect of the current
state of affairs in security design, it creates enough
inertia against change towards a more architecturally
sound approach.

3) Many security policies adopt the “hard shell, soft in-
terior” approach, by granting more rights to “local”
(and, by implication, trusted) machines and entities.
Intuitively, we would expect, eg., employees of an
organization to have greater access to that organization’s
network and data than outsiders — which is in fact what
these security policies attempt to express. However, such
designs are taken to extremes and result in such a “soft
interior” (in terms of internal defense mechanisms) that,
not only malicious insiders become the most important
threat, but the increased level of connectivity of orga-
nizations results in a race between mechanisms such as
firewalls on the one hand and network connectivity on
the other, in very unfavorable terms for the defense.

Consider, for example, the pervasive use of firewalls, which
enforce a single security policy at network boundaries to pro-
tect multiple hosts behind the boundaries from certain classes
of security problems. To implement the policy globally, the
network topology must be restricted to pass all traffic through
the firewall. Apart from a firewall’s negative consequences
for Internet routing, flow control, and performance, when the
firewall fails or is otherwise bypassed, the entire internal
network is at the mercy of the intruder. Traditional firewall
work has focused on nodes and enforcement mechanisms
rather than overall network protection and policy coordination.
Thus, in some sense, security mechanisms and access control
have interfered with simplicity and scalability.

Any alternative that attempts to avoid the performance
bottleneck of a centralized firewall must support a simple
(and consistent) specification of security policy for an entire
administrative domain. In other words, there must be means
of ensuring that the local enforcement actually conforms to
the larger (“global™) policy. Since manual or semi-automatic
configuration of nodes and protocols to conform to a global
policy has been shown to be problematic and error-prone
[7], automatic techniques relying on a single method of
specification are desirable.

It may seem natural to generalize the solution proposed
by distributed firewalls ([2], [8]) or other similar approaches
[1], [6], [5], [11] and design a “universal” high-level pol-
icy specification language. Such a language would, ideally,
specify global policies that must be enforced across multi-
ple heterogeneous domains. However, security policies are
often application-dependent. “Universal” high-level policy lan-
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guages tend to be feature-rich and complex, and are therefore
clumsy and lead to mistakes. Furthermore, such languages
often presume homogeneity, and cannot handle mixtures of
multiple mechanisms/languages for different parts of the same
network.

We argue that the correct approach is an architecture that
ties together multiple security mechanisms within a single
system image, that supports many application-specific pol-
icy languages, that automatically distributes and uniformly
enforces the single security policy across all enforcement
points, and that allows enforcement points to be chosen
appropriately to meet both security and performance require-
ments. Further, this architecture must scale with the growth of
the network in several dimensions (humber of users, hosts,
protocols/applications, and security policies tying all these
together).

Our STRONGMAN Architecture [10] addresses these re-
quirements. The main components of our architecture are the
use of a policy compliance checker to provide great local
autonomy within the constraints of a global security policy,
a mechanism for composing policy rules into a coherent
enforceable set, and “lazy instantiation” of policies to reduce
the amount of state that enforcement points need to maintain.
While we have described the STRONGMAN architecture at
length elsewhere, here we pay particular attention to scalability
and heterogeneity issues first analyzed in Keromytis [9].

Il. THE STRONGMAN ARCHITECTURE

Following our previous discussion, we have set certain
requirements for our proposed system. First, it must handle
growth in the number of users, applications, enforcement
points, and rules pertaining to these. A corollary to this is
that the most common operations (i.e., policy updates) must
be very cheap. Second, security policies for a particular appli-
cation should be specifiable in an application-specific language
or application-specific extension. Third, administrators should
be able to independently specify policies over their own
domain: this should be true whether the administrator manages
particular applications within a security domain, or manages a

sub-domain of a larger administrative domain. In other words,
the system must support privilege delegation and hierarchical
management.

These requirements shape our design of the STRONGMAN
architecture. An overview of the policy flow in our architecture
is shown in Figure 1. It should be immediately clear that
there is a distinction between high and low level policy.
In particular, we envision a multiplicity of high-level policy
specification mechanisms (different languages, GUIs, etc.), all
translating to the same lower-level policy expression language.
A powerful, flexible, and extensible low-level mechanism that
is used as a common “policy interoperability layer” allows
us to use the same policy model across different applications,
without mandating the use of any particular policy front-end.
This architecture has an intentional resemblance to the IP
“hourglass”, and resolves heterogeneity in similar ways, e.g.,
the mapping of the interoperability layer onto a particular
enforcement device, or the servicing of multiple applications
with a policy lingua franca.

As the figure also implies, policy is enforced in a decentral-
ized manner. STRONGMAN shifts as much of the operational
burden as possible to the end users’ systems because tradi-
tional enforcement points are generally overloaded with pro-
cessing requests and mediating access. In our architecture, we
can have an arbitrary number of enforcement points, deployed
at the granularity necessary to enforce very fine-grained access
control. This, however, can lead to excessively large numbers
of policy rules (in the worst case, the cross-product of the
number of users, number of nodes, and number of services
per node). In order to minimize the resources consumed by
policy storage and processing at each enforcement point, the
low-level policy system supports “lazy instantiation” of policy.
In other words, an enforcement point should only learn those
parts of the global policy that it actually has to enforce as
a result of user service access patterns. A further benefit of
this approach is that policy may be treated as “soft state,” and
thus be discarded by the enforcement point when resources
are running low, and recovered when space permits or after a
crash.

Other important aspects of our architecture, not shown in
Figure 1, include:

« Independent policy specifications can be composed in a
manner which does not violate any of them, because mul-
tiple independently-specified policies may be managed at
a single enforcement point.

o Users are identified by their public keys (each user may
have multiple keys, for different purposes/applications).
These public keys are used in the context of various
protocols to authenticate the users to specific services.
This also helps prevent malicious users from tampering
with policies provided to enforcement points via “lazy
policy instantiation”.

o The low-level policy system allows for decentralized
and hierarchical management and supports privilege del-
egation to other users. Note that delegation allows any
user to be treated as an “administrator” of her dele-
gatees; conversely, administrators in such a system can
simply be viewed as users with very broad privileges.



permit KEY1 if
using strong encryption and
target in 192.168.1.0/24

permit USERGROUP4 if
using authentication and
origin in LOCALNET and
target in WEBSERVERS

Fig. 2. A high-level IPsec policy, enforced at the network layer.

This permits both decentralized management (different
administrators/users are made responsible for delegating
and potentially refining different sets of privileges), and
collaborative networking (by treating the remote adminis-
trator as a local user with specific privileges she can then
delegate to her users). Limited privileges can be conferred
to administrators of other domains, who can then delegate
these to their users appropriately; this allows for Intranet-
style collaborations.

Our architecture implements these design principles by
using the KeyNote [3] trust-management system as a basis
for expressing and distributing low-level security policy. In
the next few subsections we give an overview of KeyNote,
describe the policy translation and composition mechanisms,
and discuss how policy is distributed (and how “lazy instanti-
ation” is implemented) in our system.

A. KeyNote

KeyNote is a simple trust-management system and language
developed to support a variety of applications. Although it is
beyond the scope of this paper to give a complete tutorial or
reference on KeyNote syntax and semantics (for which the
reader is referred to [3]), we review a few basic concepts to
give the reader a taste of what is going on.

The basic service provided by the KeyNote system is com-
pliance checking; that is, checking whether a proposed action
conforms to local policy. Actions in KeyNote are specified
as a set of name-value pairs, called an Action Attribute Set.
Policies are written in the KeyNote assertion language and
either accept or reject action attribute sets presented to it.
Policies can be broken up and distributed via credentials,
which are signed assertions that can be sent over a network
and to which a local policy can defer in making its decisions.
The credential mechanism allows for complex graphs of trust,
in which credentials signed by several entities are considered
when authorizing actions. Users have a variety of credentials,
for the different services and nodes they need to access.

Each service that needs to mediate access, queries its local
compliance checker on a per-request basis (what constitutes
a “request” depends on the specific service and protocol).
The compliance checker can be implemented as a library that
is linked against every service, as a daemon that serves all
processes in a host, or as a network service (this latter case
requires provisions for secure communications between the
policy enforcer and the compliance checker).

B. Policy Trandation and Composition

In STRONGMAN, policy for different network applications
can be expressed in various high-level policy languages or

allow USERGROUP5 if file "/foo/bar._html"

allow ANGELOS if
directory "/confidential™ and
source in LOCALNETWORK

Fig. 3. A high-level web access policy, enforced by the web server.

systems, each fine-tuned to the particular application. Each
such language is processed by a specialized compiler that can
take into consideration such information as network topology
or a user database and produces a set of KeyNote credentials.
At the absolute minimum, such a compiler needs a knowl-
edge of the public keys identifying the users in the system.
Other information is necessary on a per-application basis.
For example, knowledge of the network topology is typically
useful in specifying packet filtering policy; for web content
access control, on the other hand, the web servers’ contents
and directory layout are probably more useful. Our proof-
of-concept languages (examples are shown in Figures 2 and
3) use a template-based mechanism for generating KeyNote
credentials.

This decoupling of high and low level policy specification
permits a more modular and extensible approach, since lan-
guages may be replaced, modified, or created without affecting
the underlying system. Heterogeneity is achieved by the design
with its approach of localized adaptation. Note that the trans-
lation from KeyNote to architecture-specific formats allows
new types of machines to be used in the overall architecture
by building a single adaptor, that is, the one which converts
KeyNote to the local format. Thus, if a new device is added
to the system, it is a part of the access control enforcement
system once KeyNote is able to be translated to its device-
specific access control enforcement mechanism. Likewise,
the translation from application-specific policy languages to
KeyNote’s common representation of access control policy
allows many new distributed applications to be built with user-
comprehensible domain-specific policy languages. It is our
belief that almost any access control semantics can be captured
within this framework.

Our architecture requires each high-level language or GUI to
include a “referral” primitive. A referral is simply a reference
to a decision made by another language/enforcement point
(typically lower in the protocol stack). This primitive allows us
to perform policy composition at enforcement time; decisions
made by one enforcement mechanism (e.g., IPsec) are made
available to higher-level enforcement mechanisms and can be
taken into consideration when making an access control deci-
sion. An example of this is shown in Figure 4. The only needed
coordination between two policy domains is determining what
kind of information (encoded in the referrals) needs to be
generated and consumed respectively.

To complete the composition discussion, all that is necessary
is a channel to propagate this information across enforce-
ment layers. In our system, this is done on a case-by-case
basis. For example, IPsec information can be propagated
higher in the protocol stack by suitably modifying the Unix
get sockopt (2) system call; in the case of a web server and
SSL, the information is readily available through the SSL data



structures (since the SSL and the web access control enforce-
ment are both done in the context of a single process address
space). This approach is sufficient for policy interaction across
network layers, but would not work for arbitrary policy domain
interaction.

C. Credential Management

Following our design decision of shifting as much as
possible of the operational burden away from the enforcement
points and to the users’ systems, we make the users responsible
for presenting the necessary credentials to the enforcement
points they access. Thus, the enforcement points dynamically
“learn” those parts of the global policy that are relevant to a
particular request. It is in the interest of the user to present
the correct credentials, in order to obtain service.

Compiled credentials are available to users through policy
repositories. These credentials are signed by the administra-
tor’s key and contain the various conditions under which a
specific user (as identified by her key in the credential) is
allowed to access a service. The translation of the policy rule
in Figure 4 is shown in Figure 5.

Users who wish to gain access to some service first need
to acquire a fresh credential from one of the repositories. It is
not necessary to protect the credentials as they are transferred
over the network, since they are self-protected by virtue of
being signed®. Users then provide these credentials to the
relevant service (web server, firewall, etc.) through a protocol-
specific mechanism. For example, in the case of IPsec, these
credentials are passed on to the local key management daemon
which then establishes cryptographic context with the remote
firewall or end system. In the case of firewalls in particular,
the user’s system can either depend on a signaling mechanism
(as is being developed at the IETF IP Security Policy Working
Group) to detect their existence, or can statically analyze the
KeyNote credentials to determine what actions need to be
taken when trying to access specific services, networks, or
end-systems.

It is also possible to pass KeyNote credentials in the
TLS/SSL protocol. For protocols where this is not possible
(e.g., SSHv1), an out-of-band mechanism can be used instead.
We have used a simple web server script interface for submit-
ting credentials to be considered in the context of an access
control decision; credentials are passed as arguments to a CGI
script that makes them available to the web server access
control mechanism. To avoid DoS attacks, entries submitted
in this manner are periodically purged (in an LRU manner).

Since policy is expressed is terms of credentials issued
to users, it need not be distributed synchronously to the
enforcement points. As noted above, enforcement points do not
need to store all credentials and rules; rather, they learn rules
through “lazy policy instantiation” as users try to gain access
to controlled resources. If needed credentials were discarded
because of resource scarcity, the affected users will simply
have to re-submit them with their next access.

11t is possible to provide credential-confidentiality by encrypting each
credential with the public key of the intended recipient.

allow USER_ROOT if
directory "/confidential™ and
source in LOCALNETWORK and
(application IPsec says
"'strong encryption™ or
application SSL says
"very strong encryption™)

Fig. 4. Web access policy taking into consideration decisions
made by the IPsec and SSL protocols. The information on
USER_ROOT and LOCALNETWORK are specified in separate
databases, which the compiler takes into consideration when
compiling these rules to KeyNote credentials.

Authorizer: ADMINISTRATOR_KEY

Licensees: USER_ROOT_KEY

Conditions: app_domain == "web access" &&
directory 7= ""/confidential/.*" &&
(source_address <= "192.168.001.255" &&
source_address >= "192.168.001.000") &&
(ipsec_result == "strong encryption™ ||
ssl_result ==

"very strong encryption™);
Signature: ...

Fig. 5. Translation of the policy rule from Figure 4 to a KeyNote
credential. The public keys and the digital signature are omitted
in the interests of readability.

Adding a new user or granting more privileges to an existing
user is simply a matter of issuing a new credential (note
that both operations are equivalent). The inverse operation,
removing a user or revoking issued privilege, can be more
expensive: in the simple case, a user’s credentials can be
allowed to expire; this permits a window of access, between
the time the decision is taken to revoke a user’s privileges and
the time the relevant credentials expire. For those cases where
this is adequate, there is no additional overhead. This argues
for relatively short-lived credentials, which the users (rather,
software on their systems) will have to re-acquire periodically.
While this may place additional burden on the repositories, it
is possible to arrange for credentials to expire at different times
from each other, thus mitigating the effect on the infrastructure
of multiple users (re-)acquiring their credentials at the same
time, if the credentials are relatively long-lived. Given that a
large number of digital signatures will have to be computed as
a result of periodically issuing credentials, this is also desirable
from a policy-generation point of view.

For more aggressive credential revocation, other mecha-
nisms have to be used. Although no single revocation mech-
anism exists that can be used in all possible systems, we
note that any such mechanism should not increase the load or
storage requirements on enforcement points. Thus, the most
attractive approach is proofs of validity (acquired by the user
from a “refresher” server, and provided to the enforcement
point along with the credentials). The proofs of validity can
be encoded as KeyNote credentials that are injected in the
delegation chain. While this approach is architecturally attrac-
tive, it places high load on the refresher servers. The validity
verification mechanism may be specified on a per-credential
basis, depending on the perceived risk of compromise and the
potential damage done if that occurs.

Finally, since KeyNote allows arbitrary levels of delegation
(through chains of credentials), it is possible for users to act as



lower-level administrators and issue credentials to others. In
this way, we can build a hierarchical and decentralized man-
agement scheme wherein the corporate network administrator
authorizes branch administrators to manage their networks
under some constraints. More interestingly, it is possible to
view the administrator of another network as a local user; that
administrator can handle access to the shared resources for the
remote network users, under the constraints specified in their
credential, making easy the formation of so-called “extranets.”

I1l. THE DISTRIBUTED FIREWALL

To validate our design choices and experiment with the
different aspects of our architecture, we built a prototype
distributed firewall. A distributed firewall (as described in [8])
enforces a single central security policy at every endpoint. The
policy specifies what connectivity, both inbound and outbound,
is permitted. This policy is distributed to all endpoints where
it is authenticated and then enforced, thus making security an
end-to-end property.

Distributed firewalls do not rely on the topological notions
of “inside” and “outside” as do traditional firewalls. Rather,
a distributed firewall grants specific rights to machines that
possess the credentials specified by the central policy. A laptop
connected to the “outside” Internet has the same level of
protection as does a desktop in the organization’s facility.
Conversely, a laptop connected to the corporate net by a visitor
would not have the proper credentials, and hence would be
denied access, even though it is topologically “inside.”

In the example STRONGMAN-based distributed firewall,
endpoints are characterized by their public keys and the
credentials they possess. Thus, the right to connect to the
ht t p port on a company’s internal Web server is only granted
to those machines having the appropriate credentials, rather
than those machines that happen to be connected to an internal
wire. With the advent of wireless LANS, such considerations
are becoming extremely relevant.

In our prototype, end hosts (as identified by their IP address)
are also considered principals when IPsec is not used to secure
communications. This allows local policies or credentials
issued by administrators to specify policies similar to current
packet-filtering rules. Such policies or credentials have no
option but to implicitly trust the validity of an IP address as
an identifier. In that respect, they are equivalent to standard
packet filtering. The only known solution to this is the use of
cryptographic protocols to secure communications.

We should point out that the notions of a traditional and a
distributed firewall are not incompatible. Traditional firewalls
have an advantage over the distributed firewall in that they
offer convenient aggregation points for network traffic, on
which services such as denial of service detection (or, more
generally, intrusion detection) are easier to deploy and oper-
ate. Furthermore, a combination of traditional and distributed
firewalls offers “defense in depth”, a well-established principle
in physical security and the military world.

While space is limited, we can make the core scaling
observation here. First, the approach of localized enforcement
means that the number of enforcement points can be scaled to

an arbitray network. Second, the late-binding [9] of policies
to the enforcement points combined with network locality
properties means that coordination traffic is limited. Finally,
tree topologies can be used to scalably disseminate policy
updates.

IV. CONCLUDING REMARKS

STRONGMAN is a new approach to security policy man-
agement. Its approach to scaling is local enforcement of global
security policies. The local autonomy provided by compliance
checking permits the architecture to scale comfortably with
the Internet infrastructure. Our architecture accommodates
considerable heterogeneity in both policies and enforcement
points: the policy compliance checker composes policy rules
into a coherent enforceable set for each enforcement point, and
lazy instantiation reduces the state required at enforcement
points. The removal of topological constraints in firewall
placement facilitates other Internet protocols and mechanisms.

This paper has shown STRONGMAN'’s strengths in sup-
porting scalable access control services in large heterogeneous
networks. Security enforcement is pushed to the endpoints,
consistent with end-to-end design principles. Since the en-
forcement points are coupled only by their use of a common
global policy, they possess local autonomy which can be
exploited for scaling. Our continued work in the architecture is
focusing on both extending the security mechanisms that can
be managed, and on providing administrators with intuitive,
high-level application-specific languages and other manage-
ment abstractions.
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